
Introduction & Motivation
CPEN 230 – Introduction to Digital Logic



Digital Abstraction

• The world is “digital” with analog at the edges

(a) analog signal

(b) digital signal

Abstraction = hiding details when they are not important 
Abstraction helps to manage complexity



Common Applications

• Desktop Computers
• Notebooks
• Smartphones
• Embedded Systems
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An estimate of the maximum number of transistors 
per chip over time.

Moore’s Law



A silicon wafer (courtesy of Altera Corp.).

Enabling Technology



• The focus of 
this class is on
digital circuits:
i.e. the interconnection 
of logic gates

An example  
of chip (CPU)



CAD Tools
Testbench

(behavioral code)

Functional 
simulation

static timing analysis

FPGA 
chip

Design Entry 
(RTL code)

Analysis & Synthesis

Device Programming
(download bit file to 

physical device)

implementation

Place & Route 
(Fitting)

Generate 
programming file 

(Assembling)

verificationdesign

Typical FPGA HDL-based Flow

Compiling

The programming 
file is a.k.a. bit file

Device Programming is 
a.k.a. configuration



CAD Tools

The flow is iterative!

Unless you don’t 
You don’t trust your 
HDL coding
skills you should 
first check that the 
functional simulation 
is correct and later 
run the synthesis

Fitting and Assembling

Timing Analysis



An FPGA (Field Programmable Gate Array) board.



Digital Abstraction

Key idea:
assume we have only two voltage levels 
(i.e., assume binary signals) 

• VDD <--> 1 <--> H 
• GND <--> 0 <--> L

VDDVDD VDD
OUT OUT

A A

0 0 0
1 1



Binary Waveforms

(a) Simple connection to a battery

Power
Supply Light 

Light 

x

y

(b) Using a ground connection as the return path

x

y

VDD

GND

x

y

VDD

GND

Assume we have a switch that when the control 
signal x is at VDD (x=1)  the switch closes
and when x is at GND (x=0) the switch opens

x = input variable y = output variable

Digital
System

x y

Load

Power
Supply 

VDD

GND



Binary digits (bits)
Binary

If we “slice” the amplitude of our analog signal in 8 values,
we need 3 binary signals (i.e. 3 bits) to represent it ( 8 = 23 ). 



Decimal numbers

Binary numbers

Number Systems

537410 = 5 × 103 + 3 × 102 + 7 × 101 + 4 × 100
five

thousands

10's colum
n

100's colum
n

1000's colum
n

three
hundreds

seven
tens

four
ones

1's colum
n

11012 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 1310
one
eight

2's colum
n

4's colum
n

8's colum
n

one
four

no
two

one
one

1's colum
n

!"# = %
&'(
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Digital Abstraction: 
Voltage ranges of binary signals

0 1?
Voltage

Vmin V0 VIL VIH V1 Vmax

- 0.3V 0.0V 0.7V 1.7V 2.5V 2.8V

2.5V LV CMOS Logic
GND VDD



x 1 
x 2 

x 1 x 2 + 

(a) AND gates 

(b) OR gates

x x 

x 1 
x 2 

x n 

x 1 x 2 … x n + + + 

(c) NOT gate

The building blocks 
of a digital circuit are 
called logic gates

x 1 
x 2 

x 1 x 2 ×

x 1 
x 2 

x n 

x 1 x 2 … x n × × ×

./0 = 1 = ∨ = ∩ = &

5- = + = ∨ = ∪ = |
/59 = : = ; = ~ = !

A digital circuit  is a 
“network” of logic gates
(i.e. a bunch of logic 
gates wired together)

The three Basic Logic gates



The Basic Logic Gates: AND, OR, NOT

NOT

Y = A

A Y
0 1
1 0

A Y

AND

Y = AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A
B Y

OR

Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A
B Y

These three basic components are all you need to build any possible logic circuit you want



AND, OR, NOT

(a) The logical AND function (series connection)

S 
Power 
supply

S 

Light A B

Y

S 

Power 
supply S 

(b) The logical OR function (parallel connection) 

Light 

A

B

Y

S Light 
Power 
supply

R 

A

Y

(c) The logical NOT function



More Logic Gates: NAND, NOR, and BUFFER 
(inverting AND, OR, and NOT)

XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

XOR NAND NOR

Y = A + B Y = AB Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

A
B Y A

B Y A
B Y

BUF

Y = A

A Y
0 0
1 1

A Y

It turns out that instead of using the three basic gates (AND, OR, NOT) you can build any logic circuit 
you want also by using only NAND gates or only NOR gates 



More Logic Gates: XOR, XNOR

1
0
0
1



Beneath the Digital Abstraction 
… there are transistors

g g

g g



A Y

Example: VDD = 5V, GND = 0V



VDD



VDD



VDD

General CMOS Logic Gate



Logic Levels and Noise Margins
Input

Output

0 1?

0 1Tran

VoltageVOL

Voltage

Damage Damage

VIHVIL
VNML VNMH

VOH

Forbidden
Zone

NML

NMH

Input CharacteristicsOutput Characteristics
VDD

VO L

GND

VIH

VIL

VO H

GND VDD

Digital gates are restoring

if Noise added to Input < Noise Margin
we get the correct value at output

Transient
Zone

Vmin Vmax





DC Transfer Characteristics

A Y

VDD

V(A)

V(Y)

VOH
VDD

VOL

VIL VIH

Unity Gain
Points

Slope = 1

0

Forbidden
Zone

NML

NMH

Input CharacteristicsOutput Characteristics
VDD

VO L

GND

VIH

VIL

VO H

If gain < 1 the noise superimposed to a given level gets “attenuated” 



VDD Scaling

• In 1970’s and 1980’s, VDD = 5 V

• VDD has dropped
• Save power

• 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, …
• Be careful connecting chips with different supply voltages

=> = ? 1 @A 1 BCD& 1 EFFG

Y

CL



Logic Family Examples

Logic Family VDD VIL VIH VOL VOH

TTL 5 (4.75 - 5.25) 0.8 2.0 0.4 2.4

CMOS 5 (4.5 - 6) 1.35 3.15 0.33 3.84

LVTTL 3.3 (3 - 3.6) 0.8 2.0 0.4 2.4

LVCMOS 3.3 (3 - 3.6) 0.9 1.8 0.36 2.7



Bits, Bytes, Nibbles, Words, …

Bits

Bytes & Nibbles

Bytes

10010110
nibble

byte

CEBF9AD7
least

significant
byte

most
significant
byte

10010110
least

significant
bit

most
significant

bit

??



Hexadecimal Numbers

Hex Digit Decimal Equivalent Binary Equivalent
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111



Next Time

• Types of logic circuits: 
combinational circuits vs. sequential circuits

• Types of Integrated Circuits (ICs)
• Boolean Algebra

Combinational --> NOT Combinatorial



Common 74xx-series 
logic gates



Boolean Algebra
CPEN 230 – Introduction to Digital Logic

1



Review
• Binary (or Boolean or Digital or Logic) Signal (or Variable)

• Fundamental Logic Functions (or Operations or Gates) 

2

These tables we  are
using to show the 

behavior of the logic 
functions are called 
TRUTH TABLES  

VDD

GND



Review

Precedence of basic operations:

• Parenthesis
• NOT
• AND
• OR

3



Review

A typical CAD Flow

4



AND and OR gates can have more than two inputs

5

A B C Y=A·B·C

0 0 0 0
0 0 1 0

0 1 0 0

0 1 1 0
1 0 0 0

1 0 1 0
1 1 0 0

1 1 1 1

Example

Example

A B C Y=A+B+C

0 0 0 0
0 0 1 1

0 1 0 1
0 1 1 1

1 0 0 1

1 0 1 1
1 1 0 1

1 1 1 1

Think about the switch structure

Think about switch structure



“Composite” Boolean Functions (or Expressions)

• All Boolean Functions are formed by applying the basic operations to 
one or more variables or constants 

6

A B C Y=A·B’+C

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1



“Composite” Logic Functions: another example 
• So far we have seen 4 ways to express Logic Functions:

• Switches
• Equations (= expressions)
• Truth Tables 

in general for N input variables 
the truth table has 2N rows
(there are 2N combinations)

• Gates

• There is a fifth way called Karnaugh-maps (coming soon!)
7

x 1 
x 2 
x 3 

f x 1 x 2 + ( ) x 3 ×= 

x1

x2

x3

f = (x1+x2) · x3
VDD

x3 x2 x1 f

0  0  0 0

0  0  1 0

0  1  0 0

0  1  1 0

1  0  0 0

1  0  1 1

1  1  0 1

1  1  1 1



Analysis and Synthesis of Logic Functions

Analysis

Given a logic function, determine its behavior

Synthesis

Given a desired behavior, design the logic function that implements it

8



Analysis of Logic Functions (1)

x1 x2 f = A + B

0  0 1

0  1 1

1  0 0

1  1 1

9

(b) Truth Table

! = #$ % = #$ & #'



Analysis of Logic Functions (2)

10

f and g behave exactly the same !

f and g are equivalent, but … 

g is less “expensive” than f

It would be nice to have some systematic
method to find out the less “expensive”
implementation of a given logic function !  



Types of Logic Circuits
• Combinational Circuits: the output values depend only on the present 

value of the inputs and not on past values.  

• Sequential Circuits: the outputs depend on both the present and past 
input values

11

Combinational 
Logic

inputs

#̅
outputs

)* = +(#̅)

Combinational 
Logic

inputs outputs

next

state

Storage 
Elements

state

As a consequence, combinational 
circuits are “memory less”, while 
sequential circuits requires storage 
elements (latches or flip-flops).
To build storage elements we need 
a “feedback loop”



PCBs and Integrated Circuits

12

- Standard ICs
- Programmable ICs 
- Application Specific ICs

- DIP = dual Inline Package
- SMD = Surface Mount Devices
- PLCC = Plastic Leaded Chip Carrier
- LQFP = Low-Profile Quad Flat Package
- PQFP = Plastic Quad Flat Package
- TQFP = Thin Quad Flat package
- FBGA = Fine-Pitch Ball Grid Array
- PGA = Pin Grid Array



Standard Chips (e.g. 7400-series) 

13

(a) Dual-inline package (b) Structure of 7404 chip

V DD

Gnd 



Implementation Example using Standard Chips

14

An implementation 
of f = x1x2 + x2x3

V DD

x 1 
x 2 
x 3 

f 

7404

7408 7432

Limitations of 7400 
series standard ships:

1. The function 
provided by each 
chip is fixed

2. Each chip only 
contains a few logic 
gates



Programmable Logic Devices

15

§ Programmable Logic Devices – chips that contain relatively large 
amounts of logic circuits with a structure that is not fixed (the 
structure can be customized) 

Programmable logic device as a black box

Logic gates 
and 

programmable
switches

Inputs
(logic variables) 

Outputs 
(logic functions) 



Types of Programmable Logic Devices

School of  Engineering & Applied Science Introduction to Digital Logic 16

§ There are several types of Programmable Logic Devices 
commercially available:

• Programmable Logic Array (PLA)

• Programmable Array Logic (PAL)

• Complex Programmable Logic Devices (CPLDs)

• Field-Programmable Gate Arrays (FPGA)

§ Logic circuit elements in programmable logic devices can be 
customized (that is programmed) through the use of CAD tools



FPGA’s internal fabric

17

• Both the basic logic cells (LUT) an the interconnections are programmable



Manipulating the Basic Boolean Functions

18

a

a

a

INVERTER

a
b

a b a’ b’ a’ + b’

0 0 1 1 1
0 1 1 0 1

1 0 0 1 1
1 1 0 0 0

a
b

a b a’ b’ a’ * b’

0 0 1 1 1

0 1 1 0 0
1 0 0 1 0

1 1 0 0 0

if we want we can use NAND gates for everything !

if we want we can use NOR gates for everything !

a y
0 1

1 0



Boolean Algebra
Objective: 

Systematic way of manipulating Boolean expression

• One-Variable Theorems

19

# & 1 = # # + 0 = #
# & 0 = 0 # + 1 = 1
# & # = # # + # = #
# & #′ = 0 # + #′ = 1
(#2)′ = #



Boolean Algebra
• Two and Three-Variable Theorems

• Duality Principle

20

# + # & * = # # & (# + *) = # absorption (a.k.a. covering)

# & * + # & *′ = # # + * (# + *2) = # combining
(# & *)′ = #′ + *′ (# + *)′ = #′ & *′ De Morgan

# & * = * & # # + * = * + # commutative

(# & *) & 4 = # & (* & 4) # + * + 4 = # + (* + 4) associative
# & * + 4 = # & * + # & 4 # + * & 4 = (# + *) & (# + 4) distributive

#′ & * + # & 4 = #′ & * + # & 4 + * & 4 (#′ + *)(# + 4) = (#′ + *)(# + 4) (* + 4) consensus (muxing)

If a Boolean function f is true then the dual function fD is also true. 
The dual of a logic function f is the function fD derived from f by swapping 
“+” with “∙”, “∙” with “+”, “0” with “1” and “1” with “0”.



