Directions: Take 1 hour to answer the 20 questions below. Recall that all logarithms are natural logarithms unless a base is specified. Mark your solution on this answer sheet with an \mathbf{X} or by highlighting your answer. Return your answer sheet to Herak 307A or email it to axon@gonzaga.edu.

NAME:

1	a	b	c	d	e
2	a	b	c	d	e
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	e
17	a	b	c	d	e
18	a	b	c	d	e
19	a	b	c	d	e
20	a	b	c	d	e

1. If $f(g(x))=5$ and $f(x)=x+3$ for all real x, then $g(x)=$
a) $x-3$
b) $3-x$
c) $\frac{5}{x+3}$
d) 2
e) 8
2. $\lim _{x \rightarrow 0} \frac{\tan x}{\cos x}=$
a) $-\infty$
b) -1
c) 0
d) 1
e) $+\infty$
3. Let $A-B$ denote $\{x \in A: x \notin B\}$. If $(A-B) \cup B=A$, which of the following must be true?
a) B is empty
b) $A \subseteq B$
c) $B \subseteq A$
d) $(B-A) \cup A=B$
e) None of the above
4. For what value of b is the value of $\int_{b}^{b+1}\left(x^{2}+x\right) d x$ a minimum?
a) 0
b) -1
c) -2
d) -3
e) -4
5. In how many of the eight standard octants of $x y z$-space does the graph of $z=e^{x+y}$ appear?
a) One
b) Two
c) Three
d) Four
e) Eight
6. Suppose that the function f is defined on an interval by the formula $f(x)=\sqrt{\tan ^{2} x-1}$. If f is continuous, which of the following intervals could be its domain?
a) $\left(\frac{3 \pi}{4}, \pi\right)$
b) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
c) $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
d) $\left(-\frac{\pi}{4}, 0\right)$
e) $\left(-\frac{3 \pi}{4},-\frac{\pi}{4}\right)$
7. If $f^{\prime \prime}(x)=f^{\prime}(x)$ for all real x, and if $f(0)=0$ and $f^{\prime}(0)=-1$, then $f(x)=$
a) $1-e^{x}$
b) $e^{x}-1$
c) $e^{-x}-1$
d) e^{-x}
e) $-e^{x}$
8. Which of the following double integrals represents the volume of the solid bounded above by the graph of $z=6-x^{2}-2 y^{2}$ and bounded below by the graph of $z=-2+x^{2}+2 y^{2}$?
a) $4 \int_{0}^{2} \int_{0}^{\sqrt{2}}\left(8-2 x^{2}-4 y^{2}\right) d y d x$
b) $\int_{-2}^{2} \int_{-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}}\left(8-2 x^{2}-4 y^{2}\right) d y d x$
c) $4 \int_{0}^{2} \int_{-\sqrt{4-2 y^{2}}}^{-\sqrt{4-2 y^{2}}} 1 d x d y$
d) $\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-2}^{2}\left(8-2 x^{2}-4 y^{2}\right) d x d y$
e) $2 \int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{4-2 y^{2}}}\left(8-2 x^{2}-4 y^{2}\right) d x d y$
9. If A and B are events in a probability space such that $0<P(A)=P(B)=P(A \cap B)<1$, which of the following CANNOT be true?
a) A and B are independent
b) $A \cap B=A \cup B$
c) A is a proper subset of B
d) $P(A) P(B)<P(A \cap B)$
e) $A \neq B$
10. Let f be a real-valued function with domain [0,1]. If there is some $K>0$ such that $f(x)-f(y) \leq K|x-y|$ for all x and y in $[0,1]$, which of the following must be true?
a) f is discontinuous at each point of $(0,1)$
b) f is not continuous on $(0,1)$, but is discontinuous at only countably many points of $(0,1)$
c) f is continuous on $(0,1)$, but is differentiable at only countably many points of $(0,1)$
d) f is continuous on $(0,1)$, but may not be differentiable on $(0,1)$
e) f is differentiable on $(0,1)$
11. Let $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$, and $\mathbf{k}=(0,0,1)$. The vectors \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal if $\mathbf{v}_{1}=\mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{v}_{2}=$
a) $\mathbf{i}+\mathbf{j}-\mathbf{k}$
b) $\mathbf{i}-\mathbf{j}+\mathbf{k}$
c) $\mathbf{i}+\mathbf{k}$
d) $\mathbf{j}-\mathbf{k}$
e) $\mathbf{i}+\mathbf{j}$
12. If the curve in the $y z$-plane with equation $z=f(y)$ is rotated about the y-axis, an equation of the resulting surface of revolution is
a) $x^{2}+z^{2}=[f(y)]^{2}$
b) $x^{2}+z^{2}=f(y)$
c) $x^{2}+z^{2}=|f(y)|$
d) $y^{2}+z^{2}=|f(y)|$
e) $y^{2}+z^{2}=[f(x)]^{2}$
13. Let A and B be subspaces of a vector space V. Which of the following must be subspaces of V ?
I. $A+B=\{a+b: a \in A$ and $b \in B\}$
II. $A \cup B$
III. $A \cap B$
IV. $\{x \in V: x \notin A\}$
a) I and II only
b) I and III only
c) III and IV only
d) I, II, and III only
e) I, II, III, and IV
14. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{2^{k}}\right)=$
a) 0
b) 1
c) 2
d) 4
e) $+\infty$
15. if $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}$, then $\frac{\partial f}{\partial x_{n}}=$
a) n !
b) $\sum_{1 \leq i<j<n} x_{i} x_{j}$
c) $\sum_{1 \leq i<j<n}\left(x_{i}+x_{j}\right)$
d) $\sum_{j=1}^{n} x_{j}$
e) $\sum_{j=1}^{n-1} x_{j}$
16. If $A=\left(\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right)$, then the set of all vectors X for which $A X=X$ is
a) $\left\{\left.\binom{a}{b} \right\rvert\, a=0\right.$ and b is arbitrary $\}$
b) $\left\{\left.\binom{a}{b} \right\rvert\, a\right.$ is arbitrary and $\left.b=0\right\}$
c) $\left\{\left.\binom{a}{b} \right\rvert\, a=-b\right.$ and b is arbitrary $\}$
d) $\left\{\binom{0}{0}\right\}$
e) the empty set
17. If n apples, no two of the same weight, are lined up at random on a table, what is the probability that they are lined up in order of increasing weight from left to right?
a) $\frac{1}{2}$
b) $\frac{1}{n}$
c) $\frac{1}{n!}$
d) $\frac{1}{2^{n}}$
e) $\left(\frac{1}{n}\right)^{n}$
18. $\frac{d}{d x} \int_{0}^{x^{2}} e^{-t^{2}} d t=$
a) $e^{-x^{2}}$
b) $2 e^{-x^{2}}$
c) $2 e^{-x^{4}}$
d) $x^{2} e^{-x^{2}}$
e) $2 x e^{-x^{4}}$
19. An automorphism ϕ of a field F is a one-to-one mapping of F onto itself such that $\phi(a+b)=\phi(a)+\phi(b)$ and $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in F$. If F is the field of rational numbers, then the number of distinct automorphisms of F is
a) 0
b) 1
c) 2
d) 4
e) infinite
20. Let $r>0$ and let C be the circle $|z|=r$ in the complex plane. If P is a polynomial function, then $\int_{C} P(z) d z=$
a) 0
b) πr^{2}
c) $2 \pi i$
d) $2 \pi P(0) i$
e) $P(r)$
