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Knots
Goal
Nonexamples
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First, for the knot theory novices in the audience...

Left handed Trefoil Right handed Trefoil

(a) Knots

x y

(b) Seifert surfaces

...we can find always find a Seifert surface for a given knot K
(an orientable surface in S3 with boundary K).
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We can perform band moves (as illustrated below)..

(c) band moves (d) 11n69 ∼C 51

... to show that two knots are concordant (K#− J is slice), or
that a knot is slice (K bounds a disk in B4).
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But these examples insist that our surfaces be orientable! Now
let’s consider the other case...
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For a knot, K , we ask whether there is a smoothly embedded
Möbius band, F , embedded in B4, with boundary K in
S3 = ∂B4.
We will show that the two-bridge knot K31/2 cannot bound a
Möbius band in B4.
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We will use the notation Kp/q to refer to the
two-bridge knot with associated continued
fraction p/q.
A two-bridge knot is determined by a
sequence of twist numbers
(c1, c2, c3, . . . , cn), so we get the associated
fraction:

p/q = c1 +
1

c2 +
1

· · ·+ 1
cn

The two-fold branched cover of Kp/q is the
lens space L(p,q).

Cn

C3

C2

C1
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Many knots do bound Möbius bands in B4. Any of the T(2,n)

torus knots (and many other knots) bound Möbius bands in S3,
and consequently in B4.

Theorem (K)
Any of the two-bridge knots K(±4k±1)/4 or K(±8k±1)/2k bound
Möbius bands in B4.

K K
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From here out, K is a knot, F a surface in B4, M is the two-fold
branched cover of S3 over K , and W is the two-fold branched
cover of B4 over F .
To show K31/2 does not bound a Möbius band in B4, we will:

Use a theorem of Yasuhara to show that if such a Möbius
band F exists, W has a positive definite intersection form.
Use a theorem of Ozsváth and Szabó, and algebraic
analysis of the results to show that if F exists, W must
have a negative definite intersection form.
Conclude that these can’t both be true, and so F can’t
exist.
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Theorem (Yasuhara)

If a knot K ⊂ S3 bounds a smoothly embedded surface, F , in
B4, then for W the two-fold branched cover of B4 branched over
F ,

σ(K ) + 4Arf(K ) ≡ σ(W ) + β(B4,F ) mod 8.

For F a Möbius band, β(B4,F ) (the Brown invariant), and σ(W )
are each ±1. The evaluation of σ(K ) + Arf(K ) may tell us one
of a few things:

If σ(K ) + Arf(K ) ≡ 4 mod 8, then K does not bound a
Möbius band. (Yasuhara’s observation)
If σ(K ) + Arf(K ) ≡ 2 mod 8, then σ(W ) = 1, and if K
bounds a Möbius band, W has a (rank one) positive
definite intersection form.
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Example
K31/2 has signature 2 and Arf invariant 0, so
σ(K31/2) + Arf(K ) ≡ 2 mod 8.
This guarantees that if K31/2 bounds a Möbius
band, then W has a positive definite
intersection form.
Together with the fact that the two-fold
branched cover of K31/2 is L(31,2) = ∂W (the
lens space given by 31/2 surgery on the
unknot), we conclude that the intersection
form of W is [31].

sixteen
twists
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Next, we consider −W and the following theorem of Ozsváth
and Szabó:

Theorem (Ozsváth-Szabó)

For M a rational homology three-sphere, fix a Spinc structure t
over M. Then for any smooth, negative definite four-manifold W
with boundary M, and for any Spinc structure s ∈ Spinc(W )
with s|M = t, we have

c1(s)
2 + β2(W ) ≤ 4d(M, t).

c1(s)
2 is the square of the first Chern class.

c1(s · z) = c1(s) + 2z for s ∈ Spinc(W ) and z ∈ H2(W ).
d(M, t) is the d-invariant of Heegaard-Floer theory.
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For a lens space, we can calculate the d-invariants as follows:

Theorem (Ozsváth-Szabó)

The d-invariant of the lens space −L(p,q) on the Spinc

structure represented by i for 0 ≤ i < p + q is given by

d(−L(p,q), i) = (
pq − (2i + 1− p − q)2

4pq
)− d(−L(q, r), j)

where r ≡ p mod q and j ≡ i mod q are the reductions
modulo q of p and i.
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"Wait!" You say, "...where did this i come from?"