Boolean Algebra
• N-Variable Theorems

21

(#$ + #' + #5 + ⋯+ #7)′ = #$′ & #'′ & #5′ & ⋯ & #7′ De Morgan 
Theorem#$ & #' & #5 & ⋯ & #7 2 = #$2 + #'2 + #52 + ⋯+ #72

8 #$, #', #5, … , #7 = #$2 & 8 0, #', #5, … , #7 + #$ & 8(1, #', #5, … , #7) Shannon Expansion 
Theorem8 #$, #', #5, … , #7 = [#$2+8 1, #', #5, … , #7 ] & [#$ + 8 0, #', #5, … , #7 ]

DeMorgan Theorem:
The complement of the product is the sum of the complements.

Dual:
The complement of the sum is the product of the complements.

A
B Y

A
B Y

= = ! & % = ̅! + )%

A
B Y

A
B Y

= = ! + % = ̅! & )%



Next Time
• Standard Form Representations of Logic Functions:

• SOP 
• POS 
• min terms 
• max terms 

22



Consensus (a practical perspective)

23

0 0 1 1

0 1 1 0
0 1 3 2

4 5 7 6

00 01 11 10
ba

s

1
0

a

b

s

> & ̅?

@ & ?

@ & >

s b a f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

8 = @ & ? + > & ̅?

8 = @ & ? + > & ̅? + @ & >

a

b
cN

f

c

1

1
1

d

e
3 sNs

a

b
cN

f

c

1

1
1

d

e
3

sNs e

ab

a

b

s

1

0
f

mux

c

cN

d

e

f

Static-1 hazard

a

b

ftheory

s

sN There is a “Glitch”
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# & * + # & *2 = # & * + *2 = # & 1 = #
# + * & # + *2 = # & # + # & * + # & *2 + * & *2 = # + # & * + *2 + 0 = # + # & 1 + 0 = #

Example. Prove Combining Theorem

# & # + * = # & # + # & * = # + # & * = # & * + *2 + # & * = # & * + x & *2 + # & * = # & * + x & *2 = x
# + # & * = # & * + *2 + # & * = # & * + x & y2 + x & y = # & * + x & *2 = x
Example. Prove Absorption Theorem

Example. Prove Following Property

# & #2 + * = # & #2 + # & * = 0 + # & * = x & *

x y f

0 0 0

0 1 1

1 0 1

1 1 1

P1:

P1.D:

P1.D -->

#

#2*

# + #2* = # * + *2 + #2* = #* + #*2 + x2y = (x2y′)′ = (x + *)′′ = # + *P1 -->

<-- Very easy to see from truth table  or if we notice that it is a mux
between 1 and y with x as selection 
(not so easy using equations)

= complement 

of missing term(s)

CD

De Morgan

1

y

x

1

0
f

Since P1 is not so easy to prove it may be a property worth remembering !

Let’s call it “Simplification” Theorem.

In other words remember that  8 = 8
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An addition tool to gain insight into a logic equation is to use Venn Diagrams from set theory

X

y

x’

x

x+y

x’y

x’
x’y

x + x’y = x + y



How to Prove ?

• Method 1: Perfect induction
• Method 2: Use other theorems and axioms to simplify the 

equation
– Make one side of the equation look like the other

26



What does Perfect Induction mean ?

• Despite the “fancy” name this is the most obvious solution

27

• Also called: proof by exhaustion
• Check every possible input value
• If two expressions produce the same value for every possible 

input combination, the expressions are equal



Standard Forms
CPEN 230 – Introduction to Digital Logic

1



Review: Boolean Algebra

2

! " 1 = ! ! + 0 = !
! " 0 = 0 ! + 1 = 1
! " ! = ! ! + ! = !
! " !′ = 0 ! + !′ = 1
(!))′ = !

! + ! " + = ! ! " (! + +) = ! absorption (a.k.a. covering)

! " + + ! " +′ = ! ! + + (! + +)) = ! combining

! + !) " + = ! + + ! " !) + + = ! " + “simplification”

(! " +)′ = !′ + +′ (! + +)′ = !′ " +′ De Morgan

! " + = + " ! ! + + = + + ! commutative

(! " +) " , = ! " (+ " ,) ! + + + , = ! + (+ + ,) associative

! " + + , = ! " + + ! " , ! + + " , = (! + +) " (! + ,) distributive

!′ " + + ! " , = !′ " + + ! " , + + " , (!′ + +)(! + ,) = (!′ + +)(! + ,) (+ + ,) consensus (muxing)

One-Variable Theorems

Two and Three- Variable  Theorems



Review: Boolean Algebra

3

If a Boolean function f is true then the dual function fD is also true.
The dual of a logic function f is the function fD derived from f by swapping
“+” with “∙”, “∙” with “+”, “0” with “1” and “1” with “0”.

Duality Principle

(!- + !. + !/ + ⋯+ !1)′ = !-′ " !.′ " !/′ " ⋯ " !1′ De Morgan 
Theorem!- " !. " !/ " ⋯ " !1 ) = !-) + !.) + !/) + ⋯+ !1)

2 !-, !., !/, … , !1 = !-) " 2 0, !., !/, … , !1 + !- " 2(1, !., !/, … , !1) Shannon Expansion 
Theorem2 !-, !., !/, … , !1 = [!-

)+2 1, !., !/, … , !1 ] " [!- + 2 0, !., !/, … , !1 ]

N-Variable Theorems



Truth Tables: min-terms and max-terms

Row # x2 x1 x0 f Minterm Maxterm

0 000 78 = !. " !- " !8 98 = !. + !- + !8 = 78

1 001 7- = !. " !- " !8 9- = !. + !- + !8 = 7-

2 010 7. = !. " !- " !8 9. = !. + !- + !8 = 7.

3 011 7/ = !. " !- " !8 9/ = !. + !- + !8 = 7/

4 100 7: = !. " !- " !8 9: = !. + !- + !8 = 7:

5 101 7; = !. " !- " !8 9; = !. + !- + !8 = 7;

6 110 7< = !. " !- " !8 9< = !. + !- + !8 = 7<

7 111 7= = !. " !- " !8 9= = !. + !- + !8 = 7=

4

For an N-input function a truth table has 2N rows (= 2N minterms = 2N maxterms) 



Terminology

• Literal
Any occurrence of a variable, either in its direct form (e.g. >) or in its complemented form (e.g. ?>)

• Product Term
A product (AND operation) of two or more literals 
(e.g. >@, >A> , ?>@, ?>@B, … )

• Sum Term
A sum (OR operation) of two or more literals 
(e.g. ?> + @, ?> + @, > + @ + B, B + B,… )

• Minterm
Given a function of N-input variables, a minterm is a product term of N literals with one literal for 
each input variable.
(Example: given a function of three input variables ?>@B is a min term, but ?>@ or ?>>@ are not)

• Maxterm
Given a function of N-input variables, a maxterm is a sum term of N literals with one literal for 
each input variable.

5



Minterms and maxterms: example

6

Row # x2 x1 x0 f Minterm Maxterm

0 000 1 78 = !. " !- " !8 98 = !. + !- + !8 = 78

1 001 1 7- = !. " !- " !8 9- = !. + !- + !8 = 7-

2 010 0 7. = !. " !- " !8 9. = !. + !- + !8 = 7.

3 011 0 7/ = !. " !- " !8 9/ = !. + !- + !8 = 7/

4 100 0 7: = !. " !- " !8 9: = !. + !- + !8 = 7:

5 101 0 7; = !. " !- " !8 9; = !. + !- + !8 = 7;

6 110 0 7< = !. " !- " !8 9< = !. + !- + !8 = 7<

7 111 0 7= = !. " !- " !8 9= = !. + !- + !8 = 7=

If a function f is specified in the form of a Truth Table, then an expression that realizes f can be obtained 
either by considering the rows in the table for which f=1 or by considering the rows for which f=0

2 = 78 + 7- = (7.+7/ + 7: + 7; + 7< + 7=)′ = (7. " 7/ " 7: " 7; " 7< " 7=)′′
= 9. " 9/ " 9: " 9; " 9< " 9=



Minterms and maxterms: example

7

Row # x2 x1 x0 f Minterm Maxterm

0 000 1 78 = !. " !- " !8 98 = !. + !- + !8 = 78

1 001 1 7- = !. " !- " !8 9- = !. + !- + !8 = 7-

2 010 0 7. = !. " !- " !8 9. = !. + !- + !8 = 7.

3 011 0 7/ = !. " !- " !8 9/ = !. + !- + !8 = 7/

4 100 0 7: = !. " !- " !8 9: = !. + !- + !8 = 7:

5 101 0 7; = !. " !- " !8 9; = !. + !- + !8 = 7;

6 110 0 7< = !. " !- " !8 9< = !. + !- + !8 = 7<

7 111 0 7= = !. " !- " !8 9= = !. + !- + !8 = 7=

2 = C7 0,1 =D9 (2,3,4,5,6,7)



Sum-of-Products (SOPs) and Product-of-Sums (POSs)

• If all the product terms in the SOP are minterms then the expression is called a 
normal (or canonical or standard) form SOP

• If all the sum terms in the POS are maxterms then the expression is called a 
normal (or canonical or standard) form POS

8

Any Boolean function f can be expressed either as a sum of product terms 
(SOPs) or as a product of sum terms (POSs)

Example

2 !., !., !- = ∑7 0,1 = !.′ !-′!8) + !.′!-) !8 = (!.′!-) )(!8) + !8) = !.′!-)

combining theorem

canonical SOP form non-canonical SOP form

=1



Minterms and maxterms

9

Row # x2 x1 x0 f Minterm Maxterm

0 000 0 78 = !. " !- " !8 98 = !. + !- + !8 = 78

1 001 0 7- = !. " !- " !8 9- = !. + !- + !8 = 7-

2 010 0 7. = !. " !- " !8 9. = !. + !- + !8 = 7.

3 011 0 7/ = !. " !- " !8 9/ = !. + !- + !8 = 7/

4 100 1 7: = !. " !- " !8 9: = !. + !- + !8 = 7:

5 101 0 7; = !. " !- " !8 9; = !. + !- + !8 = 7;

6 110 0 7< = !. " !- " !8 9< = !. + !- + !8 = 7<

7 111 0 7= = !. " !- " !8 9= = !. + !- + !8 = 7=

Each minterm “touches” only one row of the truth table (e.g. m4)

Each maxterm “touches” all but one row of the table (e.g. M4 = m4 so it touches: m0 ; m1 ; m2 ; m3 ; m5 ; m6 and m7)

m4

m4



Simplyfing an Equation

10

Reducing an equation to the fewest number of implicants, 
where each implicant has the fewest literals

Recall: 
– Implicant: product of literals

ABC, AC, BC
– Literal: variable or its complement

A, A’, B, B’, C, C’
Also called minimizing the equation



Design Example: Multiplexer

11

if (S == 0)
Y <= D0;

else
Y <= D1;

L =C7 1,3,6,7 =

= ̅N " O- " O8 + ̅N " O- " O8 + N " O-" O8 + N " O-" O8=
= ̅N " O8 " (O-+ O-) + N " O- " (O8+ O8) = ̅N " O8 + N " O-

=1 =1

D0

D1

S

Y



Design Example: Three way light control 

12

2 !-, !., !/ = 7- +7. +7: +7= = !- " !. " !/ + !- " !. " !/ + !- " !. " !/ + !- " !. " !/

SOP realization



Design Example: Three way light control 

13

2 !-, !., !/ = 98 " 9/ " 9; " 9< = (!-+!. + !/) " (!-+!. + !/) " (!- + !. + !/) " (!- + !. + !/)

POS realization



NAND-NAND circuits (pushing bubbles)

14Using NAND gates to implement a sum-of-products.

