
Mathematics is like checkers-it is suitable for the 

young, not too difficult, amusing, and without peril to 
the state. -Plato (ca. 429-347 B.C.)

Mathematics and 
Thinking Mathematically 
Mary Lucy Cartwright

Dame Mary Lucy Cartwright (1900-1998),
D.B.E., F.R.S, to give her full name and hon- 
ors, was born in Northamptonshire, the 

daughter of a rector. She was educated at 

home and subsequenthy at a "public" school 
in Salisbury. At this time the family was 

struggling to cope with the tragic death of 

Cartwright's two older brothers in World 

War I. She entered St. Hughes College, 
Oxford, in 1919 and, although she was 
engrossed in the study of history, she opted

to "read" mathematics. She was one of only five women studying mathe-

matics in Oxford at that time. Having devoted more time to history than to 

mathematics at school, the program in mathematics was a challenge but her 

natural mathematical endowments enabled her to ean a first class degree 

in 1923. 
Not wishing to put a strain on the family finances, she taught school for 

four years and then returned to Oxford where she was awarded a D.Phil. in 

1930 under the supervision of G. H. Hardy and E. C. Titchmarsh. In 1934 she 

Was appointed to a faculty position at Girton College (a women's college in 

Cambridge University) where she was director of studies in mathematics. 
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Her mathematical research has ranged over a wide field of classical 

analysis and has been seminal in many areas, especially in integral equa 
tions. 

In 1939 the Department of Scientific and Industrial Research asked

Cartwright to help in solving "certain very objectionable looking equations 

Occurring in connection with radar. 
" 

In this enterprise, she collaborated with 

LE. Littlewood who (tongue in cheek) described her as "the only woman in 

my life to whom I have written twice in a single day." He held her in high 

esteem as a colleague. 
In 1949 she became mistress of Girton, a position that placed great 

demands upon her time, demands she cheerfully and willingly gave. It is said 

that she provided quiet, unassuming and clear-headed leadership of the col- 

lege during a time of many challenges. Although shy by nature, she man- 

aged to interview all incoming students and to regale her younger faculty 
with tales of her foreign adventures. 

Her earlier interest in history never left her entirely, for her work is per 
meated with historical perspectives that add interest and dimension to her 

work.
Her scientific work was recognized by election to the Royal Society in 

1947. She also served as president of the London Mathematical Society from 

1961 to 1963 as well as President of the Mathematical Association. She 

received honorary degrees from Cambridge, Edinburgh, Leeds, Hul, Wales,
and Oxford. In addition, she was awarded the Sylvester Medal of the Royal

Society in 1964 and the De Morgan Medal of the London Mathematical

Society in 1968. In June 1969 she was made a Dame Commander of the 

British Empire for services to mathematics. 
She died in 1998 and is revered for, among other things, having helped

pave the way for more widespread recognition of women in mathematics. 

Editor's Preface 

In this essay, Mary Cartwright endeavors to throw some light on the difficult 
question of what constitutes "mathematical thinking," especially abstract 

thinking. The power to engage in complete abstraction, she notes, comes 
very slowly and, in the case of most individuals, comes not at all. Yet as we 
note below, surprising levels of understanding abstract ideas can be 
achieved. At present the mechanism of that achievement appears to be an 

impenetrable phenomenon of human thought. Present and future research
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in the neurological or psychological nature and basis of abstract thought
may cast some light on this currently intractable problem.

Although abstract thinking arises in numerous contexts, its most conspic-
uous manifestation seems to be in mathematics. In the ongoing debate 

involving "nature" and "nurture," that is, whether a characteristic is genetically or culturally acquired, we suggest that abstract thinking is a learned
attribute and in the case of mathematics, it seems to be intimately intertwined 

with the specificcontext
Mary Cartwright points to another distinctive characteristic of mathe-

matics, viz. that consumers of mathematics (engineers, physicists, etc.)
invariably relate the mathematical construct and content to the individual 

physical phenomenon that interests them and that governs the phenome
non. This same process takes place at different levels of abstraction. It is said 
that Newton, for example, invariably associated differential equations with 
physical events. In a somewhat different direction, it is reported thata noted
algebraist of the early part of the 20th century always thought of a linear

transformation as a matrix. For early group theorists, a group was generally 
thought of as a set of permutations. In neither of these cases was the cur rent abstract form used as a basis for deeper investigations. We hasten to 

add, however, that the less abstract point of view often led, nevertheless, to 
some deep and enduring discoveries. 

