
Math 499: Comprehensive Calculus II Notes

QUICK RECAP OF CALCULUS

In Calc 1, we focus on the fact that limits are important, defined based on the ideas of being “close enough” and we use
them to define everything else. Derivatives are the limits of slopes of secant lines and tell us quite a bit about the behavior
of our functions (increasing/decreasing, concavity, etc.). Because of this, we can apply them to many situations and obtain
information about extrema from those computations. There are two main integration notions. The first is the idea of the
anti-derivative (undoing derivatives via indefinite integrals). The second is the idea of finding areas via limits of Riemann
sums (via definite integrals). The two notions come together with the Fundamental Theorem of Calculus.

In Calc 2, there are three larger portion of the class and they are frequently mostly disconnected. The first is the idea of
integration applications and using the notion of a definite integral of a function of one variable to compute various things.
The second is the collection of tools we build in order to compute indefinite integrals. This collection of tools can largely be
thought of as high-school algebra tricks and trigonometry identities that you forgot and/or never learned. The third portion
of Calc 2 is the sequences and series portion. This starts in a fairly abstract way and culminates in the notion of Taylor series
where we have series that represent functions and these series allow us to approximate tricky things and find anti-derivatives
for functions we’ve failed to find them for before.

In Calc 3, we mostly start over and do Calc 1 again, but now for functions of multiple variables. The course (ideally)
includes vectors and functions whose outputs are vectors (i.e. functions R→Rn). We also explore what functions of multiple
variables look like in space (these are mostly functions R2→R). We then explore derivatives and integrals of these functions.
As we go to integrate functions of several variables, we introduce polar, cylindrical, and spherical coordinate systems in order
to have more options of how we describe regions (in one dimension, the only possible regions are intervals and those don’t
need choices). Then, and this is the part that you all missed here, the course should culminate in doing line integrals, flux
integrals, and surface integrals. Combining all those notions are Green’s Theorem, Stokes’ Theorem, and the Divergence
Theorem.

“DETAILED” CALCULUS II TOPICS LIST

Integration Techniques Here’s a quick recap of the most used techniques:

Integration by parts Consider u(x)v(x) and differentiate using product rule to obtain

d
dx

u(x)v(x) = u′(x)v(x)+u(x)v′(x).

Subtracting u′(x)v(x) from both sides and then integrating yields

u(x)v(x)−
∫

u′(x)v(x)dx =
∫

u(x)v′(x)dx.

Suppressing function notation, swapping sides of the equality, and writing u′(x)dx as du and similarly v′(x)dx =
dv, we obtain the usual rule: ∫

udv = uv−
∫

vdu.
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Partial Fraction Decomposition This is the main technique used for rational function integration (fractions of poly-
nomials). The rules and algebra here get messy quickly, and honestly the best strategy on the field test is probably
guess-and-check for such a problem.

Trig Substitution Here, we substitute x = a tanθ when we see a2 +x2 in the integrand. When we see a2−x2, we use
x = asinθ and when we see x2−a2, we use x = asecθ .

Trigonometric Integrals This is the strategies we develop for dealing with products of powers of trig functions.
There are two types. First, if the function looks like cos2n(θ)sin2m(θ), then you’ll need to use the appropriate
half-angle formulas:

cos2(θ) =
1+ cos(2θ)

2
and sin2(θ) =

1− cos(2θ)

2
.

For any other product, we want to use some sort of u-substitution along with the pythagorean identities:

sin2
θ + cos2

θ = 1 and tan2
θ +1 = sec2

θ and 1+ cot2 θ = csc2
θ ,

and we need to be careful to ensure that we’ve got the correct du lying around. For u = sinθ , we need to leave
a du = cosθ dθ and want to turn all other trig functions into sinθ so that we can make those u’s. The case for
u = cosθ is similar. For u = tanθ , we have du = sec2 θ dθ , so we’re looking for everything to be put into tanθ ,
except for two copies of secθ . For u = secθ , we have du = tanθ secθ dθ , so we’re looking for everything to be
put into secθ , except for one secθ and one tanθ . Rarely will you see these involving csc and cot, but the ideas
there are similar.

Integration Applications Here’s a list of some things you can do with integrals of one variable.

Volumes of revolution These can be computed via washers (or disks) or shells.

The formula for the volume of a washer is π(R2− r2)∆h where R is the radius of the outside of the washer, r
is the inner radius, and ∆h is the height of the washer. Here, if we’re rotating around the y-axis, we’ll have ∆h
become dy in our integral and it’ll become dx if we’re rotating about the x-axis. Note that a disk is just a washer
without a hole, i.e. with r = 0.

The formula for the volume of a cylindrical shell is 2πrh∆r where r is the radius of the shell, h is the height of
the shell, and ∆r is the width of the shell. If we’re rotating about a line parallel to the y-axis, then ∆r becomes dx
in our integral and if we’re rotating about a line parallel to the x-axis, it becomes dy. Also, r is the distance from
the shell to the axis of rotation, and so typically of the form x− c or y− c for some constant c related to the axis
of rotation.

Arc Length The length of the curve y = f (x) from x = a to x = b is given by the formula

L =
∫ b

a

√
1+( f ′(x))2 dx.

