The Stable Concordance Genus

Kate Kearney

Louisiana State University

November 9, 2013

A knot is a smooth embedding of S^1 in S^3 .

Knots are considered up to isotopy. A surface is a two-dimensional manifold.

If a surface with boundary is embedded in S^3 (or B^4), the boundary is a knot. We wish to examine the relationship between such surfaces and their boundaries.

For any knot, K, there exists an orientable surface embedded in S^3 with boundary K.

There are a variety of knot invariants that can be determined by the relationship between knots and surfaces. For a given knot K, with a surface $F \hookrightarrow S^3$, $\partial F = K$, we define a quadratic form, known as the Seifert form, by $V = \left[lk(x_i, x_j^+) \right]$. From this, we define the signature,

$$\sigma'_t(K) = \operatorname{signature}((1 - e^{2\pi i t})V + (1 - e^{-2\pi i t})V^T)$$

and the Alexander polynomial,

$$(1-t^{-1})^n \Delta_K(t) = det((1-t^{-1})V + (1-t)V^t),$$

as well as many other invariants.

Definition

We call a knot slice if it bounds a disk in B^4 . Two knots, K and J, are called concordant if K#-J is slice, or equivalently, if $K\cup J$ is the boundary of a cylinder in $S^3\times I$.

Example 11_{a104} is concordant to 4_1 .

Notice that concordance is an equivalence relation!

Notice that concordance is an equivalence relation!

Definition

Knots, under the equivalence relation of concordance, form a group called the concordance group, C.

- The identity is the equivalence class of the unknot (slice knots).
- Addition in this group is the connect sum, #.
- The inverse of a knot, K is -K.

Many people have studied and continue to study the structure and properties of the concordance group. It is known to have a quotient group isomorphic to $Z^\infty \oplus Z_2^\infty \oplus Z_4^\infty$, called the algebraic concordance group. One of the main goals of the study of concordance is to understand the kernel of this map, a subgroup consisting of the algebraically slice knots.

In particular, it is known that there is 2-torsion in the concordance group. It is not known whether there is any other kind of torsion in the concordance group.

•
$$g_3(K) := \min\{g(F) \mid F \hookrightarrow S^3, \partial F = K\}.$$

•
$$g_4(K) := \min\{g(F) \mid F \hookrightarrow B^4, K = \partial F \hookrightarrow S^3 = \partial B^4\}.$$

•
$$g_c(K) := \min\{g_3(K') \mid K' \sim K\}$$

- $g_3(K) := \min\{g(F) \mid F \hookrightarrow S^3, \partial F = K\}.$
- $g_4(K) := \min\{g(F) \mid F \hookrightarrow B^4, K = \partial F \hookrightarrow S^3 = \partial B^4\}.$
- $g_c(K) := \min\{g_3(K') \mid K' \sim K\}$

Fact $g_4(K) \le g_c(K) \le g_3(K)$. If *K* is slice, $g_c(K) = g_4(K) = 0$.

Aside from $g_3(K)$ and $g_4(K)$, other invariants bound $g_c(K)$, and the value of $g_c(K)$ can be determined for many examples just by examining the bounds.

- $\frac{1}{2}|\sigma_t(K)| \leq g_4(K) \leq g_c(K)$
- $2g_3(K) \ge deg(\Delta_K(t))$
- For slice K, $\Delta_K(t) = f(t)f(t^{-1})$ for some polynomial f(t)
- As a consequence, if $\Delta_K(t)$ is irreducible, the degree also bounds $g_c(K)$

Here are some examples:

	Alexander Polynomial	Signature	<i>g</i> ₃	g_4	g_c
unknot	1	0	0	0	0
3 ₁	$1 - t + t^2$	-2	1	1	1
4 ₁	$1 - 3t + t^2$	0	1	1	1
51	$1 - t + t^2 - t^3 + t^4$	-4	2	2	2
52	$2-3t+2t^2$	-2	1	1	1
$2(-3_1)#5_1$	$(1-t+t^2)^2(1-t+t^2-t^3+t^4)$	0	4	1	4

In some cases, to find the concordance genus, you must find a concordance to a simpler knot.

You can construct a concordance using band moves.