To achieve a higher level of abstraction, it is often the case that a math- 
ematical construct is disassembled into its component parts and reassem-

bled, more nearly "to the heare's desire." The process may lead to a higher 
level of abstraction and, according to Cartwright, could thus lead toa 

greater understanding. 
Returning to the matter of abstraction, it is a very interesting, curious and 

challenging question to account for the fact that in the historic evolution of 
mathematics, higher levels of abstraction are achieved and better under 
stood, apparently quite simply with the passage of time. Each new genera 
tion is better able to cope with greater levels of abstraction. Since genetic
differences do not occur in such short periods of time, we must account for 
this phenomenon by a change in the environment-teachers and writers of 

mathematics are better able to work with abstraction and are better able to 
articulate it. The passage of time has miraculously enhanced the clarity
Obviously this has been a consequence of evolving cultural changes. One of 
the most notable examples is the evolution of the Hindu-Arabic system of 

enumeration and the computational algorithms associated with it. 
DEginning from an arcane and almost mystical study in the 9th till the 12th 
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century, to a system of computational algorithms that were, at first, limited 

in use to specially trained calculators in the 15th and later centuries, the sys 
tem is now routinely taught to children in grade schools. It would seem that 

each generation contributed to a greater clarity and systematization of the 

underlying abstraction. It could now more easily be communicated at an 
early stage in a child's development. 

Much has been written in recent years as people endeavor to understand 
the process of learning mathematics among children and to decipher the 
abstractions that underlie it. It is assumed that such investigations will cast 
light on the mathematical way of thinking. Among the leading investigators 
have been Piaget and Inhelder. They have unearthed many very interesting 

phenomena related to mathematical learning among children. However, as 
many elementary school teachers will testify, the enterprise has not been as 
effective as was originally hoped for and the most recent researches have not 

satisfactorily resolved the basic problems confronting teachers of mathemat
ics, that is, the learner's ability to cope with abstraction. 

Professor Cartwright however, has made some thoughtful observations. 

The lecture was given as the Samuel Newton Taylor Lecture at Goucher 
College, January 30, 1969. 

This year I find myself in the Division of Applied Mathematics at 
Brown University. Not every University or College has a separatedepartment of applied mathematics, but for over thirty years I was 
classed as a pure mathematician in the University of Cambridge,England, and some applied mathematicians there prefer to call them-selves theoretical physicists. Moreover, I once heard a geophysicist with 
a mainly mathematical training say that he used 'applied mathematics as a term of abuse, meaning stuff which was not good mathematics and not really relevant to any physical problem. All these factors have made me think about the borderline between mathematics and its applications, not only to physical problems of a more or less traditional type, but also to statistical, economic, and industrial problems.It is well known that the origins of some of the most abstract pure mathematics can be traced through the theory of Fourier series to a problem about vibrating strings, or through the theory of irrational num- bers to Greek geometry and Egyptian devices for measurement of right
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angles, but the pure mathematicians of the last 100 or 150 years have 

een Dursuing the mathematics for its own sake without any thought of 
vibrating strings. On the other hand many major new developments in 

nure mathematics were initiated quite specifically for the purpose of 
using them in some application. For instance this is certainly true of 

Newton's contributions to the calculus, and of probability theory, and 
this still seems to be happening in operations research and control the- 

ory. In distinguishing pure mathematics from applied two questions 
seem to arise. Is the work truly abstract and separated from all applica-
tions? And is it any more mathematical if it is truly abstract and pursued
strictly for its own sake?

