The point of these problems is to estimate the parameter θ for a population with a Bernoulli distribution (e.g. to estimate the percentage of voters who will vote for a given candidate, the percentage of Americans who support a given policy, etc.). We'll use a random sample X_1, X_2, \ldots, X_n from our Bernoulli population. The values of the random sample are x_1, x_2, \ldots, x_n .

1. Find the maximum likelihood estimator for θ based on the random sample.

2. (Do this problem last) Determine if your estimator from problem 1 is a minimum variance, unbiased estimator for θ (assume the C-R inequality holds; use the Bernoulli pdf $f(x) = \theta^x (1 - \theta)^{(1-x)}$ for x = 0 or 1).

- **3.** Suppose that we know that θ can be seen as the value of a random variable Θ having a beta distribution. This gives us a prior distribution to use in Bayesian estimation.
- a) Identify the distribution of $X = \sum_{i=1}^{n} X_i$.
- b) Identify the posterior distribution of Θ given X=x.
- c) Find the expected value of Θ given X=x.
- d) Suppose now that $\alpha=10$, $\beta=30$, and n=40. Use a computer to calculate $E(\Theta|x)$ for $x=1,2,\ldots,20$. Compare with the prior expectation $E(\Theta)$ and the estimate given by your estimator from problem 1.