
	

Page	1	of	5	
	

CPEN	230L:	Introduction	to	Digital	Logic	Laboratory	
Lab	#6:	Verilog	and	ModelSim	

	
Purpose	

• Define	logic	expressions	in	Verilog	using	register	transfer	level	(RTL)	and	structural	models.		
• Use	Quartus	II	to	synthesize	the	Verilog	logic	expressions	into	logic	gates	that	get	fitted	into	a	FPGA.	
• Use	ModelSim	with	Verilog	to	simulate	and	debug	the	operation	of	the	digital	circuits	designed.	

	
Background	
In	previous	labs	we	defined	digital	logic	designs	using	truth	tables,	logic	expressions,	and	schematic	diagrams.		
In	this	lab	and	those	following,	we	will	use	the	Verilog	Hardware	Description	Language	(HDL)	to	define,	build	
(a.k.a.	synthesize),	and	test	digital	logic.	To	synthesize	the	logic	expressions	written	in	Verilog	into	logic	gates	
that	get	fitted	into	a	FPGA	we	will	use	Quartus	II.	To	test	the	correct	operation	of	the	circuit	we	will	simulate	
its	behavior	using	ModelSim.		
	
In	digital	logic	terminology,	the	circuit	to	be	verified	is	called	a	Device	Under	Test	(DUT)	or	Unit	Under	
Test	(UUT).		The	environment	used	to	verify	the	DUT	is	called	a	test	bench.		A	test	bench	has	two	parts:	

• Input	vectors	or	stimulus	to	drive	the	DUT	inputs.		For	example,	in	the	case	of	a	full	adder	the	eight	
possible	input	combinations	would	be	the	input	vectors.	

• Output	monitoring	to	observe	DUT	outputs.		These	observations	are	normally	a	truth	table	and/or	
timing	diagrams.		For	example,	in	the	case	of	a	full	adder	CarryOut	and	SumOut	would	be	
monitored.	

	
Part	1:	Combinational	Logic	Design	using	Verilog	and	ModelSim	
	
Pre-lab:	

• Read	and	thoroughly	understand	textbook	pages	68-78	“Introduction	to	Verilog”.		Knowing	this	
now	will	make	the	rest	of	the	semester	go	much	smoother.	

• Quickly	skim	textbook	Appendix	A	“Verilog	Reference”.		You	need	to	know	where	to	find	this	
information	when	you	need	it.		Most	important	are	pages	685-703.		Next	most	important	are	pages	
709-712	and	725-731	(skipping	Figure	A.40	and	A.41).		The	rest	is	less	important	to	this	class.	

• Read	and	understand	the	Verilog	code	below.	
o Create	files	logicMistery_tb.v	and	logicMistery.v	containing	the	provided	code.			
o Compile	and	execute	the	code	using	Icarus	Verilog.	You	should	see	a	truth	table.	

• What	logic	expression	is	being	implemented	by	module	logicMistery?		
• Make	a	truth	table	showing	output	d	for	all	possible	inputs	a,	b	and	c.

	

Page	2	of	5	
	

// CPEN 230L Lab 6a, testbench for module logicMistery
// Firstname Lastname, mm/dd/yyyy
// File: logicMistery_tb.v

module logicMistery_tb; // test bench, so no inputs/outputs
 reg a, b, c; // inputs to the DUT
 wire d; // output from the DUT
 reg [2:0] count; // 3-bit value to help generate DUT inputs

 logicMistery DUT(d, a, b, c); // instantiate the DUT

 initial begin
 count = 3'b0; // initialize count to 000 binary
 $display("time a b c d"); // truth table header
 $monitor("%4d %2d %1d %1d %2d", // output formatting
 $time, a, b, c, d); // signals to be output
 #40 $finish; // time goes 0 to 40 in steps of 5, then ends
 end

 always begin
 {a, b, c} = count; // 3-bit count goes to 1-bit a, b, c
 #5 count = count+1; // increment count every 5 time ticks
 end
endmodule

// CPEN 230L Lab 6a, Combinational Logic
// Firstname Lastname, mm/dd/yyyy
// File: logicMistery.v

module logicMistery(W, X, Y, Z);
 output W;
 input X, Y, Z;

 // RTL model
 assign W = (X || !Y) && Z;
endmodule

	
During-Lab	do	the	following	to	simulate	the	Verilog	design	using	ModelSim:	
	
A. Create	folder	\Documents\CPEN230L\Lab6\Lab6a\.	
B. Use	ModelSim	 to	create	a	Project.	 	 Select	File	 ->	New	 ->	Project.	 	This	opens	 the	Create	Project	 	dialog	

window.		
a. Set	the	Project	Name	to	be	“logicMistery_tb”.		
b. Set	the	Project	Location	to	be	folder	Lab6a	that	you	created	above.	
c. Leave	the	Default	Library	Name	set	to	"work".		
d. Click	OK.		You	should	see	an	“Add	items	to	the	Project”	window.	