If we delve into the beginnings of mathematical thought in very 
young children or primitive peoples, there is plenty of evidence to show 
that the power of complete abstraction comes very slowly, and indeed 
to many people it probably only ever comes in a very restricted sense.
A number of eminent people take the view that thought begins with the 
idea of actions performed in the mind only, that is to say operations. According to Piaget an ordinary child, by the time the child is two, can 
work out how he is going to do something before he does it, provided that the situation is simple and is familiar to him, but in order to under 
stand abstract mathematical concepts such as 1, 2, 3, 4,.., the child has 
to move from perceptions arising from his environment and actions to 
the abstractions, a long and gradual process. Much work has been done 
by Piaget and Innhelder on the child's conception of space, and, for 
instance, its powers to distinguish between different kinds of figures such as a circle, a square, and a circle with a little one either inside or 
outside. Their experiments have thrown much light on the developmentof numerical, spatial, and physical concepts of a very elementary kind 
among young children, but it seems doubtful to me whether the abilities 
tested are always truly mathematical. For young blackbirds will gape at 
a piece of black cardboard consisting of one large circle and two small
ones attached to it, but they only gape at the small circle whose size is 
a certain proportion of that of the large circle. This indicates that the 
ability to distinguish between certain shapes may have psychologicalfoundations.

H. and H. A. Frankfort in an essay on myth and reality point out that 
ancient man could reason and work out the causes of things, but worked
on very different hypotheses from ours. The primitive mind asks 'who' 
when it looks for a cause, and cannot withdraw far from perceptual real-
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ity. When the river does not rise, the river has refused to rise, and so the 

river or the gods intend to convey something to the people. At the same 

time primitive man used symbols much as we do, but he can no more 

conceive them as signifying, yet separate from, the gods or powers than 

he can consider a relationship-such as resemblance-as connecting, 

and yet separate from, the objects compared. Hence there is a coales- 

cence of the symbol and what it signifies, as there is coalescence of two 

objects compared so that one may stand for the other. 
Frankfort then gives an example of this coalescence in which potery 

bowls with the names of hostile tribes were solemnly smashed at a rit- 

ual by the Egyptians in the belief that real harm was done to the ene- 

mies by the destruction of their names. It may seem a far cry from this 

to modern mathematics, but Bochner has drawn a parallel between

mathematics and myth, and replaced myth by mathematics in some of 
Frankfort's sentences. I am not prepared to go as far as he does by 
replacing the word myth by mathematics in a sentence which then 
asserts that mathematics transcends reasoning in that it wants to bring
about the truth it proclaims. However, in the ritual we have two funda- 
mental features of mathematics, symbols representing something and 
operations on those symbols representing operations on the thing itself. 
Symbols and notation are part of the essential basis of mathematics, and 
I believe that the development and standardization of a good notation is 
an extremely important part of the development of mathematics. 

If we turn to the extreme other end of the scale, we run into another
kind of difficulty in separating the mathematics from its applications. 
Some pure mathematicians seem to do their mathematical thinking in 
terms of idealized physical and spatial ideas. The late G. H. Hardy, who 
taught me, was very much against applied mathematics, but in a foot 
note to a joint paper with J. E. Littlewood published in a Swedish peri- 
odical he wrote that a certain problem is most easily grasped in terms of 
cricket averages. Norbert Wiener would translate a mathematical prob-lem into the language of Brownian motion, and I believe that his think- 
ing was completely abstract although I do not know the theory, or 
remember what he said well enough to be quite sure. Hadamard has 
described his visualization of the proof that there is a prime greater than 
11. To consider all prime numbers from 2 to 11, i.e., 2, 3, 5, 7, 11 he 
visualized a confused mass. Forming the product 2 x 3 x 7 x 11 = N, since N is large, he visualized a point remote from the mass. Increasing the product by 1 he saw another point a little beyond the first. N+ 1, if 
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not a prime, is divisible by a prime greater than 11; Hadamard saw a 

nlace between the mass and the first point. This seems to me to be a sort 

af mathematical shorthand and would certainly have to be translated 
hack to numbers before it could be communicated to anyone else.

