
	

	 1		

CPEN	230L:	Introduction	to	Digital	Logic	Laboratory	
Lab	7:	Multiplexers,	Decoders,	and	Seven	Segment	Displays	

Purpose	

• Learn	about	multiplexers	(MUXs),	decoders	and	seven	segment	displays.	
• Learn	about	hierarchical	design	in	Verilog.	
• Use	the	recommended	development	directory	structure	to	perform	ModelSim	simulations	and	

Quartus	synthesis	of	the	same	Verilog	source	code.	

Background,	lab	directory	structure	

• When	completed	your	Lab	7	directory	structure	should	be	the	following:	

Lab7 <- Top level directory for Lab 7
 mux51_3bit <- Part 1, 3-bit wide 5 to 1 Multiplexer
 mux51_3bit.v <- Verilog file for the multiplexer
 mux51_3bit.tcl <- Pin assignments, I/O configuration
 mux51_3bit.sdc <- Constraints file to suppress warnings
 <other Quartus files>
 displayDriver <- Part 2, 7-segment Display Decoder
 displayDriver.v <- Top level Verilog file, to drive 7-seg display
 oct7segDecoder.v <- Decoder Verilog File (octal digit to 7-seg
 display)
 displayDriver.tcl <- Pin assignments, I/O configuration
 displayDriver.sdc <- Constraints file to suppress warnings
 <other Quartus files>
 muxdisplay <- Part 3, Combined Circuit
 sim <- ModelSim simulation directory
 muxdisp_top_tb.v <- Verilog test bench code
 <other ModelSim files>
 src <- Source directory for both sim & synth
 muxdisp_top.v <- Top level Verilog file, system I/O
 mux51_3bit.v <- Multiplexer module from part 1
 oct7segDecoder.v <- Decoder module from part 2
 synth <- Quartus synthesis directory
 muxdisp_top.tcl <- Pin assignments, I/O configuration
 muxdisp_top.sdc <- constraints file to suppress warnings
 <other Quartus files>

• All	13	named	files	above	contain	only	plain	text.		Notice	files	mux51_3bit.v	and	oct7segDecoder.v	
appear	 twice	 in	different	 directories.	 	 The	 copies	 are	 identical,	 but	 duplicated	 to	 keep	 files	 for	 the	
three	parts	of	the	lab	completely	separate.	

Background,	1-bit	wide	2-to-1	MUX	in	Verilog	

• Understand	 textbook	 section	2.8.2,	 pages	 60	 to	 63,	 “Multiplexer	 Circuit”.	 Four	 examples	 of	 Verilog	
code	to	implement	a	1-bit	wide	2-to-1	MUX	follow:	

	

	 2		

// using assign and bitwise operators
module mux21 (input x, y, s, output m);
 assign m = (~s & x) | (s & y);
endmodule

// using assign and the conditional operator
module mux21 (input x, y, s, output m);
 assign m = s ? y : x; // if s then y else x
endmodule

// using always and if-else
module mux21 (
 input x, y, s,
 output m);

 reg f; // for use in the always procedural block

 always @(x, y, s) // could also use: always @(*)
 if (s == 1’b0)
 f = x;
 else
 f = y;
 assign m = f; // drive output m from internal signal f

endmodule
	

// using always and case
module mux21 (
 input x, y, s,
 output m);

 reg f; // for use in the always procedural block

 always @(x, y, s) // could also use: always @(*)
 begin
 case (s)
 0: f = x;
 1: f = y;
 default: f = x;
 endcase
 end

 assign m = f; // drive output m from internal signal f

endmodule	

	 	

	

	 3		

Part	1:	3-bit	wide	5	to	1	Multiplexer	

Pre-Lab	
• This	is	a	diagram	of	a	3-bit	wide	5-to-1	multiplexer:	

• The	diagram	shows	that	the	value	of	{s2,	s1,	s0}	selects	which	of	U,	V,	W,	X	or	Y	appears	at	output	M.		

For	example,	if	{s2,	s1,	s0}	=	011	then	M	=	X.		You	will	build	this	circuit	on	the	DE2-115	board	with	
SW[17:0]	being	used	 for	 s2,	 s1,	 s0,	U,	V,	W,	X	 and	Y	using	 respectively	 --	 SW[17:15]	=	 {s2,	 s1,	 s0},	
SW[14:12]	=	U,	SW[11:9]=V,	SW[8:6]=W,	SW[5:3]=X	and	SW[2:0]	=	Y.		The	3-bit	output	M	will	appear	
on	LEDG[2:0].	