SOP

Remember De Morgan ?



NOR-NOR circuits (pushing bubbles)

15

POS

Using NOR gates to implement a product-of sums.

Remember De Morgan ?



Bubble Pushing

16

• Backward:
• Body gets “squished” (changes shape)
• Adds bubbles to inputs

• Forward:
• Body gets “squished” (changes shape)
• Adds bubble to output

A
B Y A

B Y

A
B YA

B Y



NAND-NAND vs. NOR-NOR
• The propagation delay through a logic gate is proportional to the RC of the switches 

involved in delivering the desired logic level (either VDD or GND) to the output. The 
switches (MOS transistors) are not ideal: they have R and C associated to them 
(the PMOS transistors have more R than the NMOS transistors) 

17

VDD

2-input CMOS NOR gate2-input CMOS NAND gate

VDD

k=W/L



Building multiple-input NAND gates 
using 2-input NAND gates (pushing bubbles)

18

& & && & & &&

&
& &

&

& &

&

&
&

&

&

&



Building multiple-input NOR gates 
using 2-input NOR gates (pushing bubbles)

19

≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1

≥1

≥1

≥1

≥1
≥1

≥1

≥1

≥1≥1

≥1

≥1
≥1



Next Time
• A first look at Verilog
• K-maps 
• Minimization of Boolean Equations using K-maps
• Multiple Drivers (contention Value: X)
• Tri-state Buffer (high impedance state: Z)

20



K-maps and minimization
CPEN 230 – Introduction to Digital Logic

1



Review: minterms, maxterms, SOP form and POS form

2

Row # x2 x1 x0 f Minterm Maxterm
0 000 1 !" = $% & $' & $" (" = $% + $' + $" = !"

1 001 1 !' = $% & $' & $" (' = $% + $' + $" = !'

2 010 0 !% = $% & $' & $" (% = $% + $' + $" = !%

3 011 0 !* = $% & $' & $" (* = $% + $' + $" = !*

4 100 0 !+ = $% & $' & $" (+ = $% + $' + $" = !+

5 101 0 !, = $% & $' & $" (, = $% + $' + $" = !,

6 110 0 !- = $% & $' & $" (- = $% + $' + $" = !-

7 111 0 !. = $% & $' & $" (. = $% + $' + $" = !.

/ = 0! 0,1 =4( (2,3,4,5,6,7)



A first look at Verilog

3

Register Transfer Level (RTL) Verilog Code for synthesizing a 2:1 mux

concurrent coding style

(higher level of abstraction)

always-based (procedural)
coding style

blocking 
assignment

blocking assignment

sensitivity 
list

Verilog is case 
sensitive !



4



5

A first look at Verilog (iverilog and GTKwave)
$ iverilog -o design mux21.v mux21_tb.v
$ vvp design

time s d0 d1 f y
-------------------

0 0 0 0 0 0
1 0 1 0 1 1
2 0 0 1 0 0
3 0 1 1 1 1
4 1 0 0 0 0
5 1 1 0 0 0
6 1 0 1 1 1
7 1 1 1 1 1

$ gtkwave mux21.vcd



A first look at Verilog (Modelsim)

6

#!/bin/bash
vlib work
vlog -work work "./mux21.v"
vlog -work work "./mux21_tb.v"
vsim work.mux21_tb -do simmux.do

runmux.scr

restart -f
add wave sim:/mux21_tb/*
run -all
# quit

simmux.do

$ ./runmux.scr



A first look at Verilog (Quartus)

7

$ quartus mux21.qpf

Use RTL Viewer to check the circuit 
synthesized

From Verilog code (Boolean equations) to gates



Two-variable Karnaugh Map

x y f
0 0 0

0 1 1

1 0 1

1 1 0

8

x y g
0 0 0

0 1 1

1 0 0

1 1 1

0 1
1 0

x
y 0 1
0
1

K-Map

/ = $̅ & > + $ & ?> = $ ⊕ > A = $̅ & > + $ & > = > & $̅ + $ = >

combining theorem

0 0
1 1

xx’

0 1
0
1y

y’

The K-map makes much easier 
to “visualize” that there is an 
opportunity to simplify the logic 
equation (eliminate a variable
using the combining theorem)

m0 m2

m1 m3

x
y 0 1
0
1x

y

(0,0) (1,0)

(0,1) (1,1)

x y f
0 0

0 1

1 0

1 1

Truth Table



Digression: XOR (^) and XNOR (~^) gates

9

0 1
1 0

0 1
0
1y

x

/ = $ ⊕ > = $̅ & > + $ & ?> = [ $ + ?> & $̅ + > ]′

x

0

1

y
f=x^y

mux-based implementation of XOR

SOP implementation of XOR

/E = $ ⊕ > = $̅ & ?> + $ & > = $̅ & > + $ & ?> = $ + ?> & $̅ + >

Read the K-Map 
minterms that 
are at 0

”Flip” the expressions of f

De Morgan

y

x

f=x^y

x y f
0 0 0

0 1 1

1 0 1

1 1 0



Digression: XOR and XNOR gates

10

/ = $ ⊕ > = $̅ & > + $ & ?>

/E = $ ⊕ > = $̅ & ?> + $ & > ≜ $ ⊙ >

x y f
0 0 0

0 1 1

1 0 1

1 1 0

x y f ’
0 0 1

0 1 0

1 0 0

1 1 1

XOR XNOR

The XNOR is also called the coincidence operator ⊙



XOR and XNOR properties

11

/ = $ ⊕ > = $̅ & > + $ & ?> = [ $ + ?> & $̅ + > ]′

/E = $ ⊕ > = $̅ & ?> + $ & > = $̅ & > + $ & ?> = $ + ?> & $̅ + >

$ ⊕ > = > ⊕ $

$ ⊕ 1 = $′ (= $ & 0 + $E & 1)

$ ⊕ 0 = $ (= $ & 1 + $E & 0)

$ ⊕ > ⊕ H = $ ⊕ > ⊕ H = $ ⊕ (> ⊕ H)

$ ⊕ >E = $E & >E + $ & >EE = $ ⊕ > = $E ⊕ > (= $E & >E + $EE & >)

$ ⊕ $ = 0

$ ⊕ $′ = 1

$(> ⊕ H) = $> ⊕ $H)



Three-variable Karnaugh Map

12

yx
z 00 01

0
1

K-Map

11 10
m0 m1 m3 m2

m5m4 m7 m6

x

z

00 01
0
1

11 10
m0 m1 m3 m2

m5m4 m7 m6

y

yx
z

• Clusters of 1 square are minterms
• Clusters of 2 squares eliminate one variable
• Clusters of 4 squares eliminate two variables
• Clusters of 8 squares eliminate three variables
• … 

X

Y Z
X’Z’

XY

110

Z

coordinates = (x,y,z)



Logic minimization with K-maps

13

yx
z 00 01

0
1

11 10
0 1 1
01 0 1

0

y・z’ + z・x’

yx
z 00 01

0
1

11 10
1 1 1
00 0 1

1

z’ + y・x’

yx
z 00 01

0
1

11 10
0 0 1
11 0 1

1

z・y’ + x’

yx
z 00 01

0
1

11 10
1 0 0
11 1 0

1

z・x + y’

1 0
1 1

0 1
0
1

y
x

y + x’

yx
z 00 01

0
1

11 10
1 1 0
11 1 1

0

z + x



K-map minimization rules

• Each cluster must span a power of 2 (i.e. 1, 2, 4) squares in each 
direction

• Each cluster must be as large as possible

• A cluster may wrap around the edges of the K-map

• A one in a K-map may be clustered multiple times
• A “don't care” (d or ⎼ ) is clustered only if it helps minimize the 

equation

14



K-Map definitions (1)
• The basic principle for simplifying SOPs equations is to combine terms 

using the relationship P∙A+P∙A’=P (where P may be any product 
of literals)
• Implicant = product of literals
• An equation in SOP form is minimized if it uses the least expensive set 

of implicants
• An implicant is called a prime implicant if it cannot be combined with 

any other implicants to form a new implicant with fewer literals 
(prime implicants correspond to the largest K-map clusters).
• The implicants in a minimized equation must all be prime implicants, 

otherwise, they could be combined to reduce the number of literals.
However, not all existing prime implicants are needed in forming a 
minimized equation. 

15



16

K-Map definitions (2)

yx
z 00 01

0
1

11 10
0 1 1
10 1 0

0

y・z’ + x・z

• An essential prime implicant is a prime implicant that cover an output 
of the function that no combination of other prime implicants is able 
to cover 

x・y is a prime implicant, 
however is not necessary

Example

• Certain functions may have more than one minimized SOP form



Four-variable K-Map

17

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

1

11

10

AB
00

00

10CD

Y

J = KELE + MNE + KNEL + MENL′

D C

B A



Four-variable K-Map (few more examples)

18

The function f4 has two possible SOP minimal forms



Five-variable K-Map

19

x 
1 

x 
2 

x 
3 

x 
4 00 01 11 10

1 1 

1 1 

1 1 

00

01

11

10

x 
1 

x 
2 

x 
3 

x 
4 00 01 11 10

1 

1 1 

1 1 

1 1 

00

01

11

10

f 
1 

x 1 x 
3 

x 
1 

x 3 x 
4 

x 
1 

x 2 x 3 x 
5 

+ + = 

x 
5 

1 = x 
5 

0 = 

This is nothing else than a “graphical
representation” of Shannon Expansion’s 
Theorem



Incompletely specified functions (don’t cares)

20

J =0! 0,2,6,8,9,12,13 +0Q 3,5,7,11,15

01 11

1

0

0

X

X

X

1

101

1

1

1

1

X

X

X

X

11

10

C
D

AB
00

00

10

Y

0 1 3 2

B A
D C

4 5 7 6

8 9 11 10

12 13 15 14

J = M + N + ̅K L

-

--

- -

- - NOTE: 
besides d and – sometimes people have also 
the unfortunate habit to mark don’t cares with X 

Sometimes the specification of the digital system we want to
design guarantees that certain set of input patterns (i.e. minterms) 
will never be used.

claudio



Map Entered Variables

• With	more	than	5	variables	the	K-map	rapidly	becomes	unmanageable.	
Entering	variables	in	the	map	reduces	the	required	map	size,	thereby	
extending	K-maps	practical	usefulness.	

• In	general	if	a	variable	Pi is	placed	in	square	mk of	a	map,	this	means	that	
F	=	1	when	Pi =	1	and	the	variables	of	the	map	are	chosen	so	that	mk =	1.	
Given	a	map	with	variables	P1,	P2,	.	.	.,	entered	into	some	of	the	squares,	
the	minimum	sum-of-products	(MS)	expression	for	F	is:

R = (S" + T' & (S' + T% & (S% +⋯

where:	
MS0 is	the	minimum	sum	obtained	by	setting	P1	=	P2	=	···	=	0.	
MS1	is	the	minimum	sum	obtained	by	setting	P1	=	1,	Pj =	0	(	j	≠ 1),	
and	replacing	all	1’s	on	the	map	with	don’t-cares.	
MS2	is	the	minimum	sum	obtained	by	setting	P2	=	1,	Pj =	0	(	j	≠ 2)	and
replacing	all	1’s	on	the	map	with	don’t-cares.	

21

00 01
0
1

11 10
w 0 1 1

w’1 w’ 1

yx
z



Map Entered Variables
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00 01
0
1

11 10
w 0 1 1

w’1 w’ 1

yx
z

0 0
1 0

1 1
0 1

00 01
0
1

11 10
1 0
- 0

- -
0 -

yx
z

yx
z 00 01

0
1

11 10

MS0=z’y+zx’ MS1=wx’

00 01
0
1

11 10
0 0
- 1

- -
1 -

yx
z

MS2=w’z

f = MS0+MS1+MS2 = z’y + zx’+ wx’+ w’z = z’y + wx’+ w’z

zx’ is a consensus term w.r.t.
wx’ and w’z



Contention (illegal or indeterminate value X)

23

f

The node has multiple drivers 

0

1

?