As I said earlier, I have until now always been classed as a pure math-
ematician, but Professor J. E. Littlewood and I did a lot of work on the 

theory of ordinary differential equations arising from problems of radio 
engineering. Littlewood is also a very pure mathematician in many ways,
but he worked on antiaircraft gun fire in the First World War, and he 

translated our problems, which were suggested by radio values and oscil- 

lations, capacitance and inductance, etc., into dynamical problems and 
called all the solutions of our cquations trajectories' as if they were the 

Daths of missiles shot from a gun. In the radio problems there are oscil-
lations with negative damping, and so we had periodic trajectories going

up and down over and over again, and I am sure that the abstraction was 

complete although there was often a certain woolliness until the argu-
ment was complete, Just as in Hadamard's visualization. Between these

two extremes there are sonic users of complicated mathematics, physi- 
cists and engineers in particular, who are thinking all, or nearly all, the 
time in termms of the physics of the problem. Engineers have consulted 
me about a number of different types of problem, radio, control theory,
oscillations of stretched wires; they usually come with some equations 
and very little explanation. I have to ask a lot of questions before they 

tell me everything relevant to the mathematical problem. It seems difi- 

cult for them to think in abstract mathematical terms, the symbols to them 
seem to mean the engineering concepts, currents and circuit constants 
such as impedance and inductance. This is important in two ways. The 

engineers have mental reservations and can check at every stage because

they visualize how the physical system works. On the other hand they 

Tind it difficult to apply the mathematical processes used in one field to 

any other physical problem, even if they are just as relevant there. Some 

years ago at a conference for engineers I was asked to speak on 

Liapunov's method for stability problems. I described the basic principles 

as simply as I could, and after I spoke Professor Parks lectured on appli-
cations of the method. Many in the audience commented that the order of 

our lectures should have been reversed, and that they would have under

stood my lecture much better if they had understood that I was talking 

0ut the phase plane. It is possible that this was partly a question of nota-

and terminology, but I believe that they could do advanced mathe 
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matics best by thinking of it in terms of their particular engineering prob- 

lems. The Liapunov method was developed mainly in connection with 

control engineering and by now has adopted much of its terminology, but 

the mathematics arising there need to be abstracted and put in a form 

which makes it available in connection with other applications. Problems 

of ordinary differential equations have arisen in connection with astrono-

my, ballistics, radio engineering, control theory, mechanical oscillations 

of machinery; each application has special features, and the theory of it 

was often developed in a correct logical form quite a long way before it 

was fitted into the general theory of ordinary differential equations as 

pure mathematics. The individual who formulated the equation and asked

the question is, in the sense of my title, thinking mathematically, but he is 

not doing mathematics until he operates on his symbols. Please note that 

I do not say 'asked for a solution of the equation' because, although he 

may say that, he really wants to know something about the solutions in 

general. Is there a periodic solution? Is it stable? Will it remain stable ifI 

change a certain parameter? Will the period be longer or shorter? He may 

find the methods which he needs in the literature and do the work him 

self. He may find a mathematician to help him. Although I myself have 

helped to develop the general theory and settle certain theoretical prob- 
lems, I do not think that I have ever produced a result useful for any spe- 

cific practical problem when it was needed. For soon after Littlewood and 

I began work on these problems, it was realized that the variations in indi-

vidual thermionic valves was so great that precise mathematical results
were not worth the trouble, and satisfactory experimental determinations 

could be more easily obtained. In recent times the person who formulates 

the mathematical statement of a physical or other real life problem usual-
ly does not do anything very original in the mathematical handling of it, 

although some interesting purely mathematical work on matrices appears 
in journals concerned with computing or applications to economics, 

detached from other pure mathematics. 
To sum up so far I believe that the dividing line between strictly

abstract thinking in mathematics and thinking in terms of the real world 
is by no means clearly defined and some of the major developments in 
mathematics such as the calculus were thought out more or less in terms
of the real world. Further abstraction does not necessarily make the 
mathematics any better. For the Babylonian schoolmasters constructed 
sets of most complicated artificial formulae, perhaps 200 on one tablet,

for their pupils to simplify. Their mathematics was sufficiently abstract 
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for them to be indifferent whether they added the number of men to the 

umber of days. In present circumstances this seems abstraction at its 
wOTst, but perhaps then it was a step forward. The Babylonians must 

have developed the laws of arithmetic a long way to set these compli-

cated exercises, but mainly for practical purposes whether it was 

accounting or astronomy. 

