An obstruction to knots bounding Möbius bands in B^4

Kate Kearney

Gonzaga University

April 2, 2016

First, for the knot theory novices in the audience...

(a) Knots

(b) Seifert surfaces

...we can find always find a Seifert surface for a given knot K (an orientable surface in S^3 with boundary K).

We can perform band moves (as illustrated below)...

... to show that two knots are concordant (K# - J is slice), or that a knot is slice (K bounds a disk in B^4).

But these examples insist that our surfaces be orientable! Now let's consider the other case...

For a knot, K, we ask whether there is a smoothly embedded Möbius band, F, embedded in B^4 , with boundary K in $S^3 = \partial B^4$.

We will show that the two-bridge knot $K_{31/2}$ cannot bound a Möbius band in B^4 .

We will use the notation $K_{p/q}$ to refer to the two-bridge knot with associated continued fraction p/q.

A two-bridge knot is determined by a sequence of twist numbers $(c_1, c_2, c_3, \ldots, c_n)$, so we get the associated fraction:

$$p/q = c_1 + \frac{1}{c_2 + \frac{1}{\cdots + \frac{1}{c_n}}}$$

The two-fold branched cover of $K_{p/q}$ is the lens space L(p,q).

Knots Goal Nonexamples Outline of an argumen

Many knots do bound Möbius bands in B^4 . Any of the $T_{(2,n)}$ torus knots (and many other knots) bound Möbius bands in S^3 , and consequently in B^4 .

Theorem (K)

Any of the two-bridge knots $K_{(\pm 4k\pm 1)/4}$ or $K_{(\pm 8k\pm 1)/2k}$ bound Möbius bands in B^4 .

From here out, K is a knot, F a surface in B^4 , M is the two-fold branched cover of S^3 over K, and W is the two-fold branched cover of B^4 over F.

To show $K_{31/2}$ does not bound a Möbius band in B^4 , we will:

- Use a theorem of Yasuhara to show that if such a Möbius band F exists, W has a positive definite intersection form.
- Use a theorem of Ozsváth and Szabó, and algebraic analysis of the results to show that if F exists, W must have a negative definite intersection form.
- Conclude that these can't both be true, and so F can't exist.

Theorem (Yasuhara)

If a knot $K \subset S^3$ bounds a smoothly embedded surface, F, in B^4 , then for W the two-fold branched cover of B^4 branched over F,

$$\sigma(K) + 4Arf(K) \equiv \sigma(W) + \beta(B^4, F) \mod 8.$$

For F a Möbius band, $\beta(B^4, F)$ (the Brown invariant), and $\sigma(W)$ are each ± 1 . The evaluation of $\sigma(K) + \text{Arf}(K)$ may tell us one of a few things:

- If $\sigma(K) + \text{Arf}(K) \equiv 4 \mod 8$, then K does not bound a Möbius band. (Yasuhara's observation)
- If $\sigma(K) + \text{Arf}(K) \equiv 2 \mod 8$, then $\sigma(W) = 1$, and if K bounds a Möbius band, W has a (rank one) positive definite intersection form.

Example

- $K_{31/2}$ has signature 2 and Arf invariant 0, so $\sigma(K_{31/2}) + Arf(K) \equiv 2 \mod 8$.
- This guarantees that if K_{31/2} bounds a Möbius band, then W has a positive definite intersection form.
- Together with the fact that the two-fold branched cover of $K_{31/2}$ is $L(31,2) = \partial W$ (the lens space given by 31/2 surgery on the unknot), we conclude that the intersection form of W is [31].

Next, we consider -W and the following theorem of Ozsváth and Szabó:

Theorem (Ozsváth-Szabó)

For M a rational homology three-sphere, fix a Spin^c structure \mathfrak{t} over M. Then for any smooth, negative definite four-manifold W with boundary M, and for any Spin^c structure $\mathfrak{s} \in Spin^c(W)$ with $\mathfrak{s}|_M = \mathfrak{t}$, we have

$$c_1(\mathfrak{s})^2 + \beta_2(W) \leq 4d(M,\mathfrak{t}).$$

- $c_1(\mathfrak{s})^2$ is the square of the first Chern class.
- $c_1(\mathfrak{s} \cdot z) = c_1(\mathfrak{s}) + 2z$ for $\mathfrak{s} \in Spin^c(W)$ and $z \in H^2(W)$.
- d(M, t) is the *d*-invariant of Heegaard-Floer theory.

For a lens space, we can calculate the d-invariants as follows:

Theorem (Ozsváth-Szabó)

The d-invariant of the lens space -L(p,q) on the Spin^c structure represented by i for $0 \le i is given by$

$$d(-L(p,q),i) = (\frac{pq - (2i+1-p-q)^2}{4pq}) - d(-L(q,r),j)$$

where $r \equiv p \mod q$ and $j \equiv i \mod q$ are the reductions modulo q of p and i.

The *d*-invariant
Calculations
Conclusions

"Wait!" You say, "...where did this *i* come from?"

Each consecutive pair of indices represent $Spin^c$ structures on M which differ by a particular class $x \in H^2(M)$.

