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Hilbert at the ICM

At the 1900 International Congress of Mathematicians in Paris, David
Hilbert gave a lecture on “Mathematical Problems”. He presented 10
problems during his talk and included 13 more in a published text of the
speech.
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Some of the problems

1 “Cantor’s problem of the cardinal number of the continuum”: resolve
the continuum hypothesis (Hilbert also suggests determining if the
real numbers can be well-ordered).

4 “Problem of the straight line as the shortest distance between two
points”: “the construction and systematic treatment” of
nearly–Euclidean geometries.

6 “Mathematical treatment of the axioms of physics”.

8 “Problems of prime numbers”: prove the Riemann Hypothesis, resolve
Goldbach’s conjecture, generalize to ideal primes of other fields, etc.

http://aleph0.clarku.edu/~djoyce/hilbert/problems.html.
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Resolutions

1 “Cantor’s problem of the cardinal number of the continuum”. Gödel
(1940) showed that it is possible to satisfy all the axioms of set theory
and have c be the smallest uncountable cardinal. Cohen
(1963/4)showed that it is possible to satisfy the axioms and have c
not be the the smallest uncountable cardinal.

4 “Problem of the straight line as the shortest distance between two
points”: never really caught on?

6 “Mathematical treatment of the axioms of physics”: amounts to
finding a Theory of Everything–Physicists are still working on this one.

8 “Problems of prime numbers”: prove the Riemann Hypothesis, et
cetera: still very much unresolved and very much of interest. Now a
Millennium Prize Problem: a solution is worth $1,000,000.
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Hilbert’s problems and computation

Focus on two problems:

2 “The compatibility of arithmetical axioms”: prove that the axioms of
arithmetic are consistent.

10 “Determination of the solvability of a Diophantine equation”: “devise
a process” for determining “in a finite number of operations” if a
polynomial (in any number of variables) with integer coefficients has
integer roots.

Problem 10 asks for an algorithm. Problem 2 is also connected to
computation, but in less obvious ways.
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H2: Prove that the axioms of arithmetic are consistent

Definition

A set of axioms is consistent if there is no statement p such that both p
and ¬p can be proved.

Proposition (basic fact of logic)

For all statements p and q

p & ¬p =⇒ q.

Corollary

A set of axioms is consistent if and only if there is some statement that
cannot be proved (i. e. an obviously false statement like 0 = 1 ).
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Gödel’s incompleteness theorems

Theorem (Gödel)

In any consistent mathematical system sufficient for defining ordinary
arithmetic, the following hold:

1 There is a mathematical statement p such that neither p nor its
negation ¬p can be proved (p is undecidable);

2 The statement “this system is consistent” is undecidable.

The second incompleteness theorem proves that Hilbert’s second problem
cannot be solved within ordinary mathematics. The first incompleteness
theorem shows that there will always be assertions that we can neither
prove nor disprove from our axioms (addresses Hilbert’s
Entscheidungsproblem).
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What is a proof?

A formal system has a language of “primitive” symbols which can be put
together to make formulas and equations, some of which are axioms:

∀a (a + 0 = a) (identity)

∀a ∃b (a + b = 0) (inverses)

∀a ∀b (a + b = b + a) (commutativity)

∀a ∀b ∀c [a · (b + c) = a · b + a · c] (distribution)

...

A proof starts with axioms and consists of applying a few logical rules, for
example modus ponens:

[(p =⇒ q) & p] =⇒ q.
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Gödel numbers

In the real world proofs use definitions, abbreviations, and shortcuts, but
every proof can be written as a finite sequence of primitive symbols. A
simple algorithm can determine whether or not such a sequence is a valid
proof.

Idea (Gödel)

Every mathematical statement (including proofs) can be encoded as a
natural number.

Mathematical statements involving numbers may be interpreted as
being statement about the mathematical statements represented by
those numbers.

Point 2 is the origin of metamathematics.
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Gödel numbers

Gödel actually gave an explicit code.