• Copy	the	Verilog	code	below	into	file	\Lab7\mux51_3bit\mux51_3bit.v	and	complete	it.	
• Compile	your	code	with	Icarus	Verilog	to	be	sure	there	are	no	errors.	

// CPEN 230L lab 7 part 1, 3-bit wide 5-to-1 MUX
// Firstname Lastname, mm/dd/yyyy

module mux51_3bit (
 input [17:0] SW, // 18 switch inputs
 output [2:0] LEDG); // 3 green LED outputs

 assign LEDG = (SW[17:15] == 3'd0) ? SW[14:12] :
 // replace this comment with useful code
 (SW[17:15] == 3'd4) ? SW[2: 0] :
 3'b000 // don't care:
 // set to any value
endmodule

During-Lab	

• Implement	your	3	bit	wide,	5-1	multiplexer	on	the	DE2-115	board.		In	Quartus,	create	a	Project	that	
uses	 directory	 \Lab7\	mux51_3bit,	 Project	 name	mux51_3bit,	 top-level	 design	 entity	 mux51_3bit,	
and	containing	file	mux51_3bit.v.	

• Put	 provided	 file	 mux51_3bit.sdc	 in	 directory	 \Lab7\mux51_3bit.	 	 This	 is	 a	 Synopsys	 Design	
Constraints	file	that	will	reduce	warnings	in	Quartus.		

• Put	provided	file	mux51_3bit.tcl	in	directory	\Lab7\mux51_3bit.	 	This	file	contains	pin	assignments	
and	other	I/O	specifications	that	will	reduce	Quartus	warnings.		(The	pin	assignments	you	have	seen	
before.		The	I/O	specifications	are	new.		Look	at	the	content	of	the	file.)	

• In	Quartus,	run	mux51_3bit.tcl	and	compile	the	project.	
• If	you	have	any	warnings	other	than	“No	clocks	defined	in	design”,	fix	them	before	proceeding.	

	

	 4		

• Download	the	circuit	to	the	DE2-115	board.	
• Verify	your	circuit	works	by	setting	U	=	7,	V	=	6,	W	=	5,	X	=	4,	Y	=	3.		Then	set	{s2,	s1,	s0}	to	0,	1,	2,	3,	4	

to	output	U,	V,	W,	X,	Y	respectively	to	the	green	LEDs.	
• When	 you	 are	 convinced	 the	 circuit	works	 correctly,	 demonstrate	 the	 test	 described	 in	 the	

previous	step	to	your	instructor.	
• Your	lab	report	for	this	part	should	include	your	mux51_3bit.v	Verilog	code,	a	screen	capture	of	the	

RTL	Viewer	 image	of	your	circuit,	 any	other	discussion	 that	might	help	your	 target	 student	 reader	
understand	this	part	of	the	lab.	

• Save	all	files	and	close	the	project.	

Part	2:	7-Segment	Display	Decoder	

• Understand	textbook	Figure	4.21	on	page	209.		It	will	help	with	this	part,	but	can’t	be	copied	directly.		
We	will	develop	a	3	input	decoder	that	will	drive	a	display	to	show	decimal	“0”	to	“7”.		For	example,	
an	input	of	binary	000	displays	“0”	by	lighting	segments	0,	1,	2,	3,	4	and	5.	 	An	input	of	binary	111	
displays	“7”	by	 lighting	segments	0,	1	and	2.	 	Segments	are	active-low,	meaning	they	turn	on	when	
their	control	signal	is	a	zero.	

Pre-Lab	

• Copy	 the	 following	 Verilog	 code	 into	 file	 displaydriver.v.	 	 The	 code	 provided	 instantiates	 the	 7-
segment	 decoder	 oct7segDecoder	 (octal	 digit	 to	 7-segment	 display)	 and	 connects	 it	 to	 DE2-115	
board	switches	SW[2:0]	for	input,	and	the	rightmost	7-segment	display	HEX0	for	output.		The	MS	bit	
of	HEX0	is	HEX0[6],	and	it	controls	segment	6	in	the	above	diagram.		The	LS	bit	of	HEX0	is	HEX0[0],	
and	it	controls	segment	0	in	the	above	diagram.	

