Definition 1. Let X_1, X_2, \ldots, X_n be a random sample. Let Y_1, Y_2, \ldots, Y_n be the same sample arranged in increasing order. The random variable Y_k is the k^{th} order statistic.

1. Let Y_n be the n^{th} order statistic of a random sample of size n. Let the population have probability density function f and distribution function F. Use the distribution function method to find the density of Y_n . Hint: Y_n is the largest number in the sample and this helps to interpret $Y_n \leq y$ in terms of the relationships between X_1, X_2, \ldots, X_n and y.

For the remaining problems, the population is uniformly distributed on $[0, \beta]$. This makes $f(x) = \frac{1}{\beta}$ for $0 < x < \beta$. 2. Calculate $E(Y_n)$ and then find an unbiased estimator for β based on Y_n .

^{3.} Show that $2\overline{X}$ is also an unbiased estimator for β .

Definition 2. The *relative efficiency* of unbiased estimators $\hat{\Theta}_1$ to $\hat{\Theta}_2$ is the ratio

$$\frac{\operatorname{var}\left(\hat{\Theta}_{1}\right)}{\operatorname{var}\left(\hat{\Theta}_{2}\right)}.$$

An estimator with a smaller variance will be more likely to be close to θ and, thus is a better estimator for θ . Relative efficiency is a way of comparing the variances of two unbiased estimators. If the relative efficiency of $\hat{\Theta}_1$ to $\hat{\Theta}_2$ is $\frac{1}{4}$ then this can be interpreted as saying that the estimator $\hat{\Theta}_1$ requires only $\frac{1}{4}$ as many observations to achieve the same accuracy at $\hat{\Theta}_2$.

4. Calculate the relative efficiency of your estimators for β to $2\overline{X}$ (your answer should depend on the sample size).

5. (Challenge for anyone who finishes early) Does the Cramér-Rao inequality allow for estimators with a smaller variance than yours? Compare the variance of your estimator with

$$\frac{1}{nE\left[\left(\frac{\partial\ln f(X)}{\partial\beta}\right)^2\right]}.$$

^{6. (}Challenge for anyone who finishes early) Calculate the density function of the k^{th} order statistic Y_k .