Now let us turn to those who do mathematics for its own sake.I

should like to begin with the Hindu who in about 1200 B.c. wrote, "As 

crests on the heads of peacocks, as the gems on the hoods of snakes, so 

is ganita, mathematics, at the top of the sciences known as the 

Vedanga." Ganita is literally the science of caleulation and in the early 

days it consisted of finger arithmetic, mental arithmetic, and higher 
arithmetic in general. At first it included astronomy, but geometry 

belonged elsewhere. At one stage higher mathematics was called 'dust

work' because it was done in sand spread on the board or on the ground.

We owe our so-called Arabic numerals to the Hindus, and they 
advanced a long way in algebra very early. 

Most people consider that the Greeks were the first to do mathemat-

ics for its own sake and to realize the need for proof. The word 'math- 

ema' meant originally a subject of instruction, but very early it was 

restricted to mathematical subjects among which Pythagoras included
geometry, theory of numbers, sphaeric (or spherical trigonometry used 

for astronomy), and music. They classified numbers not only as odd and 

even, but as even-even, 2m; even-odd, 2(2n+1); odd-even 2m+1(2n+ 1), 
and also proved that there are an infinity of primes. I doubt whether they 

could calculate as well as the Babylonians, but probably that did not 

attract them, and also they lacked the incentives provided by the gov 
emment of a far flung empire. I feel that I have to remind myself of the 

difficulties due to the absence of convenient symbols. Sir Thomas

Heath writing of the arithmetic of Nicomachus said If the verbiage is 

eliminated, the mathematical content can be stated in quite a small com 
pass, but Heath used modern notation and Arabic numerals. In the 

Wasps of Aristophanes one of the characters tells his father to do an 

easy sum 'not with pebbles but with fingers,' and Herodotus says that, 
in reckoning with pebbles, Greeks move left to right, Bgyptians right to 

left, which implies vertical columns facing the reckoner 
he Greeks also developed a theory of geometry which remained

more important than any other for nearly 2,000 years, and was the first

CDerate development of a logical system in mathematics. In the third 
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century A.D. an unknown writer jokingly used words of Homer intend 

ed for something else to describe mathematics: 

Small at her birth, but rising every hour.

She stalks on earth and shakes the world around. 

For, says Anatolius, Bishop of Laodacia, who quoted it, mathemat 

ics begins with a point and a line and forthwith it takes in the heaven 

itself and all things within its compass. If this was the Greek viewpoint 
at such a late date, is it possible that their geometry was not truly

abstract and that the symbols of point and line were still partly coa- 

lesced with the abstract point and line? 
The position of geometry and more generally spatial concepts in 

mathematics is not completely clear to me. In recent times all types of 

geometry have been given an analytical basis and freed from the logical 

difficulties such as those which used to worry schoolmasters teaching
about congruent triangles by the method of superposition. I therefore 

ask myself whether geometry and spatial concepts are really part of the 

basis of mathematics or a field of application similar to mechanics, both 

terrestrial and celestial, or to games of chance. The reason for the tradi- 

tional special position of geometry may be that in geometry the symbols 
are the objects themselves; the abstract point, line, and triangle are rep- 

resented by a point, line, and triangle; what is more, so long as the 

geometry is plane geometry they can be drawn on a flat surface by pen 
or pencil on paper or in sand on the ground. When Greek geometry was 

being developed there was no good notation for dealing with numbers,

and even in the 15th Century the solution of a cubic equation was 

described in geometrical terms and illustrated by a figure for lack of a 

good algebraic notation. In mechanics a comparable real life represen- 

tation of motion could not be used to explain the theory; written sym- 

bols or geometrical figures were needed for communication. But if we 

ask whether the contributions of spatial concepts to modern mathemat- 

ics are greater than those of other real life problems it is difficult to 

answer. Spatial thinking has led to the highly abstract theory of irra-

tional numbers of Cantor and Dedekind, and permeates mathematical 

thought in almost all fields; the physical sciences have given rise to the 
calculus (not without the help of geometry), and statistics and probabil- 
ity have their basis in multitudinous practical problems. 