There 
is a conflict
between 
the two drivers

NOTE: When you see a “X” careful with the meaning: the notation X is over-abused !
Sometime X is also used for meaning don’t care and sometime for meaning undefined 
(undefined U is different than indeterminate !)



Floating Value ( Z = High Impedance)

24

For E=0 the 
node Y is 
left floating

There are three possible output states: 
HIGH (1), LOW(0), and floating (Z) 

In the rather common case that mul_ple devices 
need to share a communica_on bus (shared interconnec_on)  
a solu_on to avoid conten_on is to use tri-state buffers.



Tri-state buffer

25

This is NOT a tri-state buffer! 
It is a tri-state inverter 

A
EN

Y
EN

Tri-state buffer

Z
Z
1
0



Open Drain Buffer
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Next Time
• Multiple-output circuits
• Binary Representations and Binary Arithmetic

27



Problem

28

bc d+ef

1 1

a a

1

y

x

w

z

(S" = VE$>E + V$E>H

(S' = W$>E(a=1)

(S% = XYVE>′H(bc=1)

(d+ef=1) (S* = Q + Z/ $E>H

R = VE$>E + V$E>H + W$>E + XYVE>EH + Q + Z/ $E>H



Binary Representations and Arithmetic
CPEN 230 – Introduction to Digital Logic

1



Review: first steps in Verilog
• RTL code for the entry of the circuit (Hardware Implementation)

• Behavioral code the testbench (Verification of Functionality)

2

concurrent coding style

(higher level of abstraction)

procedural coding style

blocking 

assignment

blocking assignment

*
(~s)

=

=



Review: from equations to gates
• Equations in SOP and POS form result in 2-level logic circuits

• Minimal SOP and POS are not necessarily the only option nor the 
“best” option 

3

4-level NAND-NAND circuit

A

E

C
D
E

B

Y

6+2 

MOSTs 

6+2 

MOSTs 

4+2 

MOSTs 

Total MOSTs: 22

Y

Total MOSTs: 4✕4 + 2 = 18       

Minimal Cost ?

Facts Checking

4 MOSTs 

4 MOSTs 

4 MOSTs 

4 MOSTs 

2 MOSTs 

… And, at least for now, let’s sweep the issue of speed under the rug!

cost = total number of inputs to 

the logic gates plus number 

of gates (don’t count inversions)

cost = 8 inputs + 3 gates = 11 cost = 8 inputs + 4 gates = 12



4

row abcde y z
-------------------

0 00000 0 0
1 00001 0 0
2 00010 0 0
3 00011 0 0
4 00100 0 0
5 00101 0 0
6 00110 0 0
7 00111 1 1
8 01000 0 0
9 01001 0 0
10 01010 0 0
11 01011 0 0
12 01100 0 0
13 01101 0 0
14 01110 0 0
15 01111 1 1
16 10000 0 0
17 10001 0 0
18 10010 0 0
19 10011 0 0
20 10100 0 0
21 10101 0 0
22 10110 0 0
23 10111 1 1
24 11000 0 0
25 11001 1 1
26 11010 0 0
27 11011 1 1
28 11100 0 0
29 11101 1 1
30 11110 0 0
31 11111 1 1

… both for enhancing understanding 

and sparing tedious work
Verilog is your friend !



Review: from equations to gates
• “Just another brick in the wall”: building logic circuits using muxes

5

CDAB Y
0000 1

0001 1

0010 1

0011 0

0100 1

0101 0

0110 0

0111 0

1000 1

1001 0

1010 0

1011 0

1100 1

1101 0

1110 0

1111 0

! = #$ % &$ + #$ % ($ % )$ + &′ % (′ % )′

Expressing Boolean functions in terms 

of if-else statements and case
statements is usually more “natural” 

than any other approach.



SOP canonical form

logical and

Building logic circuits using muxes.

6

row cdab y f
--------------

0 0000 1 1
1 0100 1 1
2 1000 1 1
3 1100 0 0
4 0001 1 1
5 0101 0 0
6 1001 0 0
7 1101 0 0
8 0010 1 1
9 0110 0 0

10 1010 0 0
11 1110 0 0
12 0011 1 1
13 0111 0 0
14 1011 0 0
15 1111 0 0



Review: K-maps and minimization

77

0 0
1 0

1 1
0 1

00 01
0
1

11 10
1 0
- 0

- -
0 -

yx
z

yx
z 00 01

0
1

11 10

MS0=z’y+zx’ MS1=wx’

00 01
0
1

11 10
0 0
- 1

- -
1 -

yx
z

MS2=w’z

f = MS0+MS1+MS2 = z’y + zx’+ wx’+ w’z = z’y + wx’+ w’z

zx’ is a consensus term w.r.t.

wx’ and w’z

00 01
0
1

11 10
w 0 1 1

w’1 w’ 1

yx
z



Multiple-output Circuits

8

To design the logic circuit interfacing the 7-segment display

we need to write a logic function for each output (a, b, c, d, e, f, g)

1  0  1  0  
1  0  1  1  
1  1  0  0  
1  1  0  1  
1 1  1  0
1  1  1  1  

0  0  0  0  0  0  0 
0  0  0  0  0  0  0 
0  0  0  0  0  0  0 
0  0  0  0  0  0  0 
0  0  0  0  0  0  0 
0  0  0  0  0  0  0 

e.g. write a K-map for each output (a, b, c, d, e, f, g)



K-map for output a

9

1 0 1 1

0 1 1 1

0 0 0 0

1 1 0 0

x3 x2

x1 x0
00 01 11 10

11

10

00

01

1  0  1  0  
1  0  1  1  
1  1  0  0  
1  1  0  1  
1 1  1  0
1  1  1  1  

0  0  0  0  0  0  0 
0  0  0  0  0  0  0 
0  0  0  0  0  0  0 
0  0  0  0  0  0  0 
0  0  0  0  0  0  0 
0  0  0  0  0  0  0 

+ = ,- % ,. + ,- % ,/ % ,0 + ,- % ,/ % ,. + ,/ % ,. % ,0



Binary “patterns” (Codes and Numbers)
• Beauty lies in the eye of the Beholder:

the same “string” of binary digits (bits) may mean very different things !
Example: “1111” = +1510 or  “1111” = ⎼ 110

10

Binary code



Codes and Numbers

11



Unsigned Integer Numbers
• The most straightforward approach to represent an unsigned number in binary notation is to use 

the same positional notation we have been using with decimal (base 10) numbers since grade 

school.

• In summary (even if we probably never gave to much thought to it) we use a power series 
expansion. 

• So in the case of binary notation the interpretation is as follows:

12

[0, 26 − 1]Range of N-bit numbers:

: = 256.0 = 2×10/ + 5×10. + 6×100

The unsigned integer number X has N=3 digits (a2, a1, a0) 

and is represented in base (Radix) R=10.

In radix 10 using N=3 digits we can represent the numbers 

in the range [0, 999] =[0, 10N⎼1] 

: = (+6?. +6?/ ⋯ +.+0)B = C
DE0

6?.

+DFD Where ai is the coefficient associated to Ri and can take the 

values in the range 0 ≤ ai ≤ R −1

: = 111101/ = 1×2G + 1×2H + 1×2- + 1×2/ + 0×2. + 1×20 = 61.0

must be an odd number

With N=6 binary digits we can 

represent the numbers in the 

range [0, 1111112] =[0, 6310] 



Unsigned Numbers Wheel

13



Powers of 2

14

To convert between binaries and decimal numbers is useful 

to memorize the powers of 2 (up to 210)

• 20 = 1

• 21 = 2

• 22 = 4

• 23 = 8

• 24 = 16

• 25 = 32

• 26 = 64

• 27 = 128

• 28 = 256

• 29 = 512

• 210 = 1024

• 211 = 2048

• 212 = 4096

• 213 = 8192

• 214 = 16384

• 215 = 32768



Large powers of 2

15

• 210 = 1024 = 1 kilo ≈ 1 thousand = 103

• 220 = 1,048,576 = 1 mega ≈ 1 million  = 106

• 230 = 1,073,741,824 = 1 giga ≈ 1 billion = 109

: = 111101/

Example: Memorizing the powers of 2 helps finding the “meaning” of 

a binary quickly

2025

111111/ = 2I − 1 = 63

21

: = 111101/ = 63 − 2. = 61



Unsigned Integers: Decimal to Binary Conversion

16

• Two methods:
o Method 1: Find the largest power of 2 that fits, subtract and repeat
o Method 2: Repeatedly divide by 2, remainder goes in next most significant bit



Unsigned Integers.  Decimal to Binary Conversion Example 

17

Method 1: Find the largest power of 2 that fits, subtract and repeat

5310 32×1 (32= 25)
53-32 = 21 16×1 (16 = 24)

21-16 = 5 4×1 (4 = 22)

5-4 = 1 1×1 (1 = 20)

= 1101012

Method 2: Repeatedly divide by 2, remainder goes in next most significant bit
5310 = 53/2 = 26 R 1 (MSB)

26/2 = 13 R 0

13/2 = 6   R 1

6/2   = 3   R 0

3/2   = 1   R 1
1/2   = 0   R 1  (LSB) = 1101012



Unsigned Fractional Numbers
• For unsigned fractional binary numbers we continue to use the same notation we 

have been using for the decimals

• i.e. an unsigned fractional number X in base R is given by the following power 
series expansion: 

• So in the case of binary notation the interpretation is:

18

: = 953.78.0 = 9×10/ + 5×10. + 3×100 + 7×10?. + 8×10?/

: = (+6?. +6?/ ⋯ +.+0 . +?.⋯ +?O)B = C
DE?O

6?.

+DFD

: = 1011.01/ = 1×2H + 1×2- + 0×2/ + 1×2. + 1×20 + 0×2?. + 1×2?/ = 27.25.0

Fixed Point Notation



Conversion of a fraction from decimal to a binary
• The conversion of a decimal fraction can be done using successive 

multiplications by the radix R (rather than by successive division by 
R, as done for the non-fractional part)

• This process is continued until we have obtained a “sufficient” 
number of digits. 

19

P = (. +?.⋯ +?O)B= C
DE?O

?.

+DFD = +?.× F?. + +?/× F?/ +⋯+ +?O× F?O

P % F = +?. + +?/× F?. + ⋯+ +O×F?OQ. = +?. + P.

P. % F = +?/ + +?-×F?. ⋯+ +O×F?OQ/ = +?/ + P/

RST.



Converting fractions from decimal to binary

20

Example
Repeatedly multiply by 2. The integer part obtained at each step gives the desired digits (starting from 
the MSB a ⎼ 1 to the LSB)

0.62510 0.625×2  = 1.250 1 (a⎼1 = 1)

0.250×2 = 0.5 0 (a⎼2 = 0)

0.5 x 2 = 1   1 (a⎼3 = 0)

The process terminates when the product equals 1. However, the process does not always terminate, 
but if it doesn’t, the result is a repeating fraction.



Converting fractions from decimal to binary

21

Example
0.710 0.7 × 2       = 1.4 1 (a⎼1 = 1)

0.4 × 2 = 0.8 0 (a⎼2 = 0)

0.8 × 2 = 1.6   1 (a⎼3 = 1)

0.6 × 2 = 1.2 1 (a⎼4 = 1)

0.2 × 2 = 0.4 0 (a⎼5 = 0)
Process start  repeating here 

because 0.4 was previously 

obtained

0.710 = 0.1 0110 0110 0110 …2



Addition of unsigned binaries

22

3734
5168+
8902

carries 11

1011
0011+
1110

 11 carries

• Decimal

• Binary bit-wise addition rules

sum



Unsigned Binary Addition Example

23

1001
0101+
1110

1

1011
0110+
10001

111

• Add the following 
4-bit binary 
numbers

• Add the following 
4-bit binary 
numbers

Overflow!

