
Page	1	of	4	

	

CPEN 230L: Introduction to Digital Logic Laboratory
Lab # 9: Latches, Flip-Flops and Counters

Purpose

• Learn about latches, flip-flops and counters.
• Learn about the DE2-115 board push-button switches.
• Gain further competence with CAD tools and processes.

Lab Directory Structure

• Start with the provided Lab9 directory tree and files. When the lab is complete your directory structure and
files should look like this:

Lab9
 SR_Latch << Part 1 directory (no simulation)
 src
 SR_Latch_top.v << write it (short)
 SR_Latch.v << write it (short)
 synth
 SR_Latch_top.tcl << provided
 SR_Latch_top.sdc << write it (copy of past labs)
 <other Quartus files>
 JK_FlipFlop << Part 2 directory (no simulation)
 src
 JK_FlipFlop_top.v << write it (short)
 JK_FlipFlop.v << provided (Verilog example code)
 synth
 JK_FlipFlop_top.tcl << provided
 JK_FlipFlop_top.sdc << write it (copy of past labs)
 <other Quartus files>
 counter4bit << Part 3 directory (simulation and synthesis)
 sim
 counter4bit_tb.v << provided but incomplete, finish it
 <other ModelSim files>
 src
 counter4bit_top.v << write it (some effort)
 counter4bit.v << write it (most effort)
 JK_FlipFlop.v << provided, used in two places
 hex7seg.v << write it (similar to past labs)
 synth
 counter4bit_top.sdc << provided (notice new “clock” lines)
 counter4bit_top.tcl << provided
 <other Quartus files>

Part 1: S-R (Set-Reset) Latch

Page	2	of	4	

	

Pre-Lab:
• In the above diagram, the “n” preceding inputs S (Set) and R (Reset) indicates that they are active-low. For

example, a 0 at nS means “do the Set function”. The “n” in output Qn indicates Qnot or Q’ or Q̅ or “the
complement of Q”.

• Create a truth table for this latch with inputs nS, nR and outputs Q, Qn. For one of the four input states, Q
can be either 0 or 1 with Qn being its complement. For this state just say “0 or 1” for Q and “1 or 0” for
Qn.

• What combination of nS, nR inputs must be avoided when using this circuit as intended, to latch Q and Qn
values?

• If this condition is allowed to occur, how can it introduce an error in the device this circuit is being used in?
• Create file SR_Latch.v to implement module SR_Latch with the inputs and outputs shows in the diagram.

Do not use gate level coding style for implementing SR_Latch!
• The 4 pushbuttons at the lower-right of the DE2-115 board are named KEY[3:0]. When not being pressed

they provide a 1. When pressed they provide a 0.
• Create file SR_Latch_top.v to implement module SR_Latch_top that connects an instance of SR_Latch to

the DE2-115 board pushbuttons and LEDs indicated in the diagram.
• Place the files in the Lab Directory Structure where indicated.
• Use Icarus Verilog to eliminate compile errors and warnings in the two Verilog files.

During Lab:
• Use Quartus and the DE2-115 board to build, debug and verify your pre-lab work.
• When convinced your circuit is working properly, demonstrate it to your instructor.
• Your report for this part should include the contents of SR_Latch.v and SR_Latch_top.v, a Quartus RTL

Viewer image expanded to the gate level, discussion of any Quartus warnings, and anything else that will
help your target reader.

Part 2: J-K (Set-Reset-Toggle) Flip-Flop

Pre-Lab
• The following function table describes a positive edge triggered J-K Flip-Flop with active low

asynchronous Preset and Clear. File JK_FlipFlop.v is its Verilog implementation.