For example, in the case of 11_{n69} , the $g_3(11_{n69}=3)$, but $\sigma(11_{n69})=-4$, $\Delta_{11_{n69}}(t)=(-2+t)(-1+2t)(1-t+t^2-t^3+t^4)$, and $g_4(11_{n69})=2$, so bounds don't give us enough information. However, the Alexander polynomial indicates a possible concordance to 5_1 .

For example, in the case of 11_{n69} , the $g_3(11_{n69}=3)$, but $\sigma(11_{n69})=-4$, $\Delta_{11_{n69}}(t)=(-2+t)(-1+2t)(1-t+t^2-t^3+t^4)$, and $g_4(11_{n69})=2$, so bounds don't give us enough information. However, the Alexander polynomial indicates a possible concordance to 5_1 .

In fact, 11_{n69} is concordant to 5_1 , which has 3-genus 2. So the concordance genus of both knots is 2.

Definition

The stable concordance genus of a knot is

$$g_{c}(K) = \lim_{n \to \infty} \frac{g_{c}(nK)}{n}$$

Definition

The stable concordance genus of a knot is

$$g_c(K) = \lim_{n \to \infty} \frac{g_c(nK)}{n}$$

Since g_c is subadditive and non-negative, this is well-defined and satisfies the following:

- $g_{c}(K) \geq \frac{1}{2} |\sigma_{\omega}(K)|$
- $\underline{g_{c}}(K\#J) \leq \underline{g_{c}}(K) + \underline{g_{c}}(J)$
- $\underline{g_c}(nK) = n\underline{g_c}(K)$

In particular, g_c is a semi-norm. So we can understand it by way of understanding unit balls and extending by linearity.

Example Let's examine knots of the form $K = xT_{2,3} + yT_{2,5}$. $\Delta_K(t) = (1 - t + t^2)^{|x|} (1 - t^2 + t^3 - t^4 + t^5)^{|y|}$, $\sigma_\omega(K)$ jumps at roots of Δ_K , so here we have (left):

And with the corresponding inequalities and calculations of corner points, we confirm the g_4 (the stable four genus) unit ball is above (right).

Proposition

If a knot, K, has Alexander polynomial $\Delta_K(t) = f(t)^x g(t)$ and $j_{\rho}(K) = \pm 2x$ for where f(t) is the minimal polynomial for ρ in $\mathbb{Z}[t, t^{-1}]$, then for any J concordant to K, $f(t)^x$ is a factor of $\Delta_J(t)$.

On the other hand, since signature is a concordance invariant, and jumps at the points above, for any K' concordant to K, Δ_K divides Δ_K' , so $g_c(K') \geq |x| + 2|y|$, and thus $\underline{g}_{\underline{c}}(K) \geq |x| + 2|y|$.

Along with the fact that the corner points are 3_1 and 5_1 , we find the g_c unit ball (above).

Theorem

The stable concordance genus of knots of the form

$$xT_{2,n} + yT_{2,m}$$
 is

$$\frac{n-1}{2}|x|+\frac{m-1}{2}|y|$$

for any $n, m \in \mathbf{Z}$ with $n < m, n \neq km$.

Conjecture

For any i, j, and k, for which $i \le j \le k$, there is a knot K for which $g_4(K) = i$, $g_c(K) = j$, and $g_3(K) = k$.

The difference between the unit balls for g_4 and g_c allow us to construct examples with the desired values of these invariants.

What I can actually prove...

Theorem

For any $j, k \in \mathbb{Q}$, for which $1 \le j \le k$, there is some $K \in \mathcal{C} \otimes \mathbb{Q}$ for which $g_4(K) = j$, $g_c(K) = k$. Furthermore, if $K \in \mathcal{C}$, given any $l \ge k$ then for some knot K' in the concordance class of K, $g_3(K') = l$.

Some other cool things to think about:

- Livingston gives an example of a knot with rational (non-integer) stable four genus. On the other hand, there are no known knots with rational (non-integer) stable concordance genus.
- In all of the examples calculated so far, if $g_{\underline{c}}(K) = k$, then for some integer multiple of K, $\frac{g_{\underline{c}}(nK)}{n} = k$.
- A special case of the previous question: Does there exist a knot K which is not finite order in the concordance group but $g_c(K) = 0$?
- We observed that if $g_4(K) = 0$ then $g_c(K) = 0$. Does the same hold for g_4 and g_c ?

Torus Knots Comparison of g_c and g_4 Other interesting things

Thank You!