0 S = ¬ ∨ & =⇒ ≡ ∀ ∃ ∈ ( )
1 2 3 4 5 6 7 8 9 10 11 12 13

The integers greater than 13 and congruent to 0 mod 3 are variables for
propositions, the integers greater than 13 and congruent to 1 mod 3 are
variables for numbers, and the integers greater than 13 and congruent to 2
mod 3 are variables for functions.

A mathematical statement corresponds to a sequence of integers
k1, k2, . . . , kn which we then associate to a single number

2k13k25k3 . . . pkn
n

where pn is the nth prime.
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Example of a Gödel number

S is the successor function: S(a) = a + 1. A simple true statement is “no
number is equal to its successor”: ∀a ¬(S(a) = a).

Statement: ∀a ¬(S(a) = a)

Sequence: 9, 16, 4, 12, 2, 12, 16, 13, 3, 16, 13

Gödel number: 29 · 316 · 54 · 712 · 112 · 1312 · 1716 · 1913 · 233 · 2916 · 3113

Wolfram α reports that this number has 122 digits:
81772105583868532612128696004641827651917484637956352845 . . .
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Metamathematics

Every mathematical statement can be encoded as a number. Every
number can be decoded into a mathematical statement.

Numbers and mathematical statements are the same thing.

Statements about numbers are also statements about the mathematical
statements the numbers represent (and vice versa). This is
metamathematics.
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Proof of the first incompleteness theorem

Definition

Let Rn(x) be the nthmathematical formula with one free variable.

Let Bew(x) be the statement, “the number x represents a provable
mathematical statement (when decoded)”.

Proposition

The expression Bew(x) is a mathematical formula with one free variable.

Bew(x) is equivalent to “there is a number y such that y codes for a
proof of x”. Gödel proved that the statement “y codes for a proof of x”
can be expressed using just arithmetic (by construction).
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Proof of the first incompleteness theorem

If mathematical statements can be self-referential, then we should be able
to come up with something like the classic “this statement is false” or the
set {S : S 6∈ S}.

Begin with “the x th statement with input x cannot be proved”:

¬Bew (Rx(x))

This is a mathematical formula with one free variable and so there is some
q ∈ N such that

Rq(x) ≡ ¬Bew (Rx(x)) .

Rq(q) ≡ ¬Bew (Rq(q)) ≡ Rq(q) cannot be proved
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Proof of the first incompleteness theorem

Proposition

If arithmetic is consistent, then neither Rq(q) nor ¬Rq(q) can be proved
(the statement Rq(q) is undecidable).

Proof.

If Rq(q) can be proved, then Bew (Rq(q)) is true (definition of Bew(x)).
But Rq(q) ≡ ¬Bew (Rq(q)). Hence a proof of Rq(q) is a proof of
¬Bew (Rq(q)). Thus Bew (Rq(q)) and ¬Bew (Rq(q)) must both be true.
This is a contradiction (of consistency).

If ¬Rq(q) can be proved then we again reach a contradiction.

Conclusion: undecidable statements exist (if arithmetic is consistent).
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Proof of the second incompleteness theorem

Let Con be the statement that the mathematical system is consistent.

Con ≡ ∀x ¬ [Bew(x) & Bew(¬x)]

The first theorem showed that if arithmetic is consistent, then Rq(q) is
unprovable. Rq(q) asserts its own unprovability and thus must actually be
true. Therefore

Con =⇒ Rq(q).

If we can prove Con, then using modus ponens we can also prove Rq(q).
This would contradict the first theorem. Therefore Con cannot be proved
(if the system is consistent).

If the sytem consistent, then ¬Con cannot be proved (because it isn’t
true).
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What does it mean?

