Math 499

PRACTICE EXAM II

DIRECTIONS: Take 1 hour to answer the 20 questions below. Recall that all logarithms are natural logarithms unless a base is specified. Mark your solution on this answer sheet with an \mathbf{X} or by highlighting your answer. Return your answer sheet to Herak 307A or email it to axon@gonzaga.edu.

NAME:

1	a	b	с	d	е
2	a	b	с	d	е
3	a	b	с	d	е
4	a	b	с	d	e
5	a	b	с	d	е
6	a	b	с	d	e
7	a	b	с	d	e
8	a	b	c	d	е
9	a	b	с	d	е
10	a	b	с	d	е
11	a	b	с	d	е
12	a	b	с	d	е
13	a	b	c	d	е
14	a	b	с	d	е
15	a	b	с	d	е
16	a	b	с	d	е
17	a	b	с	d	e
18	a	b	с	d	e
19	a	b	с	d	е
20	a	b	с	d	е

1. If f(g(x)) = 5 and f(x) = x + 3 for all real x, then g(x) =
a) x - 3
b) 3 - x
c) ⁵/_{x+3}
d) 2
e) 8

2. $\lim_{x \to 0} \frac{\tan x}{\cos x} =$
a) $-\infty$
b) -1
c) 0
d) 1

e) $+\infty$

3. Let A - B denote $\{x \in A : x \notin B\}$. If $(A - B) \cup B = A$, which of the following must be true?

- a) ${\cal B}$ is empty
- b) $A \subseteq B$
- c) $B \subseteq A$
- d) $(B A) \cup A = B$
- e) None of the above

4. For what value of b is the value of $\int_{b}^{b+1} (x^2 + x) dx$ a minimum?

a) 0

- b) -1
- c) -2
- d) -3
- e) -4

- 5. In how many of the eight standard octants of xyz-space does the graph of $z = e^{x+y}$ appear?
- a) One
- b) Two
- c) Three
- d) Four
- e) Eight

6. Suppose that the function f is defined on an interval by the formula $f(x) = \sqrt{\tan^2 x - 1}$. If f is continuous, which of the following intervals could be its domain?

- a) $\left(\frac{3\pi}{4},\pi\right)$ b) $\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ c) $\left(\frac{\pi}{4},\frac{3\pi}{4}\right)$
- d) $\left(-\frac{\pi}{4}, 0\right)$ e) $\left(-\frac{3\pi}{4}, -\frac{\pi}{4}\right)$

7. If f''(x) = f'(x) for all real x, and if f(0) = 0 and f'(0) = -1, then f(x) = -1

- a) $1 e^x$
- b) $e^x 1$
- c) $e^{-x} 1$
- d) e^{-x}
- e) $-e^x$

8. Which of the following double integrals represents the volume of the solid bounded above by the graph of $z = 6 - x^2 - 2y^2$ and bounded below by the graph of $z = -2 + x^2 + 2y^2$?

a)
$$4 \int_{0}^{2} \int_{0}^{\sqrt{2}} (8 - 2x^{2} - 4y^{2}) dy dx$$

b) $\int_{-2}^{2} \int_{-\sqrt{(4-x^{2})/2}}^{\sqrt{(4-x^{2})/2}} (8 - 2x^{2} - 4y^{2}) dy dx$
c) $4 \int_{0}^{2} \int_{-\sqrt{4-2y^{2}}}^{-\sqrt{4-2y^{2}}} 1 dx dy$
d) $\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-2}^{2} (8 - 2x^{2} - 4y^{2}) dx dy$
e) $2 \int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{4-2y^{2}}} (8 - 2x^{2} - 4y^{2}) dx dy$

9. If A and B are events in a probability space such that $0 < P(A) = P(B) = P(A \cap B) < 1$, which of the following CANNOT be true?

- a) A and B are independent
- b) $A \cap B = A \cup B$
- c) A is a proper subset of B
- d) $P(A)P(B) < P(A \cap B)$
- e) $A \neq B$

10. Let f be a real-valued function with domain [0, 1]. If there is some K > 0 such that $f(x) - f(y) \le K|x - y|$ for all x and y in [0, 1], which of the following must be true?

- a) f is discontinuous at each point of (0, 1)
- b) f is not continuous on (0, 1), but is discontinuous at only countably many points of (0, 1)
- c) f is continuous on (0,1), but is differentiable at only countably many points of (0,1)
- d) f is continuous on (0, 1), but may not be differentiable on (0, 1)
- e) f is differentiable on (0, 1)

11. Let i = (1,0,0), j = (0,1,0), and k = (0,0,1). The vectors v₁ and v₂ are orthogonal if v₁ = i + j - k and v₂ = a) i + j - k
b) i - j + k
c) i + k

- d) $\mathbf{j}-\mathbf{k}$
- e) $\mathbf{i} + \mathbf{j}$

12. If the curve in the yz-plane with equation z = f(y) is rotated about the y-axis, an equation of the resulting surface of revolution is

a) $x^{2} + z^{2} = [f(y)]^{2}$ b) $x^{2} + z^{2} = f(y)$ c) $x^{2} + z^{2} = |f(y)|$ d) $y^{2} + z^{2} = |f(y)|$ e) $y^{2} + z^{2} = [f(x)]^{2}$

13. Let A and B be subspaces of a vector space V. Which of the following must be subspaces of V?

- I. $A + B = \{a + b : a \in A \text{ and } b \in B\}$
- II. $A \cup B$
- III. $A \cap B$
- IV. $\{x \in V : x \notin A\}$
- a) I and II only
- b) I and III only
- c) III and IV only
- d) I, II, and III only
- e) I, II, III, and IV

14.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{2^{k}} \right) =$$

a) 0
b) 1
c) 2
d) 4
e) $+\infty$

15. if
$$f(x_1, x_2, \dots, x_n) = \sum_{1 \le i < j \le n} x_i x_j$$
, then $\frac{\partial f}{\partial x_n} =$

a) n!

- b) $\sum_{1 \le i < j < n} x_i x_j$
- c) $\sum_{1 \le i < j < n} (x_i + x_j)$

d)
$$\sum_{j=1}^{n} x_j$$

e) $\sum_{j=1}^{n-1} x_j$

16. If
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
, then the set of all vectors X for which $AX = X$ is
a) $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a = 0$ and b is arbitrary $\right\}$
b) $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a$ is arbitrary and $b = 0 \right\}$
c) $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a = -b$ and b is arbitrary $\right\}$
d) $\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$

e) the empty set

17. If n apples, no two of the same weight, are lined up at random on a table, what is the probability that they are lined up in order of increasing weight from left to right?

a) $\frac{1}{2}$

b) $\frac{1}{n}$

- c) $\frac{1}{n!}$
- d) $\frac{1}{2^n}$
- e) $\left(\frac{1}{n}\right)^n$
- -) (n)

18. $\frac{d}{dx} \int_{0}^{x^{2}} e^{-t^{2}} dt =$ a) $e^{-x^{2}}$ b) $2e^{-x^{2}}$ c) $2e^{-x^{4}}$ d) $x^{2}e^{-x^{2}}$ e) $2xe^{-x^{4}}$

19. An automorphism ϕ of a field F is a one-to-one mapping of F onto itself such that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in F$. If F is the field of rational numbers, then the number of distinct automorphisms of F is

- a) 0
- b) 1
- c) 2
- d) 4
- e) infinite

20. Let r > 0 and let C be the circle |z| = r in the complex plane. If P is a polynomial function, then $\int_C P(z) dz =$

- a) 0
- b) πr^2
- c) $2\pi i$
- d) $2\pi P(0)i$
- e) P(r)