• Digital systems operate on a 

fixed number of bits
• Overflow: the result is too big 

to fit in the available number 

of bits (with 4 bits we can 

represent the range [0, 15])

9
+  5   =
------

14

11
+  6   =
------

17



Signed Integer Numbers

• Sign-Magnitude Notation

• Two’s Complement Notation

24Two’s Complement

We 2N⎼1 binary patterns and we want to use “some” for 

representing positive quantities and some for negative 

quantities



Sign/Magnitude Notation

• Let’s use the most significant digit for the sign and the remaining N⎼1 digits for 
the magnitude.
• and let’s denote positive sign with 0 and negative sign with 1

• This is pretty much the same approach we have been using with decimal 
numbers. But … since with decimal numbers we have no limits on the amount of 
symbols available rather than representing the sign recycling the digits we use 
the symbol + (to denote positive) and – (to denote negative).

• The range of an N-bit sign/magnitude binary number X is:

: ∈ −(26?.−1 , (26?.−1)]

25

: = (+6?. +6?/ ⋯ +.+0)B = (−1)VWXYC
DE0

6?/

+DFD



Problems with Sign and Magnitude Notation

• There are two representations for the number 0:

1000
0000

• Addition doesn’t work!

+6 = 0110
-6 = 1110

26

0110
+ 1110 =
------
10100

6
+ (-6) =
------

0

In decimal this would be – 22 = – 4 

WRONG !



Any other idea ? 
• What makes the subtraction challenging is borrowing. 

Can we do a subtraction without ever having to borrow ?

• Being able of representing negative numbers makes it easier to 
perform subtractions, because we can perform the subtraction using 
the addition algorithm (based on dealing with “carries”) instead of 
having to come out with a new algorithm (based on dealing with 
“borrows”) 

27

YES WE CAN !

100
- 17 =
-----

83

99   + 1
- 17 
-----------

82   + 1 = 83

9  is the greatest digit: 
so subtracting from 99 

does not require borrows

Talarico, Claudio



Complement-Radix and Complement-Radix-diminished

28

99   + 1
- 17 
-----------

82   + 1 = 83

If our system can only handle up to N=2 digits, then 17+83 = 00 and therefore 83 = 00 – 17 = – 17. 
In other words in our system what 83 really represents is the value –17.

83 = X* + 1 ≙ X# is called the complement radix of X=17 
Since in our example R=10 -->
X*+1 = X# = 83 is the complement-10 of X=17 
X*+1+X = X#+X = 100 = RN

X* = 82 is called the complement-radix-diminished of X=17 -- > 
Since in our example R=10 -->
X*=82 is the complement-9 of X=17
X* + X = 99 = RN – 1

Talarico, Claudio
X*=82 is the complement-9 of X=17

Talarico, Claudio

Talarico, Claudio
X*+X+1 = 100 = R^N



Further rumination …

29

74 – 33 = 41 

Not all the times the number from which we want to subtract is 100.  Can this idea be generalized ?

Easy: no borrow is needed 

74 – 36 = 38 Not so easy, because a borrow is needed 

74 – 36 = 74 + 100 – 100 – 36 = 74 + (100 – 36) – 100  = 74 + (99 + 1 – 36) – 100 = 74 + (99 – 36) + 1 – 100

For an N digit number X in base R its R-complement is defined as KR = RN – X, 

while its R-diminished-complement is defined as KR−1 = (RN −1) − X 

Thus the required decimal subtraction (74 – 36) can be performed by addition of the 10-complement of 36 
and deletion of the leading digit:

K10 of X=36 K9 of X=36

K10 = K9 + 1

74 – 36 = 74 + 64 – 100 = 138 – 100 = 38

easy = 63 

The subtraction 138 – 100 is trivial because it implies ignoring the leading digit (i.e. the carry-out RN) in 138

Y – X



Further Rumination …

30

Does this really work all the time even when X < Y ( in our previous example we used X ≥ Y) ? 

Example 1: N = 3

X = 045, Y=027 

X – Y 

Example 2: N = 3

X = 027, Y=045 

X – Y 

The carry-out (= 103) can be discarded

982 is the negative number that results when 
forming the 10’s complement of Y – X = 018. 

Thus the number 982 is the 10’s complement 

representation of –18. 

X – Y = 982 – 1000 

982 = X – Y + 1000

982 = 1000 – (Y – X) 



The Two’s Complement notation
• In the 2’s complement notation a positive number X is represented by a 0 followed by 

the magnitude as in the sign and magnitude notation, however, a negative number –X, is 
represented by its 2-complement X#. If a positive number X is represented with N bits, its 
2-complement is defined as the word X# of length N-bits given by:

31

:# = 26 − : = 26 − : − 1 + 1 = 26 − 1 − : + 1 = :∗ + 1

X   = 01100001
2N-1 = 11111111

Example: (N=8)

2N-1-X   = 10011110  = X* = X’ 

+        1
X# = 10011111 

X   = 9710

X# = -27+(25-1)= -128+31= − 9710

X “flipped” (= not X)

256−97= 159

27 + 25 − 1 = 128+31 = 159

Talarico, Claudio
Find the Complement-2 of X = 97

Talarico, Claudio
X# = complement-2 of X ( = 2^N - X)

Talarico, Claudio

Talarico, Claudio

Talarico, Claudio
X* = complement-1 of X ( = 2^N - 1 - X)

Talarico, Claudio

Talarico, Claudio
X# = complement-2 of X = complement-1 of X + 1

Talarico, Claudio
X* = complement-1 of X  = (2^N - 1 - X)

Talarico, Claudio
X# = complement-2 of X = 2^N - X

Talarico, Claudio

Talarico, Claudio

Talarico, Claudio



Two’s Complement Numbers

32

• Don’t have same problems as sign/magnitude numbers:

– Addition works
– There is a single representation for 0



Two’s complement integer numbers

• MSB has value of −26?.

• The most significant bit still indicates the sign 
(1 = negative, 0 = positive)

• Range of an N-bit two’s complement number:

33

: = +6?. −26?. + C
DE0

6?/

+D× 2D

[−26?., +26?. − 1]

Two’s Complement

Most positive 4-bit number: 0100

Most negative 4-bit number: 1000



Taking the Two’s Complement

• Method:
1. “Flip” (invert) the bits

2. Add 1

Example: Flip the sign of 310 = 00112

34

1. 1100
2. +  1

1101 = −310
−1×23 + 1×24 +1×20 = −8+4+1=−3 

invert the bits



Two’s Complement Examples

35

• Take the two’s complement of 610 = 01102
1. 1001
2. +    1

10102 = −610

• What is the decimal value of the two’s 
complement number 10012? (−8+1= − 7)

1. 0110

2. +    1
01112 = 710 --> so 10012 = −710



Two’s Complement Addition

36

• Add 6 + (-6) using two’s complement numbers

• Add -2 + 3 using two’s complement numbers

+
0110
1010
10000

111

+
1110
0011
10001

111

discard

discard

4 bits range: [−8, 7]

If the two operands are of opposite sign 

the result is always within the range of 

numbers that can be represented



Two’s Complement Addition

37

12 is out of the range we can 

represent with 4 bits 

(4-bit range [−8, 7])

−9 is out of the range we can 

represent with 4 bits 

(4-bit range [−8, 7])

• Add 6 + 6 using two’s complement numbers

• Add −6 − 3 using two’s complement numbers
ERROR

0110
+ 0110
--------

1100

11

ERROR

1010
+ 1101
--------
10111

1

If adding two operands of the same sign 

the sign of the result comes out different 

there is an error (overflow) 

If we had an extra bit the result would have been just fine (00110+00110 = 01100)

If we could have used an extra bit the result would have been just fine

11010 + 11101 = 110111

discard



Increasing Bit Width

38

Extend number from N to M bits (M > N) :

– Sign-extension

– Zero-extension



Sign Extension

39

• Sign bit copied to MSB’s

• Number value is same

• Example 1:
– 4-bit representation of 3 = 0011

– 8-bit sign-extended value: 00000011

• Example 2:
– 4-bit representation of −5 = 1011

– 8-bit sign-extended value: 11111011



Zero Extension

40

• Zeros copied to MSB’s

• Value changes for negative numbers

• Example 1:
– 4-bit value = 0011 = 310

– 8-bit zero-extended value: 00000011 = 310

• Example 2:
– 4-bit value = 1011 = -510

– 8-bit zero-extended value: 00001011 = 1110



Signed Fractional Numbers

41

Example

⎼ 5.7510

First, find the binary representation of (positive) 5.7510

5.7510 = 0101.11002

Then convert it to negative using complement 2 notation (as usual invert all bits and add 1 in the LSB position) 

0101.11002 1010.00112
+ 0000.00012

1010.01002 -23 + 21 + 2-2 = -8 + 2 + 0.25 = 5.7510

: = +6?. −26?. + C
DE?O

6?/

+D× 2D Signed Binary Numbers (i.e. K2 Number System) 

(Fixed point Notation)



Comparison of Binary Systems

42



Comparison of Binary Numbers

43

Number Line



Binaries vs. Octals and Hexadecimals

44

Octals and Hexadecimals are 

just a short-hand notation of 

Binaries 

Binary = base 2

Octal = base 8

Hexadecimal = base 16



Binary/Octal/Hexadecimal conversions

45

Binary-to-hexadecimal: collect binary digits into groups of four (nibble) and assign each group a hexadecimal digit

Binary-to-octal: Collect binary digits into groups of three and convert each group to the corresponding octal digit

Hexadecimal-to-binary: Convert each hexadecimal digit to the corresponding binary nibble

Octal-to-binary: Convert each octal digit to the corresponding group of three binary digits



Next Time
• C.L. Building Blocks

• Gate Delays

46



C.L. Building Blocks and Gate Delays
CPEN 230 – Introduction to Digital Logic

1



Review: Binary Numbers Systems

2



Review: Binary Numbers Systems

3

Number Line



One-bit half adder

4

sum carryout

A
B

S

Cout



5

S is high when 
the number of 
inputs that are 
high is odd 
(odd-parity function) 

Cout is high when two 
or more inputs are high 
(majority function) 

If we need to add multiple bits
we must consider whether we 
have a carry in or not

One-bit Full Adder

A
B

Cin

Cout

S



Multi-bit adder (carry-ripple)

6

In the LSB position we can use a Half Adder or a Full Adder with c0 connected to GND

Symbol for 
multi-bit adder

A B

S

Cout Cin+
N

NN

One possible multi-bit adder implementation

is given by the carry-ripple architecture



Example: 32-bit ripple-carry adder

7

connect Cin to ground



Example: 4-bit adder in Verilog

8

concatenation



9

time  a    b    ci co  s
----------------------------

0  0000 0000  0  0  0000
10  0100 0001  0  0  0101
20  0110 0010  0  0  1000
30  1111 1100  0  1  1011
40  1010 1101  0  1  0111

overflow

overflow

this test pattern will cause overflow

this test pattern will cause overflow



Example: 4-bit adder in Verilog

10

overflow overflow



Overflow (N bit adder)

11

! = # $ − 1 & ( $ − 1 & ~* $ − 1 |(~# $ − 1 & ~( $ − 1 & * $ − 1 )

a = operand 1 b = operand 2 s = sum

! = *[$ − 1]⊕ 1234



Example: 16 bit adder in Verilog

12

“mapping” the parameter n to 16

defining a parameter n with default value 4



Multi-bit subtractor

13

Symbol Implementation

+

A B

-

Y
Y

A B

NN

N

N N

N

N

C0

VDD
Got a new appreciation for 
complement-2 notation ?



2:1 Mux

14

Circuit with transmission gates

D0

Y

S 

D1



4:1 Mux

15
Various implementation of 4:1 multiplexer



Mux with multi-bit inputs

16

Example

X0

Xn-1

Y

m=log2(n)

S

A multiplexer is a data selector



Verilog Example (32 bit wide 4-inputs mux)

17

# data:
# -------------
# d0 = 00008888
# d1 = 1111aaaa
# d2 = 2222dddd
# d3 = 3333ffff
#
# time  s y
# ----------------
#    0  0 00008888
#   10  1 1111aaaa
#   20  2 2222dddd
#   30  3 3333ffff

IMPORTANT ASIDE: I ”originally” forgot to put [31:0] in front of y
and iverilog did not catch it (fortunately Modelsim caught it!)  