Now we calculate for $K_{31/2}$:

i=	0	1	2	3	4	5	6	7	8	9
62d(-L(31,2),i) =	-225	-225	-165	-169	-113	-121	-69	-81	-33	-49
i=	10	11	12	13	14	15	16	17	18	19
62 <i>d</i> =	-5	-25	15	-9	27	-1	31	-1	27	-9
			*		*		*		*	
i=	20	21	22	23	24	25	26	27	28	29
62 <i>d</i> =	15	-25	-5	-49	-33	-81	-69	-121	-113	-169
	*									
i=	30									
62 <i>d</i> =	-165									

$$15, 11, 3, -9, -25, -45, -69, -97, -129, -165, -205, -249, \dots$$

To interpret these values, recall:

- We want $c_1(\mathfrak{s})^2 + \beta_2(W) \leq 4d(M,\mathfrak{t})$ for \mathfrak{s} and $\mathfrak{t} = \mathfrak{s}|_M$
- We may calculate the left-hand side by $c_1(\mathfrak{s})^2 + \beta_2(W) = \frac{-(2i+1)^2}{n} + 1$
- If $\mathfrak{s}_0|_M = \mathfrak{t}$ and for $z \in H^2(W)$, $z|_M = x$, we have $\mathfrak{s}_0 \cdot z^i|_M = \mathfrak{t} \cdot x^i$.

So we verify $\frac{-(2i+1)^2}{p} + 1 \le 4d(M, t \cdot x^i)$ for some $\mathfrak{t} \in Spin^c(M)$, some $x \in H^2(M)$, and all $i, 0 \le i < p$.

i=	0	1	2	3	4	5	6	7	8	9
62d(-L(31,2),i) =	-225	-225	-165	-169	-113	-121	-69	-81	-33	-49
i=	10	11	12	13	14	15	16	17	18	19
62 <i>d</i> =	-5	-25	15	-9	27	-1	31	-1	27	-9
			*		*		*		*	
i=	20	21	22	23	24	25	26	27	28	29
62 <i>d</i> =	15	-25	-5	-49	-33	-81	-69	-121	-113	-169
	*									
i=	30									
62 <i>d</i> =	-165									

$$15, 11, 3, -9, -25, -45, -69, -97, -129, -165, -205, -249, \dots$$

i=	0	1	2	3	4	5	6	7	8	9
62d(-L(31,2),i) =	-225	-225	-165	-169	-113	-121	-69	-81	-33	-49
i=	10	11	12	13	14	15	16	17	18	19
62 <i>d</i> =	-5	-25	15	-9	27	-1	31	-1	27	-9
			*		*		*		*	
i=	20	21	22	23	24	25	26	27	28	29
62 <i>d</i> =	15	-25	-5	-49	-33	-81	-69	-121	-113	-169
	*									
i=	30									
62 <i>d</i> =	-165									

$$15, 11, 3, -9, -25, -45, -69, -97, -129, -165, -205, -249, \dots$$

i=	0	1	2	3	4	5	6	7	8	9
62d(-L(31,2),i) =	-225	-225	-165	-169	-113	-121	-69	-81	-33	-49
i=	10	11	12	13	14	15	16	17	18	19
62 <i>d</i> =	-5	-25	15	-9	27	-1	31	-1	27	-9
			*		*		*		*	
i=	20	21	22	23	24	25	26	27	28	29
62 <i>d</i> =	15	-25	-5	-49	-33	-81	-69	-121	-113	-169
	*									
i=	30									
62 <i>d</i> =	-165									

$$15, 11, 3, -9, -25, -45, -69, -97, -129, -165, -205, -249, \dots$$

i=	0	1	2	3	4	5	6	7	8	9
62d(-L(31,2),i) =	-225	-225	-165	-169	-113	-121	-69	-81	-33	-49
i=	10	11	12	13	14	15	16	17	18	19
62 <i>d</i> =	-5	-25	15	-9	27	-1	31	-1	27	-9
			*		*		*		*	
i=	20	21	22	23	24	25	26	27	28	29
62 <i>d</i> =	15	-25	-5	-49	-33	-81	-69	-121	-113	-169
	*									
i=	30									
62 <i>d</i> =	-165									

$$15, 11, 3, -9, -25, -45, -69, -97, -129, -165, -205, -249, \dots$$

i=	0	1	2	3	4	5	6	7	8	9
62d(-L(31,2),i) =	-225	-225	-165	-169	-113	-121	-69	-81	-33	-49
i=	10	11	12	13	14	15	16	17	18	19
62 <i>d</i> =	-5	-25	15	-9	27	-1	31	-1	27	-9
			*		*		*		*	
i=	20	21	22	23	24	25	26	27	28	29
62 <i>d</i> =	15	-25	-5	-49	-33	-81	-69	-121	-113	-169
	*									
i=	30									
62 <i>d</i> =	-165									

We compare these values to the values of $\frac{31}{2}(\frac{-(2i+1)^2}{31}+1)$, which are:

$$15, 11, 3, -9, -25, -45, -69, -97, -129, -165, -205, -249, \dots$$

Since the inequality cannot hold for all i for $K_{31/2}$, -W cannot be negative definite. Thus $K_{31/2}$ cannot bound a Möbius band.

We may summarize this calculation with the following theorem:

Theorem (K)

Let $K = K_{p/q}$ bound a Möbius band F in B^4 , with p square-free. Let W be the two-fold branched cover of B^4 over F and let M be the two-fold branched cover of S^3 over K. Suppose W is negative definite. Then for some $\mathfrak{t} \in Spin^c(M)$, $x \in H^2(M)$, and for all $0 \le i < p$,

$$\frac{-(2i+1)^2}{p}+1\leq 4d(M,\mathfrak{t}\cdot x^i)$$

Yasuhara's Theorem The *d*-invariant Calculations Conclusions

Thanks!

Any questions?