Chapter 7, #P-1

April 7, 2013

Problem P-1
Using the language for the Poincaré disk model, translate the following theorems in hyperbolic geometry to theorems in Euclidean geometry:

• a. If two triangles are similar, then they are congruent.
• b. If two lines are divergently parallel, then they have a common perpendicular and the latter is unique.
• c. The fourth angle of a Lambert quadrilateral is acute.

Solution
The phrasing is by no means unique for these. Below is one option. For all of the following let γ be a fixed circle.

a. If A, B, C, A', B', C' are points such that the arcs of circles $\hat{AB}, \hat{BC}, \hat{AC}, \hat{A'B'}, \hat{B'C'}, \hat{A'C'}$ all meet γ perpendicularly, and such that the angles made by the tangents to these circles are respectively congruent (e.g. if angle $\angle A$ is the angle made by the tangents to \hat{AB} and \hat{AC}, and $\angle A'$ is the angle made by the tangents to $\hat{A'B'}$ and $\hat{A'C'}$, then $\angle A \cong \angle A'$, etc.). Then the corresponding cross-ratios of the arcs with the intersections of their respective circles with γ are equal. That is, for P_{XY} the intersection of \hat{XY} with γ such that $P_{XY} \neq X \neq Y$:

\[
(AB, P_{AB}P_{BA}) = (A'B', P_{A'B'}P_{B'A'})
\]
\[
(AB, P_{AB}P_{BA}) = (A'B', P_{A'B'}P_{B'A'})
\]
\[
(AB, P_{AB}P_{BA}) = (A'B', P_{A'B'}P_{B'A'}).\]

b. If arcs \hat{AB} and \hat{CD} intersect γ perpendicularly at A, B and C, D resp., and do not intersect each other, then there is a unique arc \hat{EF} which intersects γ perpendicularly at E and F, and intersects both \hat{AB} and \hat{CD} perpendicularly, at points inside γ.
c. Given four points A, B, C, D in γ, such that the arcs of circles perpendicular to γ and passing through the pairs $(A, B), (B, C), (C, D),$ and (D, A) meet each other perpendicularly at A, B, and C. Then the remaining angle formed by the tangents to DA and CD at D form an acute angle.