18<number of bits>’<radix><digits>



Decoder
• Converts an N-bit input into a 2N-bit output with the output having 

only one “hot-bit” 

19

Truth Table for N=3
(3-bit decoder)

Decoder symbols



Example. 2:4 Decoder

20

Decoders can be combined 
with OR gates to build logic 
functions. 



Decoder with Enable

21

−−

Example. 2 to 4 decoder with enable x0

x1

ena

Logic circuit 

(more compact notation)

y2

y3

y1

y0



Verilog example: 2 to 4 decoder with enable

22

time  en w   y
-----------------

0  0  00  0000
10  0  01  0000
20  0  10  0000
30  0  11  0000
40  1  00  0001
50  1  01  0010
60  1  10  0100
70  1  11  1000



Large Decoder

23

Example. 4-bit decoder built using 2-bit decoders



Example

24

w 2 

w 0 y 0 
y 1 
y 2 
y 3 

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

y 4 
y 5 
y 6 
y 7 

w 1 

En

3-to-8 decoder with enable using two 2-to-4 decoders.



Example

25

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

y 8 
y 9 
y 10
y 11

w 2 

w 0 y 0 
y 1 
y 2 
y 3 

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

y 4 
y 5 
y 6 
y 7 

w 1 

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

y 12
y 13
y 14
y 15

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

w 3 

En w 

4-to-16 decoder with enable 
built using a decoder tree.



Decoder Application

26

§ A common decoder application is decoding the address lines 
of memory chips

2m x n-bit read-only memory (ROM) block.



Another Decoder application: Demultiplexers

27

§ A demultiplexer places a single data input onto one of 
the multiple outputs

§ A 1-to-2n demultiplexer can be implemented using an
n-to-2n decoder



Encoder

28

• An encoder converts its 2N inputs (of which only one is hot) into N 
outputs. 

k

5 = 6278 9

2 n 

inputs

w 0 

w 2 n 1 –

y 0 

y n 1 –

n 
outputs 

Symbols



Example. 4 to 2 Encoder

29

b0 = a3 + a1
b1 = a3 + a2 



Large Encoders
• Large encoders can be built from a tree of smaller encoders

30Example. 16 to 4 encoder



Priority Encoder

31

A0

A1

Priority
Circuit

A2

A3

0 0
0 1
1 0
1 1

0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
0

Y0

Y1

Y2

Y3

0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

A1 A0A3 A2 Y2 Y1 Y0Y3

A3A2A1A0
Y3

Y2

Y1

Y0

A1 A0

0 0
0 1
1 X
X X

0
0
0
0

0
0
0
1

0
0
1
0

0
1
0
0

A3 A2

0 0
0 0
0 0
0 1

X X 1 0 0 01 X

Y1 Y0Y3 Y2

A more concise truth table ( with don’t cares as X) 



Priority Encoders
• Priority encoders can come in two flavors

32

(b) the output displays the address 

of the input bit with highest 

priority



Comparator

33

Example: A four-bit comparator circuit.

C
o
m
p
a
ra
to
r

aGTb

aEQb

aLTb



Code Converters
• Example: HEX to 7-seg. Display

34

4 7

7-segment
display
decoder

a

b

c

d

g

e

f

D SW



Delays

• Delay is caused by capacitance and resistance

35

charging

discharging



Delays

36

• Propagation delay: tpd = max delay from input to output

• Propagation delay varies with

• rise and fall time of the input signals

• outputs switching 
(what outputs switch depends on what inputs switch) 

• temperature, supply voltage, geometry

• capacitance CL driven  

A

B
Y

2R

2R

R R



Critical (long) and Short Paths

37

A
B

C

D Y

Critical Path

Short Path

n1
n2

Critical (Long) Path: tpd = 2tpd_AND + tpd_OR

Short Path:  tcd = tcd_AND



Glitches
• A single input change causes an output to change multiple times

38

A = 0
B = 1    0

C = 1

Y = 1    0    1

Short Path

Critical Path

B

Y

Time

1    0

0    1

glitch

n1

n2

n2

n1

For A=0 and C=1 --> Y ∝ B + B
so if B changes it causes a glitch



Fixing the glitch

39

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + ACAC

B = 1    0
Y = 1

A = 0

C = 1



Next Time
• Basic sequential logic elements (latches and flip-flops)

40



Example

41

4-to-1 multiplexer built using a decoder.

w 1 

w 0 

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

w 2 

w 3 

f 
s 0 
s 1 

1 



Examples of logic functions using muxes: 
2-input XOR

42

Implementation using a 4-to-1 multiplexer 

f 

w 1 

0 
1 

0 

1 

w 2 

1 
0 

0 

0 

1 

1 

1 

0 

1 

f w 1 

0 

w 2 

1 

0 

Modified truth table 

0 

1 
0 

0 

1 

1 

1 

0 

1 

f w 1 

0 

w 2 

1 

0 
f 

w 2 

w 1 
0 

1 

f w 1 

w 2 

w 2 

Implementation using a 2-to-1 multiplexer and a NOT 



Using muxes to build logic functions

43

; <1, <2, <3, <4 = <1 A ; 0, <2, <3, <4 + <1 A ; 1, <2, <3, <4

• The key is to use Shannon’s expansion

Example:

= ;DE = ;DE

This strategy is used 
extensively inside 
FPGAs



Three input majority function using a 4:1 mux

44

w3
w3

f

w1

0

w2

1

(a) Modified truth table

(b) Circuit

00
0
1
1

1
0
1

fw1

0

w2

1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

w3



Three-input majority function using a 2:1 mux 

45

0 0 
0 1 
1 0 
1 1 

0 
0 
0 
1 

0 0 
0 1 
1 0 
1 1 

0 
1 
1 
1 

w 1 w 2 w 3 f 

0 
0 
0 
0 
1 
1 
1 
1 

(b) Circuit 

0 
1 

f w 1 

w 2 w 3 

w 2 w 3 + 

f 
w 3 

w 1 w 2 

(b) Truth table 



Three-input XOR using 2:1 muxes

46

(a) Truth table

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

w2 w3Å

w2 w3Å

f
w3

w1

(b) Circuit

w2



Three-input XOR using a 4:1 mux

47

f 

w 1 

w 2 

(a) Truth table (b) Circuit 

0 0 
0 1 
1 0 
1 1 

0 
1 
1 
0 

0 0 
0 1 
1 0 
1 1 

1 
0 
0 
1 

w 1 w 2 w 3 f 

0 
0 
0 
0 
1 
1 
1 
1 

w 3 

w 3 

w 3 

w 3 

w 3 



S.L. Basic Elements (Latches & Flip-Flops)
CPEN 230 – Introduction to Digital Logic

1



Review: CL Building Blocks and Delays

2

• Adders
• Multiplexers
• Decoders
• Demultiplexer
• Encoders
• Priority Encoder
• Comparator

• Propagation Delay
• Critical and Short Path
• Glitches



One more C.L. design example:
Binary-Coded-Decimal (BCD) Representation

• BCD is an intermediate representation between Binary and Decimal
• It represents decimal numbers by encoding each decimal digit in 

binary form.
• Because there are 10 digits to represent we need four bits.

• Example: 5810 = 0101 1000BCD

3



Binary-Coded-Decimal Representation

4

§ BCD provides a format 

that is convenient when 

numerical information is 

to be displayed on a 

simple digit-oriented 

display

§ BCD representation was 

used in some early 

computers and many 

handheld calculators



BCD Addition

5

§ The addition of two BCD digits is complicated by the fact that the sum 

may exceed 9, in which case a correction will have to be made

- if X + Y ≤ 9, the addition is the same as the addition of 2 four bit unsigned binary 

numbers

- if X + Y > 9, then the result requires two BCD digits

§ There are two cases where a correction has to be made

1) The sum is greater than 9 but no carry-out is generated out of the four bits

2) The sum is greater than 15 so a carry-out is generated out of the four bits



BCD Addition – example

6

Whenever the result of the 4-bit addition (Z) exceeds 9, the correct decimal digit can 

be generated by adding 6 to the result.

9 < Z ≤ 15 ⇾ no carry Z > 15 ⇾ carry



One-Digit BCD Adder

7

>

4-bit Adder

detect if
sum > 9

4-bit  adder 

Detect if 

MUX 

4-bit  adder 

sum 9 >  

6 0 

X Y 

Z 

c out 

c in
carry-out 

Adjust

S 

0 

X Y

Z

S

0

MUX

Cout

adjust

06

Cin
carry-out

4-bit Adder

detect if
sum > 9



Verilog Code for a One-Digit BCD Adder

8



Present and Past

9

# $ = &
'(($)
'$ ≅ &

∆(
∆$ ≅ &

( $ − (($.)
$ − $.

C

# $

( $
+

−

present past

0($) = & 1 (($)

'0($) = & 1 '(($)

lim
∆5→.

Capacitors stores charge (i.e. voltage level v=q/C).
Ideally the charge should be stored forever,
but, … unfortunately in practical capacitors 
the change is not hold forever, eventually it leaks.



Sequential Circuits

10

• Recall that a combinational circuit produces an output that depends only 
on the current state of its input --> combinational circuits must be acyclic 
(no loops).
• If we add a feedback to a combinational circuit, the circuit becomes 

sequential.
• The output of a sequential circuit depends not only on its current input, 

but also on the history of its previous inputs. The cycle created by the 
feedback allows the circuit to store information (i.e. remember) about 
its previous input.
• We call the information “stored” on the feedback signal as the state of the 

circuit.



Adding Feedback
• Easiest option we can think of is to wrap feedback around an inverter

• The inverter output will continue to oscillate back and forth between 1 and 0, and 
it will never  reach a stable condition. The rate at which the circuit oscillates is 
determined by the propagation delay ∆t of the inverter.

11

Q

t t+∆t t+2∆t t+3∆t

Q

time

t+4∆t t+5∆t

Q:   0    1    0    1    0    1 … 
time



Adding Feedback
• Wrapping feedback around an inverter causes the state to keep 

flipping. Not quite what we are looking for. What we are looking for is 
holding (remembering) the state in a stable manner.
• … adding one more inverter does the trick 

12

Q Q



Feedback is Remembering

13

case I. Q = 0  ⟼ the cell holds the value “forever” (its “state” is stable)

case II. Q = 1 ⟼ the cell holds the value “forever” (its “state” is stable)

Analyzing this circuit is different from analyzing 
a combinational circuit, because it is cyclic: 
Q depends on Q and Q depends on Q 

Because the circuit has two stable states Q=0 and Q=1, the circuit is said to be bistable. 

(b)

Q

Q

I1

I2

1

0

0

1

(a)

QI1

I2

0

1 Q

1

0

To emphasize that the two
inverters are cross-coupled
the circuits is commonly 
redrawn as shown above.



Cross-coupled inverters

• Although the cross-coupled inverters can store a bit of information 
they are not practical because the user has no inputs to control the 
state.

14



Cross-coupled inverters behavior

15

Q    



Circuit model of cross-coupled bistable.
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(89($) (:;5($) #($)

There is delay as the signal propagates 
through the loop

# $ =
(:;5 $ − (89($)

<

(:;5 $ = = 1 (89($)

# $ = &
'(89($)
'$

(:;5 0 = ∆?

= − 1
<&

'$ =
'(:;5
(:;5

⟺ (:;5 $ = ∆? 1 BCD
= − 1 $
<&



Sequential circuits

• When power is first applied to a sequential circuit, the initial state is 
unknown and usually unpredictable. It may differs each time the 
circuit is turned on.

17



Latches vs. Flip-Flops
• There are two types of storage elements: latches and flip-flops

• A latch is a 1-bit level-sensitive storage element
• A flip-flop is a 1-bit edge-triggered storage element

18

D-latch D-flip-flop
CLK

positive level positive level positive level

po
sit

ive
 ed

ge

po
sit

ive
 ed

ge

po
sit

ive
 ed

ge

During the level-sensitive phase 
the latch becomes transparent

At the triggering-edge 
the flip-flop samples D 

Initial state
unknown



What’s inside a D-latch ? What about a D flip-flop? 