Theorem (Gödel)

In any consistent mathematical system sufficient for defining ordinary
arithmetic, the following hold:

1 There is a mathematical statement p such that neither p nor its
negation ¬p can be proved (p is undecidable);

2 The statement “this system is consistent” is undecidable.

“This theorem established a fundamental distinction between what is true
about the natural numbers and what is provable...” (Floyd and Kanamori
in the Notices).
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H10

Hilbert’s tenth problem

“Determination of the solvability of a Diophantine equation”: “devise a
process” for determining “in a finite number of operations” if a polynomial
(in any number of variables) with integer coefficients has integer roots.

Modern formulation: write a computer program to determine if an
arbitrary polynomial with integer coefficients has integer roots.

Examples of Diophantine equations:

1 ax2 + bx + c = 0

2 x2 + 1 = 0

3 x2 + y2 = z2

4 x2 − ay2 = ±1 (Pell’s equation)
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Diophantine sets

Let P(a, x1, x2, . . . , xn) be a polynomial with variables a and x1, x2, . . . , xn.
We wish to determine if there exist integers b1, b2, . . . , bn so that

P(a, b1, b2, . . . , bn) = 0.

The existence of such an integer root will depend on the choice of a.

Example

The polynomial x2 − a has an integer root only when a is a square.

Definition

A subset S ⊆ Z is Diophantine if there is a polynomial P(a, x1, x2, . . . , xn)
such that

S = {a ∈ Z : P(a, x1, x2, . . . , xn) = 0 has an integer root} .
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The MRDP theorem

Theorem (Matiyasevich, Robinson, Davis, Putnam)

A set is Diophantine if and only if it is computably enumerable.

Definition

A set is computably enumerable if there is a computer program that
enumerates the elements of the set (in no particular order). A set is
computable if there is a computer program that can determine if any given
number is in the set.

Proposition

A set is computable if and only if both the set and its complement are
computably enumerable.
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Consequences

Examples of computable sets:

1 {a ∈ Z : a is even}.
2 {a ∈ N : a is prime}.
3 {a ∈ N : a is the Gödel number of a valid proof}.

By the MRDP theorem each of the above sets is Diophantine. In
particular, there is a polynomial P(a, x1, x2, . . . , xn) such that
P(a, x1, x2, . . . , xn) has an integer solution if and only if a is prime. An
example (using 26 variables):
http://mathworld.wolfram.com/PrimeDiophantineEquations.html.
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Computably enumerable sets

Theorem

There is a set which is computably enumerable but not computable.

Proof.

Let P be the set of provable statements: P = {x ∈ N : Bew(x)}.
Suppose that P is computable. Check to see if Con is in P.

If Con is in P, then the system is consistent and Con cannot be
proved. Contradiction.

If Con is not in P, then there is some statement that cannot be
proved (namely Con). Thus the system must be consistent. This is a
proof of Con. Contradiction.

Therefore P is not computable.
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Algorithm for P

A pseudo-python script for enumerating P:

n = 1
while TRUE:

for x in range(0,n):
for i in range(0,n):

if i is a proof of x :
return x

n = n + 1

Another important non-computable but computably enumerable set is the
halting set: K .
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Resolution of the tenth problem

Resolution of the tenth problem

Let A be any non-computable but computably enumerable set. By the
MRDP theorem A is Diophantine. Hence there is a polynomial
P(a, x1, x2, . . . , xn) that has a root if and only if a ∈ A.

If there were an algorithm that could determine whether or not
P(a, x1, x2, . . . , xn) has a root for any given a, then we could easily modify
this into an algorithm to determine membership in A. Therefore no such
algorithm exists.

Conclusion: Hilbert’s tenth problem is impossible.
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Remark

The tenth and second problems are related in another way.

Corollary

There is a polynomial P(a, x1, x2, . . . , xn) and a number a0 such that the
statement

∀x1, x2, . . . , xn ∈ Z P(a0, x1, x2, . . . , xn) 6= 0

(translation: “P(a0, x1, x2, . . . , xn) = 0 has no integer solutions”)

cannot be proved even though it is true.
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