Inputs Outputs Function
nPr nClr Clk J K Q Qn
X 0 X X X 0 1 Clear
0 1 X X X 1 0 Preset
1 1 +edge 1 0 1 0 Set
1 1 +edge 0 1 0 1 Reset
1 1 +edge 1 1 ~Q0 ~Qn0 Toggle
1 1 +edge 0 0 Q0 Qn0 No Change

• Which inputs have higher precedence, J and K, or nPr and nClr?
• To use the J & K inputs what level should be applied to nPr & nClr?
• How can this flip-flop be operated as an S-R Latch?
• Read file JK_FlipFlop.v to help with your understanding of Verilog.
• Create file JK_FlipFlop_top.v that connects an instance of JK_FlipFlop to the DE2-115 board

input/output devices as shown below.

Page	3	of	4	

	

• Place the files in the Lab Directory Structure where indicated.
• Use Icarus Verilog to eliminate compile errors and warnings in the two Verilog files.

During Lab
• Use Quartus and the DE2-115 board to build, debug and verify your pre-lab work. You may observe that

pressing a push button once registers multiple presses. This is known as “switch bounce” and will be
explored further in the future. Gently pressing and releasing the buttons helps work around the problem.

• Verify operation by testing all rows of the JK Flip-Flop function table.
• When convinced your circuit is working properly, demonstrate it to your instructor.
• Your report for this part should include the contents of JK_FlipFlop_top.v, a Quartus RTL Viewer image

expanded to the gate level, discussion of any Quartus warnings, and anything else that will help your target
reader.

Part 3: 4-Bit Synchronous Counter

Pre-Lab

• The 4-bit binary counter shown below is built from JK Flip-Flops operating in toggle mode (J = K).
Active-low input nReset forces the output to 0. Active-high input Enable causes counting to stop when
low. When Enable = 1 and nReset = 1, positive edges at input Clock cause the counter to increment by 1,
from hex 0 to F and then repeat. The flip-flop active low nPr inputs are all inactive (1 or high or Vcc).

• Create file hex7seg.v to convert a 4-bit input (hexadecimal 0 through F) to a 7-bit output that will display
“0” through “F” on a DE2-115 board 7-segment display.

• Create file counter4bit.v to implement the 4-bit ripple counter shown above. It has inputs Clock, nReset,
and Enable. Its output is 4-bit Count. This module has nothing to do with DE2-115 board switches and
displays. It instantiates 4 instances of JK_FlipFlop and connects them as shown above.

SW[1]

SW[0]

KEY[0]

KEY[1]

KEY[2]

Page	4	of	4	

	

• Create file counter4bit_top.v that instantiates counter4bit and hex7seg. Its inputs will be DE2-115 board
pushbuttons KEY[2:0] (~Clock, Enable, nReset respectively). Its outputs will be DE2-115 board 7-
segment display HEX0 and red LEDs LEDR[3:0]. For example, as shown in the diagram, when the
counter is at binary 1010 (decimal 10) LEDR[3:0] will display 1010 and HEX0 will display “A”. Pressing
KEY[2] will increment the count to 1011.

• Complete provided file counter4bit_tb.v as a test bench for counter4bit.
• Use Icarus Verilog and GTKWave, to verify your counter4bit functions correctly.

During Lab

• Use Quartus and the DE2-115 board to debug and verify your counter.
• When convinced your circuit is working properly, demonstrate it to your instructor.
• Your report for this part should include the contents of counter4bit_tb.v, counter4bit_top.v,

counter4bit.v, hex7seg.v, ModelSim text output, ModelSim waveforms (with an explanation of what is
being demonstrated), a Quartus RTL Viewer image (whatever you think will be most helpful to your target
reader), discussion of any Quartus warnings, and anything else that will help your target reader.

Pre-Lab Deliverables
As usual, the penalty for not handing in the prelab deliverables before class is 50% of the lab grade.
Part 1

• SR_Latch.v, SR_Latch_top.v
Part 2

• JK_FlipFlop_top.v
Part 3

• counter4bit.v, counter4bit_tb.v
• Test the correct operation of the counter using Icarus Verilog and provide a snapshot of the table generated

by counter4bit_tb
• hex7seg.v
• counter4bit_top.v