• Typical “introduction to Digital Logic’s textbook” approach. 
• Let’s wrap feedback around our favorite logic gate (e.g. NOR) and find a way 

to provide the capability of controlling the value (1/0) we want to store.   

19

Reset 

Set Q 

RESET

SET Q

Q

If you like the 
NAND better 
apply DeMorgan

RESET

SET Q

Q



S-R latch

20

RESET

SET Q

Q

case I. R = 1 and S = 0
since R=1 --> N2 gives Q=0
since S=0 and Q=0 --> N1 gives Q’=1

case II. R = 0 and S = 1
since S=1  --> N1 gives Q’=0
since Q’=0 --> N2 gives Q=1

N1
N2

case III. R = 1 and S = 1
since S=1  --> N1 gives Q’=0
since R=1  --> N2 gives Q=0

case IV. R = 0 and S = 0
since S=O --> we cannot tell what N1 gives unless we know Q
since R=0 --> we cannot tell what N2 gives unless we know Q’

case IVa. R = 0 and S = 0 and Q=0
since S=O and Q=0 --> N1 gives Q’=1
since R=0 (and Q’=1) --> N2 gives Q=0

case IVb. R = 0 and S = 0 and Q=1
since S=O and Q=1 --> N1 gives Q’=0
since R=0 (and Q’=0) --> N2 gives Q=1

set the output

reset the output

invalid Q ≠ Q’

Q = Qprev

Memory ! 



Summary of SR latch results

21

R

S

QN1

N2 Q

Reset 

Set Q 

R
S Q

Q

Observation:
in case III (R=S=1) the node Q’ is equal to 0 just like Q (in all other cases the node Q’ was the 
complement of Q). This issue could be swept under the rag. The output of N1 doesn’t have to be necessarily 
the complement of Q, we can call the node P and do not use it as an output of the cell (so nobody has to know).
However there is a worst issue that cannot be ignored, and doesn’t not become evident unless we analyze the 
circuit dynamically. Suppose after R=S=1 the inputs both goes simultaneously to R=S=0 and assume the delays 
of the two gates are identical: the circuit start to oscillate.   



SR latch operation 

22

Invalid operation we must avoid case III

if enable == 1  Q <= D ;  // specify the value of the new state  
else Q <= Qprev;           // hold the new state to its old value

At the end of the day what we want is either set the state to a new value (either 0 or 1) or hold the existing 
state (and this can all be achieved through cases I, II, and IV).

The Big Picture:

C.L.
D

enable

enable D S R

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 0Toward the D-latch    

E = BFGHIB 1 J
< = BFGHIB 1 KJ

Sometime people prefer to call the truth tables for S.L. 
with the name characteristic tables (to emphasize they 
are not talking about C.L.) 



D latch

23



Common conventions to write the characteristic tables
CLK D Q
0 0 Qprev

0 1 Qprev

1 0 0
1 1 1

24

Example: D-latch CLK D Qnew

0 0 Qold

0 1 Qold

1 0 0
1 1 1

CLK D Q(t+1)
0 0 Q(t)
0 1 Q(t)
1 0 0
1 1 1

CLK D Qn+1

0 0 Qn

0 1 Qn

1 0 0
1 1 1

CLK D Qnext

0 0 Q
0 1 Q
1 0 0
1 1 1

CLK D Q+

0 0 Q
0 1 Q
1 0 0
1 1 1

CLK D Q Qnext

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1



D flip-flop internal circuit
• A D flip-flop can be built from 2 back to back D latches controlled by 

complementary clocks. The first latch L1 is called the master. The 
second latch L2 is called the slave. 

25

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

• When CLK = 0
– L1 is transparent
– L2 is opaque
– D passes through to N1

• When CLK = 1
– L2 is transparent
– L1 is opaque
– N1 passes through to Q

• Thus, on the edge of the clock (when CLK rises from 0 to 1)
– D passes through to Q



D Flip-Flop internal circuit 
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D flip-flop

27

CLK

DFF Symbol

• Inputs: CLK, D
• Function

– Samples D on rising edge of CLK
• When CLK rises from 0 to 1, D passes through to Q
• Otherwise, Q holds its previous value

– Q changes only on rising edge of CLK
• Called edge-triggered 

(i.e. activated on the clock edge)

↑
↑
↑
↑

CLK



Enabled Flip-Flops

28

• Inputs: CLK, D, EN
– The enable input (EN) controls when new data (D) is stored

• Function
– EN = 1: D passes through to Q on the clock edge 
– EN = 0: the flip-flop retains its previous state

Internal
Circuit

D Q

CLKEN

D
Q

0

1
D Q
EN

Symbol

CLK



Resettable Flip-Flops
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• Inputs: CLK, D, Reset
• Function:

– Reset = 1:  Q is forced to 0 
– Reset = 0:  flip-flop behaves as ordinary D flip-flop

CLK



Settable Flip-Flops

30

• Inputs: CLK, D, Set
• Function:

– Set = 1:  Q is forced to 1 
– Set = 0:  flip-flop behaves as ordinary D flip-flop

CLK



Resettable/Settable Flip-Flops

31

• Two types:
– Synchronous: resets/sets at the clock edge only
– Asynchronous: resets/sets immediately when Reset/Set = 1

• Asynchronously resettable/settable flip-flop requires 
changing the internal circuitry of the flip-flop

• Synchronously resettable/settable flip-flop doesn’t.
Internal
Circuit

D Q

CLK

D QReset

Internal
Circuit

D Q

CLK

D QResetSet
D



D latch
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clk

nonblocking assignment
When coding S.L. use only nonblocking assignment



D flip-flop

33

nonblocking assignment



D flip-flop with asynchronous reset (active low) 
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clear active low



D flip-flop with synchronous reset (active low)

35



Transistor level D-latch

36



Transistor level D flip-flop

37



Next Time
• Sequential logic building blocks

• JK Flip-Flop and T Flip-Flop
• Registers
• Shift Registers
• Counters

38



S.L. Building Blocks
CPEN 230 – Introduction to Digital Logic

1



Review: Latches and Flip-Flops

2

D-latch D-flip-flop

CLK

positive level positive level positive level

po
si

tiv
e 

ed
ge

po
si

tiv
e 

ed
ge

po
si

tiv
e 

ed
ge

During the level-sensitive phase 
the latch becomes transparent

At the triggering-edge 
the flip-flop samples D 

Initial state
unknown

CLK D Qn+1
0 0 Qn
0 1 Qn
1 0 0
1 1 1

CLK D Qn+1
0 0
1 1

↑

↑



Review: D latch in Verilog

3

clk



Review: D flip-flop in Verilog

4



Review: D flip-flop with async. reset in Verilog 

5

CLRN is active low



Review: D flip-flop with sync. reset in Verilog

6



J-K Flip-Flop

7

!"#$% = ' ( )* + ! ( )* + ,! ( ' = ! ( )* + ,! ( '

= !"#$%= !"#- = !"./ = !.

Q 1

0 Q’

J

K 0 1

0

1

0 1

0 0

J

K 0 1

0

1

1 -

0 0

J

K 0 1

0

1

0 -

0 1

J

K 0 1

0

1

consensus
term



J-K Flip-Flop schematic
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!"#$% = ! ( )* + ,! ( '
mux with Q as selection
and  K’ and J as data

!"#$%



T Flip-Flop
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!"#$% = ,0 ( ! + 0 ( ,! = 0 ⊕ !

= !"#$%= !"#- = !"./ = !.



T Flip-Flop schematic

10

!"#$% = ,0 ( ! + 0 ( ,! = 0 ⊕ !

!"#$%

mux with T as selection
and Q’ and Q as data
or Q as selection and
T’ and T as data

!"#$%



Converting a J-K Flip-Flop into a D Flip-Flop  
• It is possible to use any flip-flop for building any other flip-flop

11

D

CLK

J K Q | Qnext
-------------
0 0 0 | 0
0 0 1 | 1
0 1 0 | 0
0 1 1 | 0
1 0 0 | 1
1 0 1 | 1
1 1 0 | 1
1 1 1 | 1

D Q | Qnext
----------
0 0 | 0
0 1 | 0
1 0 | 1
1 1 | 1



Converting a J-K Flip-Flop into a T Flip-Flop  

12

T | Qnext
---------
0 | Q
1 | Q’

J K | Qnext
-----------
0 0 | Q
0 1 | 0
1 0 | 1
1 1 | Q’

T

CLK



Register
• An N-bit register is simply a bank of N flip-flops

13

CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

Schematic

Symbol



4-bit register with async. reset: Verilog
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4-bit register testbench

15



16

4-bit register simulation



Shift-register

17

SoutSin

Example: 4-bit shift register

Q3 Q2 Q1 Q0



Shift Register in Verilog
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Shift Register (with shift enable) 

19

(Example: 4-bit)

CE = clock enable



Parallel Access Shift Register

20

(Example: 4-bit)

D3 D2 D1 D0

Q0 = Serial output



Parallel Access Shift Register in Verilog

21



Parallel Access Shift Register 
(with shift enable)

22

(Example: 4-bit)

Shift Enable has priority on Load Enable



Next Time
• Counters

• Asynchronous (don’t use them!)
• Synchronous

• Finite State Machines
• Mealy
• Moore

23



When writing Verilog think Hardware !

24



S.L. Building Blocks (continued)
CPEN 230 – Introduction to Digital Logic

1



Review

2

• D latch
• D flip-flop
• J-K flip-flop
• T flip-flop
• Registers
• Shift Registers



Counters

• Two categories of counters
• Asynchronous (to be avoided at all costs) 
• Synchronous

• binaries counters (T flip-flop based and D-flip-flop based)
• shift register counters (ring counter and Johnson Counter) --> Fast Counters

3



Asynchronous modulo-2N upward counter

4

Example: N=3

The delay is not the same.
It increases with each flip-flop
we go through.

AVOID 
ASYNCHRONOUS
COUNTERS !



Asynchronous modulo-2N downward counter

5

Example: N=3

The delay is not 
the same. It Increases 
with each flip-flop we go
through.

AVOID 
ASYNCHRONOUS
COUNTERS !



Synchronous counters

• Synchronous counters are built by clocking all flip-flops with a single 
clocking source (this makes them more reliable than asynchronous 
counters)

6



Binary counter 
(using T flip-flops)

7

0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
2 
3 

0 
0 
1 

0 
1 
0 

4 
5 
6 

1 1 7 

0 
0 
0 
0 
1 
1 
1 
1 

count Q 2 Q1 Q0 

T Q 

Q Clock 

T Q 

Q 

T Q 

Q 

1 
Q 0 Q 1 Q 2 

(a) Circuit 

Clock 

Q 0 

Q 1 

Q 2 

Count 0 1 2 3 5 9 12 14 0 

(b) Timing diagram

T Q 

Q 

Q 3 

Q 3 

4 6 8 7 10 11 13 15 1 

!" = 1
!% = &"
!' = &"&%
…
!)*% = &"&% ⋯&)*'

(a) Circuit for 4-bit binary counter

The operation of the counter 
is based on the observation 
that the state of the flip-flop 
in stage i flips only if all 
preceding flip-flops are in 
the state Q = 1. 



Adding Enable and Clear Capability

8



Binary counter 
(using D flip-flops)
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0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
2 
3 

0 
0 
1 

0 
1 
0 

4 
5 
6 

1 1 7 

0 
0 
0 
0 
1 
1 
1 
1 

Clock cycle Q 2 Q1 Q0 (Q2 Q1 Q0)next

0   0   1
0   1   0
0   1   1
1   0   0
1   0   1
1   1   0
1   1   1
0   0   0

," = &" = &" ⊕ 1
,% = &% ⊕ &"
,' = &' ⊕ &%&"
…
,)*% = &)*%⨁&)*' ⋯&%&"

The operation of the counter is based on the observation that the 
state of the flip-flop in stage i flips only if all preceding flip-
flops are in the state Q = 1. 

