Laboratory \#4: Full Adder and System Design Review

Purpose

- Learn about and build a Full Adder.
- Solve a real-world digital logic problem using tools presented in class so far.

Part 1: Full Adder

Background: You are familiar with the Three-Way Light Control expression:

$$
\begin{aligned}
& L=A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C+A B C \quad(N O T, A N D, O R, ~ L a b 2) \\
& =\left(\left(A^{\prime} B^{\prime} C\right)^{\prime}\left(A^{\prime} B C^{\prime}\right)\right. \text { '(AB'C')'(ABC)')' (NAND, Lab 3) } \\
& =\left((A+B+C)^{\prime}+\left(A+B^{\prime}+C^{\prime}\right)^{\prime}+\left(A^{\prime}+B+C^{\prime}\right)^{\prime}+\left(A^{\prime}+B^{\prime}+C\right)^{\prime}\right)^{\prime} \quad(N O R, \operatorname{Lab} 3) \\
& =A \wedge B \wedge C \quad \text { (Surprise! a 3-input XOR) }
\end{aligned}
$$

You are also familiar with the Majority Gate expression:

```
M = A'BC + AB'C + ABC' + ABC (Sum Of Products)
    = AB + BC + AC (reduced SOP)
    =(C(A^ B))^AB (Surprise again!)
```

These two expressions also define a full adder, the foundation of digital arithmetic hardware and Central Processing Units (CPUs). A full adder has three 1-bit inputs: Ci (Carry In), Xi and Yi. It has two 1-bit outputs: Co (Carry Out) and So (Sum Out). Co So (2 bits) equals the Sum Ci + Xi + Yi.

Xi	Yi	Ci	Co	So	Sum $=\mathrm{Ci}+\mathrm{Xi}+\mathrm{Yi}($ decimal $)$
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	1	0	2
1	0	0	0	1	1
1	0	1	1	0	2
1	1	0	1	0	2
1	1	1	1	1	3

One way to implement a full adder is like this (only five 2-input gates, from two ICs):

Pre-Lab: use Verilog, to model and simulate the operation of the full adder circuit shown above. Verify it satisfies the full adder truth table provided. Call the Verilog files: fulladder.v and fulladder_tb.v. Once you are done with the simulation, replace labels Ci, Xi and Yi with switches SW1, SW2 and SW3 and labels Co and So with "LEDS" E and F, and draw a detailed schematic diagram of the circuit (must include a parts list, reference designators, pin numbers, Vcc and Ground, your name and the date). You have the required data sheets in previous lab handouts.

During-Lab: Build, test and debug the full adder circuit. When you are convinced it is working correctly show it to your instructor. Take a picture of it demonstrating $1+1+1=3$. Your report for Part 1 should include the Schematic Diagram, Procedure Changes, Results, and Discussion. See the Lab Report Template for details of each section.

Part 2: BCD digit divided by 5

Pre-Lab:

The goal of part 2 of the lab is to design a 1-digit BCD divide-by- 5 circuit on your Logic Trainer. Use SW1, SW2, SW3 and SW4 to input BCD digits. Use LEDs E, F, G and H to display a 1-bit quotient and 3 -bit remainder. For example, to demonstrate " 9 divided by 5 equals 1 remainder 4", SW1=1, SW2=0, SW3=0, SW4=1, LED E is on (quotient = 1), and LEDs F, G, H are on, off, off (remainder 4). For input values greater than 9 , we don't care what the output is. Use only parts that you've been given data sheets for.
Use Verilog to model and simulate the circuit you plan to build (call the files: BCDdivide5.v and BCDdivide5_tb.v)

SW1	SW2	SW3	SW4	E	F	G	H
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	-	-	-	-
1	0	1	1	-	-	-	-
1	1	0	0	-	-	-	-
1	1	0	1	-	-	-	-
1	1	1	0	-	-	-	-
1	1	1	1	-	-	-	-

During-Lab: Build, test and debug the circuit. When you are convinced it is working correctly show it to your instructor. Take a picture of it demonstrating 9 divided by 5 to include in your lab report. Your report for Part 2 should include the completed schematic, Procedure Changes, Results (photograph), and Discussion. See the Lab Report Template for details of each section.

Summary and Conclusion Questions

1. Imagine talking to a student that will be taking this class in the future. Looking back on your first 4 labs (manual digital logic techniques), what tips would you give them to help make their time and effort more productive?

Pre-lab deliverables (these deliverables are worth 50\% of the lab's grade)

Part 1

- fulladder.v, fulladder_tb.v, and a snapshot of the truth table generated
- detailed schematic diagram of the circuit

Part 2

- BCDdivide5.v, BCDdivide5_tb.v, a snapshot of the truth table generated, and the GTKwave simulation waveforms. To improve the readability of the waveforms make sure to group the signals $\mathrm{f}, \mathrm{g}, \mathrm{h}$ and to show their value in decimal format. Do the same for SW1, SW2, SW3 and SW4.
- Detailed schematic diagram of the circuit