Pfeiffer explains the situation well in relation to probability. Some of 
the salient points in his account are as follows: The history of probabil- 
ity theory (as is true of most theories) is marked both by brilliant intu- 
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ition and discovery and by confusion and controversy. Until certain pat- 
terns had emerged to form the basis of a clear-cut theoretical model,
investigators could not formulate problems with precision, and reason 
about them with mathematical assurance. 

From what some people say it sounds to me as if quantum theory had 
not yet reached this stage, but it is certainly beyond my competence to 

form a valid judgment. 

Pfeiffer continues by saying that although long experience was need-
ed to produce a satisfactory theory, we need not retrace and relive the 

fumblings which delayed the discovery of an appropriate mathematical 
model. That is, a mathematical system whose concepts and relation- 

ships correspond to the appropriate concepts and relationships of the 
real world. Once the model has been discovered, studied, and refined, it 
becomes possible for an ordinary mind to grasp, in a reasonably short 
time, a pattern which took decades of effort and the insight of genius to 

develop in the first place. I note that Pfeiffer asserts that the most suc 

cessful model of probability theory known at present is characterized by 

considerable mathematical abstractness. 
J. Willard Gibbs wrote One of the principal objects of theoretical 

research in any department of knowledge is to find the point of view 

from which the subject appears in its greatest simplicity' and Bushaw

says that one of the distinctive characteristics of modern mathematics is 

its way of taking old mathematical ideas apart like watches, studying

the parts separately, and putting these parts together again in new and 

interesting combinations and studying these complications in turn. I 
believe that this process has contributed enormously to this simplifica-

tion in mathematics itself, and so made it more readily available for 

applications. Mandelbrojt referring to the quotation from Willard Gibbs 

says 'Integration in function spaces provided such a point of view over 

and over again in widely scattered areas of knowledge and it gave us not 
only a new way of looking at problems but actually a new way of think- 

ng about them.' Now one might call Fréchet the father of abstract

spaces, and in the front of his book he puts a quotation from 

Hadamard's survey of functional analysis given in 1911. "The function-

continuum does not present any simple conceptto our imagination. 

ueometrical intuition tells us nothing a priori about it. We are forced to 

nedy this ignorance and we can do it only analytically, by creating a 

Cnapter of the theory of sets for handling the functional continuum.'

ISewhere Hadamard wrote that the calculus of variations was nothing 
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but the first chapter of functional analysis, and of his own work on the 
calculus of variations, hyperbolic partial differential equations, and cer- 
tain other topics he said that he owed the greater part to his contacts 
with the physicist Duhem, through Duhem's book on hydrodynamics, 
elasticity, and acoustics and many conversations when they were both 
at Bordeaux. So we have a record here of the complete cycle from a 

physical basis through the calculus of variations to functional analysis 
and abstract spaces, and thence to a multitude of applications throughthe process of analyzing geometrical ideas and putting them together
again in a most abstract new way to create function spaces. 

A further variation on this pattern has become evident of recent years and that is the use of an auxiliary model consisting of various graphical, mechanical, and other aids to visualizing, remembering, and even dis- 
covering things about the mathematical model. The visual images of 
Hadamard, Hardy's cricket averages, and Littlewood's trajectories might be considered as auxiliary models, but of more universal signifi-cance are the analogue machines with electronic devices which simulate what happens in, for instance, fluid mechanics, or rather what corre- sponds in the mathematical model. We now have 

(A) The real world of actual phenomena, known to us by various
ways of experiencing these phenomena. 

(B) The abstract world of the mathematical model which uses sym- bols to state relationships and facts with great precision and 
economy. 