// CPEN230 lab 7 part 2, top level DE2-115 board connections
// Firstname Lastname, mm/dd/yy
//
// Input is an octal digit. Output is 0 to 7 on a 7-segment
// display.

module displayDriver (
 input [2:0] SW, // 3 input toggle switches
 output [6:0] HEX0); // 7-seg display element

 oct7segDecoder dec_inst (// instantiate oct7segDecoder
 .c_i (SW), // c_i and SW are 3 bits each
 .disp_o (HEX0)); // disp_o and HEX0 are 7 bits each

endmodule

	

Display	Driver	

	

	 5		

• Create	 file	 oct7segDecoder.v	 containing	 module	 oct7segDecoder,	 that	 implements	 the	 7-segment	
decoder	block	in	the	above	diagram.		Its	input	should	be	a	3-bit	vector	called	c_i	(c	input).		Its	output	
should	be	a	7-bit	vector	called	disp_o	(display	output).		The	body	of	the	module	should	be	an	always	
statement	 with	 an	 embedded	 case	 statement	 similar	 to	 the	 fourth	 implementation	 of	 the	 mux21	
example	 provided	 in	 page	 2	 of	 this	 document.	 	 (When	done,	 ponder	 how	much	 easier	 this	 is	 than	
going	from	a	3-input	7-output	truth	table	to	7	expressions	to	7	K-maps	to	an	all-NAND	(or	whatever	
implementation)	as	you	did	in	the	past.	

• Put	provided	files	displayDriver.sdc	and	displayDriver.tcl	in	directory	Lab7\displayDriver.	
• Compile	your	code	oct7segDecoder.v	and	displayDriver.v	with	Icarus	Verilog	to	be	sure	there	are	no	

errors.	

During-Lab	

• Synthesize	your	7-segment	display	decoder.		In	Quartus,	create	a	Project	using	directory	
\Lab7\displayDriver.	

• Run	displayDriver.tcl	and	compile	the	project.	
• If	you	have	any	warnings	other	than	“No	clocks	defined	in	design”,	fix	them.		
• Download	the	configuration	to	the	DE2-115	board.	
• When	you	are	convinced	the	circuit	works	as	it	should,	demonstrate	it	to	your	instructor.	
• Your	lab	report	for	this	part	should	include	your	oct7segDecoder.v	Verilog	code,	a	screen	capture	of	

the	RTL	Viewer	image	of	your	circuit	(expanded	to	show	the	details	of	module	oct7segDecoder),	and	
any	other	discussion	that	might	help	your	target	student	reader.	

• Save	all	files	and	close	the	project.	

Part	3:	Combined	Circuit		

Pre-Lab		

• Create	 all	 files	 necessary	 to	 simulate	 the	 above	 circuit	 using	 ModelSim,	 and	 synthesize	 it	 using	
Quartus	and	the	DE2-115	board.		See	“Background,	lab	directory	structure”	at	the	top	of	this	file,	
sub-directory	 mux_display.	 	 We	 will	 use	 this	 same	 separation	 of	 source,	 simulation,	 and	
synthesis	files	in	future	labs.	 	The	idea	is	to	the	keep	the	common	Verilog	files	used	by	ModelSim	
and	Quartus	in	a	source	(src)	directory,	but	keep	the	files	generated	by	ModelSim	(sim)	and	Quartus	
(synth)	separate.	

• Create	 Verilog	 file	 muxdisp_top.v	 that	 defines	 module	 muxdisp_top,	 with	 input	 SW[17:0],	 output	
HEX0[6:0],	 and	 instantiations	 of	modules	mux51_3bit	 and	 displayDriver	 connected	 as	 indicated	 in	
the	above	diagram.	

• Create	muxdisp_top.tcl	and	muxdisp_top.sdc	files	from	the	content	of	similar	files	in	Parts	1	and	2.	
• Create	 Verilog	 file	 muxdisp_top_tb.v	 that	 instantiates	 module	 muxdisp_top,	 drives	 the	 inputs	

(stimulus)	and	monitors	the	outputs	(response).		Partially	completed	test	bench	code	follows:	

	

Display	Driver	

	

	 6		

// CPEN230L lab 7 part 3, MUX/Decoder test bench
// Firstname, Lastname mm/dd/yy

`timescale 1ns / 100ps

module muxdisp_top_tb; // testbench top level, no inputs/outputs
 reg [17:0] SW_sim; // simulated input switches
 wire [6:0] HEX0_sim; // simulated output 7-segment display segments

 muxdisp_top DUT(// instantiate the DUT
 .SW (SW_sim),
 .HEX0 (HEX0_sim));

 initial $timeformat(-9, 1, " ns", 10); // specify time format to be ns

 initial begin // test bench header
 $display("time HEX0 bit 6543210");
 $display("==== ================");
 end