C. Create	a	testbench	file.	
a. In	the	“Add	items	to	the	Project”	window,	click	“Create	New	File”.	
b. In	the	resulting	“Create	Project	File”	window,	enter	File	Name	“logicMistery_tb”	and	Add	file	as	

type	“Verilog”.		Click	OK.		The	new	design	file	will	appear	in	the	project	window.	Click	“Close”	to	
close	the	“Add	items	to	the	Project”	window.		

c. Double	click	the	logicMistery_tb.v	file.	You	will	see	another	window	that	allows	you	to	input	your	
Verilog	statements.		This	is	ModelSim’s	plain	text	editor.	

	

Page	3	of	5	
	

d. Copy	 the	 Verilog	 code	 for	 “module	 logicMistery_tb”	 above	 (not	 including	 the	 “module	
logicMistery”	code)	to	the	input	window.		This	is	your	testbench	code.	

e. 	Select	File	>	Save.	
D. Create	a	new	Verilog	file	that	will	contain	module	logicMistery,	the	circuit	to	be	tested.		

a. Select	File	->	New	->	Source	->	Verilog	to	create	a	new	Verilog	file.		
b. Copy	the	Verilog	code	for	module	logicMistery	into	the	Verilog	file	window.		
c. Select	File	->	Save	and	save	file	“logicMistery.v”.		
d. Notice	 that	 top-level	 menu	 options	 can	 change	 depending	 on	 the	 active	 window	 pane.	 	 For	

example,	when	the	logicMistery.v	editing	pane	is	active	there	is	a	“Source”	menu	option	at	the	top	
of	ModelSim.	Click	in	the	Project	pane	and	see	the	Source	menu	option	change	to	a	Project	menu.		

e. Select	 Project	 ->	 Add	 to	 Project	 ->	 Existing	 File.	 You	 will	 see	 the	 “Add	 file	 to	 Project”	 dialog	
window	which	allows	you	to	add	a	file	to	the	current	project.		

f. Click	Browse	and	then	select	logicMistery.v.		
g. Click	Open.	On	the	Add	file	to	Project	window	click	OK.	You	should	have	2	files	in	your	Project,	

logicMistery_tb.v	and	logicMistery.v.		In	the	Project	pane	Status	column	the	question	marks	mean	
the	files	haven’t	been	compiled	into	the	project	or	the	source	has	changed	since	the	last	compile.	

h. Compile	 the	 files.	 	 Select	 Compile	 ->	 Compile	 All	 or	 right	 click	 in	 the	 Project	 pane	 and	 select	
Compile	->	Compile	All.	 	 In	the	transcript	window	you	should	see	“2	compiles,	0	 failed	with	no	
errors.”	

F. Start	simulation.	
a. Click	the	Library	tab	to	see	a	window	of	all	library	units	with	“work”	at	the	top.		Expand	“work”	

by	clicking	the	+	in	front	of	it.		Right-click	on	“logicMistery_tb”	and	select	“Simulate”.		Right-click	
in	 the	window	where	you	see	simulation	signals	a,	b,	c,	count	and	d.	 	Select	Add	to	 ->	Wave	->	
Signals	in	Region.		

b. In	the	Wave	pane,	drag	“/logicMistery_tb/count”	to	the	top	so	the	waveforms	are	in	order	from	
top	to	bottom:	count,	a,	b,	c,	d.	

c. In	 the	 Run	 Length	 entry	 near	 the	 top	 of	 the	 user	 interface,	 change	
simulation	time	to	“10	ms”.	

d. Click	 on	 the	 Run	 button	 to	 the	 right	 of	 “10	 ms”	 and	 see	 a	 “Finish	
Vsim”	 pop-up	 asking	 “Are	 you	 sure	 you	 want	 to	 finish?”	 	 Answer	
“No”.	

e. If	 the	waveforms	 are	 not	 visible,	 display	 them	by	 clicking	 on	 the	Wave	 tab.	 	 Right-click	 in	 the	
Wave	window	to	see	zoom	options	and	select	Zoom	Full.	 	You	should	see	similar	to	the	images	
below.	 	 Click	 any	 location	 under	 the	 waveforms	 and	 you	 will	 see	 a	 thick	 yellow	 line.	 Click	
different	 locations	and	observe	the	change	in	value	of	variables	on	the	left.	Also	notice	that	the	
Transcript	 window	 contains	 the	 output	 of	 the	 $display	 and	 $monitor	 statements	 in	 the	
logicMistery_tb.v	Verilog	code.		It	shows	the	values	of	inputs	and	outputs	as	they	change	state.	

f. Do	a	screen	capture	to	the	entire	ModelSim	window.	
G. Include	two	images	like	these	in	your	lab	report.	