(C) The auxiliary model.
The transition from A to B is the formulation of real world phenom- ena in mathematical terms; the transition B to A is the interpretation of the deduction by pure mathematics from that formulation. Both these I 

consider to be thinking mathematically, but only the deductions inside B are mathematics. We may also think mathematically by moving from B to C which is a secondary interpretation, and then either back to B to confirm what C has suggested or from C direct to A. 
As Pfeiffer points out, the value of both the mathematical model and the auxiliary model depends on how successfully the appropriate fea- tures of the model may be related to the 'real-life' situation. The mod- els cannot be used to prove anything about the real world, although a study of it may help us to discover important facts about the real world.A model is not true or false; it fits or it does not fit. It is unsatisfactory if either (1) the solutions of the model problems have unrealistic inter- 
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etations, for instance, arbitrarily large quantities or arbitrarily fine dif- 

prodi 
anduces contradictions. Many models fit amazingly well. Karl Pearson

rences, or (2) it is incomplete or inconsistent so that the mathematics 

ing apparently with purely formal truths, may still reach results of end- 

wrote The mathematician, carried along on his flood of symbols, deal-

less importance for our description of the physical universe, 
Until perhaps 100 years ago many scientists and mathematicians 

knew a bit of everything, and the mathematical formulation, as I said of 

Newton in particular, was done by someone who was a good enough 

mathematician to develop the mathematics to a considerable extent. 

This is particularly true of Sir Isaac Newton, but in these days of spe- 

cialization the scientist or economist, or worker in close contact with the 

real world situation must do stage A~ B. Sir Cyril Hinshelwood, former 

President of the Royal Society, said 'Scientists need to be taught mathe 

matics as a language they can actually speak. It is of great importance for 

the scientist to be able to learn the art of formulating problems in mathe-

matical terms which of course is a quite difficult job. You have to think

very accurately and carefully about a problem before you can do it. You 

have to have practice in speaking the language of mathematics. It does not 

matter being an expert in differential equations. You can go to the expert 

for help in solving an equation. But you cannot expect the mathematician 

to do the translation into mathematics. There should be an early and rather 

intensive cultivation of the power of thinking about real things and the 

application of mathematical symbolism to physical ideas.' He went on to 

draw a parallel between learning simple French as a child and learning to 

express physical ideas in mathematics when the level of physics and 

mathematics reached are both elementary, so that the child becomes 

accustomed to the process by easy stages. Although he advocates, as I do, 

that the scientist should do the mathematical formulation, his words seem 

O imply an incomplete abstraction. In his mind the mathematical symbols

e stull representing their physical counterparts, 
not that this matters tor 

Clentist who has access to an expert 
mathematician, but it is clear from 

delbrojt's remarks on function spaces
and Hadamard's 

remarks about

the functional continuum that without complete
abstraction on the part of 

of the mathematical language used by 
scientists. 

in the ysical world or in some 
ideal world. The 

definitions 
which

Euclid's geome was supposed to deal with real objects,
whetherme mathematicians we should lack some of the most expressive parts 

preface veral books in the Elements are 
supposed 

to 
communicate 
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what object the author is talking about even though, like the famous def- 

inition of the point and the line, they may not be required in the sequel. 

The fundamental importance of the advent of non-Euclidean geometry 

is that by contradicting the axiom of parallels it denied the uniqueness 
of geometrical concepts and hence, their reality. By the end of the nine 

teenth century, the interpretation of the basic concepts of geometry had 

become irrelevant. This was the more important since geometry had 

been regarded for a long time as the ultimate foundation of all mathe-

matics. However, it is likely that the independent development of the 

foundations of the number system which was sparked by the intricacies 

of analysis would have deprived geometry of its predominant position

anyhow. 
Although it confirms my views on Euclidean geometry, it does not 

seem to recognize the geometrical origin of the theory of irrational 

numbers. 
I also noticed that A. Aaboe in Episodes from the Early History of 

Mathematics, writes 'Even the oft repeated statement that the Egyptians 

knew the 3, 4, 5 right angle has no basis in available texts, but was 

invented about 80 years ago."
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