 // Trick to trigger $monitor on SW_sim changes without putting SW_sim in
 // its parameter list
 always @ (SW_sim) begin
 $monitor("%4d %7b", $time, HEX0_sim);
 end

 initial begin
 SW_sim[14: 0] = 15'o01234; // use octal to deal with 3-bit groups
 SW_sim[17:15] = 3'o0; // @t=0 output = SW[14:12] = 0 = 1000000
 #5 SW_sim[17:15] = 3'o1; // @t=5 output = SW[11: 9] = 1 = 1111001
 // Replace this comment with t=10,15,20 to output 2, 3, 4
 #5 SW_sim[14: 0] = 15'o56777;
 // Replace this comment with remaining lines to display 5,6,7, 7, 7
 $finish; // end of simulation
 end

endmodule

During-Lab	

• Simulate	 your	 circuit	 using	 ModelSim.	 	 Project	 name	 is	 muxdisp_top_tb.	 Use	 directory	
\Lab7\muxdisp_top\sim.		Add	muxdisp_top_tb.v	and	all	\Lab7\muxdisp_top\src\	Verilog	files	to	the	
ModelSim	project.	

• Verify	your	circuit	works	by	getting	pictures	similar	to	those	following,	with	content	that	shows	your	
oct7segDecoder	module	produces	the	expected	output.		If	needed,	change	the	time	scale	to	ps	(pico-
seconds)	by	right-clicking	on	 the	values	à	Grid,	Timeline,	and	Cursor	Control	à	Time	units	à	ps.		
Change	the	SW	waveform	radix	to	Octal	by	right-clicking	on	its	name	and	choosing	Radix	à	Octal.	

• ModelSim	Wave	pane	for	muxdisp_top_tb:	
	

	

	 7		

• ModelSim	Transcript	pane	for	muxdisp_top_tb:	

• When	you	are	satisfied	that	your	simulation	works	correctly,	save	a	ModelSim	screen	capture	for	use	
in	your	lab	report.		Realize	that	if	you	proceed	and	your	circuit	doesn’t	work	correctly	you	will	have	
to	re-compile	and	re-do	this	simulation	process.	

• Synthesize	your	circuit	using	Quartus	in	directory	\Lab7\muxdisplay\synth	with	Project	name	and	

top-level	design	entity	muxdisp_top.	
• In	 the	 \Lab7\muxdisp_top\synth	directory,	 create	 files	muxdisp_top.tcl	 and	muxdisp_top.sdc	using	

content	from	the	TCL	and	SDC	files	in	parts	1	and	2.	
• Compile	the	design.	
• If	you	have	any	warnings	other	than	“No	clocks	defined	in	design”,	fix	them.		
• Download	the	configuration	to	the	DE2-115	board	FPGA.	
• Test	 the	 circuit	 by	 manually	 doing	 the	 same	 procedure	 done	 by	 the	 test	 bench	 code,	 then	

demonstrate	that	test	procedure	to	your	instructor.	
• Your	lab	report	for	this	part	should	include	

o muxdisp_top_tb.v	and	muxdisp_top.v	Verilog	code	
o images	 of	 the	ModelSim	Wave	 and	Transcript	 pane	output,	with	 a	 description	of	 how	 this	

information	proves	your	circuit	is	working	correctly	
o an	RTL	Viewer	image	of	your	circuit	(non-expanded	to	show	how	simple	it	is)	
o any	other	discussion	that	might	help	your	target	student	reader	

• Save	all	files,	close	ModelSim,	close	Quartus,	and	take	a	copy	of	all	your	files	with	you.	
	
Pre-Lab	Deliverables:	
The	penalty	for	not	handing	in	the	prelab	deliverables	is	50%	of	the	lab	grade	 	
Part	1:	

• mux51_3bit.v	
Part	2:	

• oct7segDecoder.v,	displayDriver.v	
Part	3:	

• muxdisp_top.v,	muxdisp_top_tb.v	
• Test	the	correct	operation	of	your	design	with	Icarus	Verilog	and	GTKwave	and	provide	a	snapshot	of	

the	table	generated	by	muxdisp_top_tb	