• Transcript	pane	showing	the	resulting	truth	table	
	

	
	

• Waveforms	showing	count,	derived	inputs	a,b,c,	and	output	d		

	

Page	4	of	5	
	

	
	
	
Part	2:	Majority	Gate	Design	using	Verilog	and	ModelSim	

Pre-lab:	
• Write	 Verilog	 code	 to	 describe	 a	 3-input	majority	 gate	 using	 an	RTL	model.	 Put	 your	 code	 in	 file	

majority.v.		Use	the	code	in	file	logicMistery.v	code	as	a	starting	point.	
	

• The	first	lines	of	any	Verilog	file	you	write	for	this	lab	should	be	similar	to	this:	
	
// CPEN 230L Lab 6 part 2, Majority Gate using RTL coding style
// Firstname Lastname, mm/dd/yyyy
// File: majority.v
	

• Create	file	majority_tb.v	to	test	module	majority.	 	Use	the	code	in	file	logicMistery_tb.v	as	a	starting	
point.	

o Debug	majority_tb.v	and	majority.v	using	Icarus	Verilog.	
• Your	 code	 should	 include	 comments	 similar	 to	 the	 sample	 code	 above.	 	 A	 good	 guideline	 is	 to	

remember	 that	 your	 target	 reader	 is	 a	 student	 that	 hasn’t	 done	 the	 lab	 and	 is	 learning	 from	 your	
code.		Use	comments	to	describe	both	what	you	are	doing	and	more	importantly	why.	

	
During-Lab		

• Create	directory	majority_tb	and	ModelSim	Project	majority_tb	to	simulate	and	test	module	majority.	
• Verify	that	the	simulation	waveforms	and	Transcript	window	output	are	as	you	expected.	
• Show	your	code	and	results	to	your	lab	instructor.		Implement	any	change	suggestions	made	and	

remember	them	for	similar	future	efforts.	
• In	your	 lab	 report,	 include	Wave	and	Transcript	pane	 images	 similar	 to	 the	examples	 above.	 	Also	

include	 your	 well-commented	 well-formatted	 source	 code	 as	 described	 in	 the	 Lab	 Report	
Template.		

	
	
	
	
	

	

Page	5	of	5	
	

Part	3:	Full	Adder	Design	using	Verilog	and	ModelSim	
	
Pre-Lab	

• Write	 Verilog	 code	 in	 file	 fullAdder.v	 to	 describe	 a	 full	 adder	 using	 an	 RTL	 model.	 	 In	 file	
fullAdder_tb.v	create	test	bench	code	for	module	fullAdder.	

o Debug	fullAdder_tb.v	and	fullAdder.v	using	Icarus	Verilog.	
	
During-Lab		

• Create	directory	Lab6c	and	ModelSim	Project	fullAdder_tb	to	simulate	and	test	module	fullAdder.	
• Verify	that	the	simulation	waveforms	and	Transcript	window	output	are	as	you	expected.	
• In	your	lab	report,	include	Wave	and	Transcript	pane	results	similar	to	the	examples	above.		Also	in	

case	you	made	any	change	to	your	prelab	Verilog	code	make	sure	to	include	your	new	Verilog	code.		
• Exit	ModelSim	and	take	a	backup	copy	of	all	your	files	with	you.	

	
	
	
Pre-Lab	Deliverables	
Before	the	lab	starts,	please	hand	in	the	following	documents:	
Part	1	

• A	 snapshot	 of	 the	 table	 generated	 compiling	 and	 executing	 the	 files	 logicMistery.v	 and		
logicMistery_tb.v	

Part	2	
• majority.v	and	majority_tb.v	
• A	snapshot	of	the	table	generated	

Part	3	
• fullAdder.v	and	fullAdder_tb.v	
• A	snapshot	of	the	table	generated	

	
NOTE:	The	penalty	for	not	handing	in	the	prelab	deliverables	is	50%	of	the	lab	grade		