Surface area of revolution The simplest version of the surface area formula is
∫

2πr ds where r is the radius to
the axis of revolution and ds represents a small piece of arc length. In particular, if x = g(y) on the interval
c ≤ y ≤ d is rotated about the y-axis, then the integral will have bounds c and d and be evaluated with re-
spect to y. Additionally, we’ll have r = x = g(y) and ds =

√
1+(g′(y))2 dy. All told, the surface area will be∫ d

c 2πg(y)
√

1+(g′(y))2 dy. The three other formulas are no harder to derive from this than the example.

Physics Applications - Work, Pumping, Pressure Each of these applications is a bit different, and you probably
didn’t cover all of them in the course you took. They key to all integral applications is to split an interval into
small pieces, compute the value of the desired output on that small piece, add them up and take a limit, resulting
in an integral. Memorizing a bunch of formulas probably won’t help if you don’t understand what they mean or
when to use them.
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Series Basics A sequence is an infinite list: a1,a2, . . .. While we use this notion only with ai ∈ R in calculus, the notion is
useful in other contexts with ai in other sets. The limit of a sequence is what the sequence of numbers approaches as n
heads towards infinity. Assuming we have a closed formula for an, we can think of the limit lim

n→∞
an just like we would

the limit of f (x) as x heads towards infinity. The partial sums of a sequence are the sums

Sn =
n

∑
i=1

ai

and this sequence is the series denoted
∞

∑
i=1

ai. Note that it’s totally okay to start a series/sequence at i = 0, or i = 3, or

anywhere else. This will not change whether or not the sequence or series converges; however, it frequently changes
what a series converges to. Recall also that we say a convergent series ∑ai converges absolutely if ∑ |ai| converges
and converges conditionally if ∑ |ai| diverges. Here’s a quick list of series you should be familiar with off hand:

Geometric Series These have the form
∞

∑
i=0

ari. When |r| < 1, these converge absolutely, and when |r| ≥ 1, they

diverge. Such convergent series converge to a
1−r . Note that this has been set up so that a is the first term of the

series and r is the ratio. If the indexing is different, things will look different!

p-Series These have the form
∞

∑
k=1

1
kp . This series converges when p > 1 and diverges for p≤ 1. When p = 1, we call

this the harmonic series.

Alternating Harmonic Series This is the series
∞

∑
k=1

(−1)k

k
and it converges conditionally.

Series Tests Here’s a quick recap of each of the series tests, phrased as a theorem. If not explicitly given, you should assume
∑

∞
i=1 ai is a series of real numbers.

Divergence test If ∑
∞
i=1 ai converges, then limi→∞ ai = 0. The contrapositive of this is what we use to make this useful.

Ratio Test Let L = limi→∞

∣∣∣ai+1
ai

∣∣∣. If L < 1, the series converges absolutely. If L > 1, the series diverges. If L = 1 or
the limit doesn’t exist, the test fails.

Comparison Test This requires a second series ∑
∞
i=1 bi with ai,bi ≥ 0 for all i. Suppose ai ≤ bi for all i. If ∑ai

diverges, then so does ∑bi. If ∑bi converges, then so does ∑ai.

Limit Comparison Test This requires a second series ∑
∞
i=1 bi with ai ≥ 0 and bi > 0 for all i. Let c = limi→∞

ai
bi

. If
0 < c < ∞ then both series converge or both series diverge.

Alternating Series Test This requires the series to look like ∑(−1)kak with ak ≥ 0. If ak+1 ≤ ak for all k and
limk→∞ ak = 0, then ∑(−1)kak converges.

Integral Test This requires a function f (x) where f (x) ≥ 0 for x ≥ c and f (k) = ak for all integers k ≥ c. Then∫
∞

c f (x)dx and ∑
∞
k=c ak either both converge or both diverge.

Root Test Let L = limi→∞
i
√
|ai|. If L < 1, the series converges absolutely. If L > 1, the series diverges. If L = 1 or

the limit doesn’t exist, the test fails.

Power Series Such series look like
∞

∑
k=1

ak(x− c)k

where c is a constant and ak ∈ R. We say the series is centered at c. One can frequently use the ratio test to identify
a value p ∈ R such that p|x− c| is the limit from the ratio test. Then, the power series converges (absolutely) as long
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as |x− c| < 1/p and we say 1/p is the radius of convergence, and it will converge for the values of x which make
|x− c|< 1/p true, i.e. for c−1/p < x < c+1/p. To identify whether or not the series converges for x = c±1/p, we
must plug in those values of x to the original series and use other tools (these give L = 1 for the ratio test, so that test
fails). If the limit from the ratio test is 0, then noting that 0 < 1 is always true, we know that the series converges for
all values of x and say that the radius of convergence is infinity. If the limit from the ratio test is ∞, then noting that
1 < ∞ is always true, we know that the series diverges for all values of x and say that the radius of convergence is
zero.

Taylor Series These are special kinds of power series and are series designed to represent functions. The Taylor Series of
f (x) centered at x = a is

∞

∑
k=0

f (k)(a)
k!

(x−a)k

where f (k)(a) is the kth derivative of f evaluated at a. When a = 0, we sometimes call this the Maclaurin Series for
f (x). Some important Maclaurin series are given below.

Function Maclaurin Series Radius of Convergence

1
1− x

∞

∑
n=0

xn 1

ex
∞

∑
n=0

xn

n!
∞

sinx
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
∞

cosx
∞

∑
n=0

(−1)nx2n

(2n)!
∞

arctanx
∞

∑
n=0

(−1)nx2n+1

2n+1
1

ln(x+1)
∞

∑
n=1

(−1)n−1xn

n
1

(1+ x)k
∞

∑
n=0

(
k
n

)
xn 1
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