Q’ Q’Q’ QQQ

Q0Q1Q2



Adding Enable and Clear capability 

10

If Enable = 0 the state of the 
flip-flop in stage i does not 
change

…

(&0⊕ 0 = &0)

In case we want to 
cascade another counter
(Z serves as the Enable 
for the next counter )



Adding parallel-load capability

11



“Counting” in 
Verilog

12



13



Example: 
adding parallel-
load capability 

14



Example: 
adding down-
count capability

15



module-M counter

16

Enable
Q 0 
Q 1 
Q 2 

D 0 
D 1 
D 2 
Load
Clock 

1 
0 
0 
0 

Clock 

0 1 2 3 4 5 0 1 

Clock 

Count 

Q 0 

Q 1 

Q 2 

(a) Circuit 

(b) Timing diagram

Example: module-6 counter

Not all the time we need to count for 2N



Example: 
modulo-6 
counter
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Ring counter

19

An n-bit counter of this type generates a counting sequence of length n

For example a 4-bit counter produces the sequence: 1000, 0100, 0010, 0001, …



Johnson Counter

20

An n-bit counter of this type generates a counting sequence of length 2n

For example a 4-bit counter produces the sequence: 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000, …



Next Time
• Finite State Machines

• Mealy
• Moore

21



Example: Two digit BCD Counter

22

It consists of two modulo-10 counters.
One for each BCD digit



Finite State Machines
CPEN 230 – Introduction to Digital Logic

1



Review

2

• Synchronous counters
• Binary Counters (modulo-2N and modulo-M)
• Fast counters (Ring counter and Johnson counter)



Digital Synchronous Systems 

• In general, all circuits that are non combinational are sequential.
• Combinational circuits have no cyclic paths (feedback loops).
• Cyclic paths can cause undesirable races or unstable behavior.
• To avoid these problems, designers break the cyclic paths by inserting 

registers somewhere in the path.
• This way the state of the circuit can change only at the clock edge (is 

synchronized to the clock).
• Synchronous sequential circuits: combinational logic followed by a 

bank of flip-flops (register).
• Virtually all digital sequential systems are synchronous. 

3



A problematic sequential circuit (astable behavior)

4

Suppose each inverter has a propagation delay of 1 ns ( --> each node oscillates with a period of 6 ns)

Ring Oscillator

The circuits has no stable states, so it is said unstable or astable.



Another problematic sequential circuit 
(D-latch with a race condition)

5

Q
D

0

1

CLK

1

1

12

D

Suppose the delay through the inverter is rather long compared to the delays of the AND an OR gates.
Since N1 and Q may both fall before CLK rises , then N2 will never rise, and Q becomes stuck at 0 
(despite the latch should remember its old value of Q=1)  



Synchronous Sequential Logic Design

6

• Breaks cyclic paths by inserting registers
• Registers contain state of the system
• State changes at clock edge: system synchronized to the clock
• Rules of synchronous sequential circuit composition:

– Every circuit element is either a register or a combinational circuit
– At least one circuit element is a register
– All registers receive the same clock signal
– Every cyclic path contains at least one register

• A common synchronous sequential circuit
– Finite State Machines (FSMs)



Finite State Machines (FSMs)

7

• Three blocks:
• next state logic (C.L.)

- Computes the next state
• state register (S.L.)

- Stores current state 
- Loads next state at clock edge

• output logic (C.L.)
- Computes the outputs

CL

Next State
Logic

Next
StateC.L.

CL

Output
Logic

OutputsC.L.

Next
State

Current
State

S’ S

CLK

statenext_state

A circuit with k flip-flops can be in one of a finite number (2k) of unique states



Finite State Machines (FSMs)
• Next state determined by current state and inputs
• Two types of finite state machines differ in output logic:

– Moore FSM: outputs depend only on current state
– Mealy FSM: outputs depend on current state and inputs

8

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM



Counters and FSMs are closely related !

9

CLK

M Nknext
state
logic

output
logic

(a)

inputs outputsstate
next
state

k

(b)

CLK

M Nknext
state
logic

output
logic

inputs outputsstate
next
state k

outputs

• Perspective #1: we can think of a counter as an FSM without the output logic 
block ( and often with the next state logic having no inputs).

• Perspective #2: counters are the “core” of FSMs. They provide the next logic 
block and the state register block. All it remains for building an FSM out of a 
counter is adding the output logic block. 



Moore vs. Mealy FSM

10

• Maggie T. Hacker has a snail that crawls down a paper tape 
with 1’s and 0’s on it. The snail smiles whenever the last two 
digits it has crawled over are 01.  Design Moore and Mealy 
FSMs of the snail’s brain.



Design Example (Moore FSM)
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State Transition Diagram

A

A

1

0

S0

S1

S2
1

0

A

Y

0

1ASM Diagram

Y= Y= Y=



Moore FSM Tables
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State Encoding

S0 00

S1 01

S2 10

Binary Encoding of the states

S+
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Moore FSM Tables with encodings

!"# = !% & '
!%# = '̅
) = !"

S1+ S0+



Moore FSM Schematic
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!"# = !% & ' !%# = '̅ ) = !"

Y

CLK

Reset

A

r

S'0 S0

S'1 S1!"#

!%#



Design Example (Mealy FSM)
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State Transition Diagram

A

A

1

0

S0

S1

1

0

Y

ASM Diagram

A/Y



Mealy FSM Tables
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S+

State Encoding
S0 0

S1 1

Binary encoding of the states



Mealy FSM Tables with encodings
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S0+

!%# = '̅
) = !% & '



Mealy FSM Schematic
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S'0 Y

CLK

Reset

A

r

S0!%#

!%# = '̅ ) = !% & '



FSM schematics for (a) Moore and (b) Mealy machines

!"#

!%# !%#



Timing diagrams for Moore and Mealy machines



FSMs in Verilog 
(Pattern Detector: Moore’s FSM)

21



22

Pattern Detector: Moore’s FSM
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FSMs in Verilog 
(Pattern Detector: Mealy’s FSM)



FSM State Encodings 

24

• Binary encoding: 
– i.e., for four states, 00, 01, 10, 11

• One-hot encoding
– One state bit per state
– Only one state bit HIGH at once
– i.e., for four states, 0001, 0010, 0100, 1000
– Requires more flip-flops
– Often next state and output logic is simpler



Example: Divide-by-N counter
• Design a divide-by-3 counter using binary and one-hot state encoding

25

The output Y is HIGH for one clock cycle 
out of every 3



Divide-by-3 counter
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Divide-by-3 counter

27

S0+S1+

!"#

!%#
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Divide-by-3 counter

S0+S1+S2+



Divide-by-3 counter (one-hot encoding) in Verilog

29



Review of FSM Design Procedure

30

1. Identify inputs and outputs
2. Sketch state transition diagram or ASM diagram
3. Write state transition table
4. Select state encodings
5. For Moore machine:

a. Rewrite state transition table with state encodings
b. Write output table

6. For a Mealy machine:
a. Rewrite combined state transition and output table with state encodings

7. Write Boolean equations for next state and output logic
8. Sketch the circuit schematic



Next time

• S.L. Timing
• Setup time
• Hold Time
• Clock Skew
• Metastability 

31



Timing of Synchronous S.L. circuits
CPEN 230 – Introduction to Digital Logic

1



Review

2

• Synchronous S.L. circuits
• Breaks cyclic paths by inserting registers (combinational logic followed by 

register)
• Finite State Machines (FSMs)

• Three blocks
• Next state logic (C.L.)
• State Register (S.L.)
• Output Logic (C.L.)

• Types of FSMs
• Moore (outputs depend only on current state)
• Mealy (outputs depend on current state and current inputs)

• FSM State Encodings
• Coding FSMs in Verilog 

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM



Review: FSM Design

3

1. Identify inputs and outputs

2. Sketch state transition diagram or ASM diagram

3. Write state transition table

4. Select state encodings

5. For Moore machine:
a. Rewrite state transition table with state encodings
b. Write output table

6. For a Mealy machine:
a. Rewrite combined state transition and output table with state encodings

7. Write Boolean equations for next state and output logic

8. Sketch the circuit schematic



Timing

4

• Flip-flop samples D at clock edge
• D must be stable when sampled

• Similar to a photograph, D must be stable around clock 
edge (both ahead and after the edge = aperture time)

• If not, metastability can occur



Input Timing Constrains

5

• Setup time: tsetup = time before clock edge data must be stable (i.e. not changing)

• Hold time: thold = time after clock edge data must be stable

• Aperture time: ta = time around clock edge data must be stable (ta = tsetup +  thold)

CLK

tsetup

D

thold

ta



Output Timing Constrains

6

• Propagation delay: tp-cq = time after clock edge the output Q is guaranteed to be 
stable (i.e., to stop changing)

• Contamination delay: tc-cq = time after clock edge Q might start being unstable (i.e., 
start changing)

CLK

tccq
tpcq

Q
tc-cq

tp-cq



Propagation delay vs. Contamination delay

• Propagation delay td-ab and contamination delay tc-ab.
• The contamination delay of a logic block is the time from when the 

first input signal first changes to when the first output signal first 
changes.
• The propagation delay of a logic block is the time from when the last 

input signal last changes to when the last output signal last changes
7



Dynamic Discipline

8

• Any generic path in a synchronous sequential circuit, can be mapped in the 
RTL (register transfer level) structure of figure (a)

• Synchronous sequential circuit inputs must be stable during aperture 
(setup and hold) time around clock edge. In other words, inputs must 
be stable

– at least tsetup before the clock edge

– at least until thold after the clock edge
CL

CLKCLK

R1 R2

Q1 D2

(a)

CLK

Q1

D2
(b)

Tc

C.L.   



Setup Time Constraint

9

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK
Q1 D2

R1 R2

• The input to register R2 must be stable at least 
tsetup before clock edge

• It depends on the maximum delay it takes to 
process the signal sampled by R2 (i.e., the 
maximum delay it takes to go through R1 and 
the combinational logic)

Tc ≥ tp-cq + tpd + tsetup

C.L.

max delay through C.L.
max delay through R1

setup time of R2clock period



Hold Time Constraint

10

CLK

Q1

D2
tccq tcd
thold

CL

CLKCLK
Q1 D2

R1 R2

• The input to register R2 must be stable for at least 
thold after the clock edge
• It depends on the minimum delay it takes to go 

though register R1 and the combinational logic

thold < tc-cq + tc-d

min delay through R1

min delay through C.L.hold time of R2

C.L.



The effect of clock skew

11

• The clock doesn’t arrive at all registers at same time
• Skew: difference between two clock edges
• Perform most problematic case analysis to guarantee dynamic 

discipline is not violated for any register (many registers in a system!)

t skew

CLK1

CLK2

CL

CLK2CLK1

R1 R2

Q1 D2

CLKdelay

CLK

C.L.



Setup Time constraint with skew

• The most problematic scenario occurs when CLK2 is earlier

12

tsetup

CLK1

CLK2

Tc ≥ tp-cq + tpd + tsetup + "#$%&



Hold Time constraint with skew

• The most problematic scenario occurs when CLK2 is later

13

thold

CLK1

CLK2

thold ≤ tc-cq + tc-d − "#$%&



Violating the Dynamic Discipline

14

D Q

CLK

bu
tto
n

Asynchronous inputs (for example, user 
inputs) might violate the dynamic 
discipline

CLK

tsetup thold

taperture

D

Q

D

Q

D

Q ???

C
as

e 
I

C
as

e 
II

C
as

e 
III

Metastability

O.K.

MISS



Metastability: Example
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Metastability: Example
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input

output



One Last FSM Design Example
CPEN 230 – Introduction to Digital Logic

1



FSM Design

2

1. Identify inputs and outputs

2. Sketch state transition diagram or ASM diagram

3. Write state transition table

4. Select state encodings

5. For Moore machine:

a. Rewrite state transition table with state encodings

b. Write output table

6. For a Mealy machine:

a. Rewrite combined state transition and output table with state encodings

7. Write Boolean equations for next state and output logic

8. Sketch the circuit schematic



Example: Design a Rising-edge Detector

3

• A rising-edge detector is a circuit that generates a one-clock 
cycle high level value when the input signal change from 0 
to 1.