β

X 1 X 2 X 3 X 4 X 5

Each consecutive pair of indices represent Spinc structures on
M which differ by a particular class x ∈ H2(M).
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Now we calculate for K31/2:

i= 0 1 2 3 4 5 6 7 8 9
62d(−L(31, 2), i) = -225 -225 -165 -169 -113 -121 -69 -81 -33 -49

i= 10 11 12 13 14 15 16 17 18 19
62d = -5 -25 15 -9 27 -1 31 -1 27 -9

* * * *

i= 20 21 22 23 24 25 26 27 28 29
62d = 15 -25 -5 -49 -33 -81 -69 -121 -113 -169

*

i= 30
62d = -165

We compare these values to the values of 31
2 (−(2i+1)2

31 + 1),
which are:

15, 11, 3,−9,−25,−45,−69,−97,−129,−165,−205,−249, . . .
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To interpret these values, recall:
We want c1(s)

2 + β2(W ) ≤ 4d(M, t) for s and t = s|M
We may calculate the left-hand side by
c1(s)

2 + β2(W ) = −(2i+1)2

p + 1

If s0|M = t and for z ∈ H2(W ), z|M = x , we have
s0 · z i |M = t · x i .

So we verify −(2i+1)2

p + 1 ≤ 4d(M, t · x i) for some t ∈ Spinc(M),
some x ∈ H2(M), and all i , 0 ≤ i < p.
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Adjusted for ease of comparison:

i= 0 1 2 3 4 5 6 7 8 9
62d(−L(31, 2), i) = -225 -225 -165 -169 -113 -121 -69 -81 -33 -49

i= 10 11 12 13 14 15 16 17 18 19
62d = -5 -25 15 -9 27 -1 31 -1 27 -9

* * * *

i= 20 21 22 23 24 25 26 27 28 29
62d = 15 -25 -5 -49 -33 -81 -69 -121 -113 -169

*

i= 30
62d = -165

We compare these values to the values of 31
2 (−(2i+1)2

31 + 1),
which are:

15, 11, 3, − 9,−25,−45,−69,−97,−129,−165,−205,−249, . . .
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Adjusted for ease of comparison:

i= 0 1 2 3 4 5 6 7 8 9
62d(−L(31, 2), i) = -225 -225 -165 -169 -113 -121 -69 -81 -33 -49

i= 10 11 12 13 14 15 16 17 18 19
62d = -5 -25 15 -9 27 -1 31 -1 27 -9

* * * *

i= 20 21 22 23 24 25 26 27 28 29
62d = 15 -25 -5 -49 -33 -81 -69 -121 -113 -169

*

i= 30
62d = -165

We compare these values to the values of 31
2 (−(2i+1)2

31 + 1),
which are:

15, 11, 3,−9,−25,−45,−69,−97,−129,−165,−205,−249, . . .

Since the inequality cannot hold for all i for K31/2, −W cannot
be negative definite. Thus K31/2 cannot bound a Möbius band.
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We may summarize this calculation with the following theorem:

Theorem (K)

Let K = Kp/q bound a Möbius band F in B4, with p square-free.
Let W be the two-fold branched cover of B4 over F and let M
be the two-fold branched cover of S3 over K . Suppose W is
negative definite. Then for some t ∈ Spinc(M), x ∈ H2(M), and
for all 0 ≤ i < p,

−(2i + 1)2

p
+ 1 ≤ 4d(M, t · x i)
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Thanks!
Any questions?
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