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Introduction:

I have spent a good amount of time over the last few years helping designers with
TimeQuest, and found myself writing emails and small documents explaining similar concepts
over and over again. This includes answering questions on www.alteraforum.com under the user
name rysc. This document is an effort to consolidate most of what 1’ve learned about TimeQuest
into a single source. It is a work in progress, and currently has significant sections missing. |
hope to be updating this regularly, but am finding the more I enter, the more gaps there are.
Right now the core information is there and has more than enough for most users. Looking at
the page count, some might say there is too much information.

Recommendations:

1) Use the Bookmarks when viewing this document, to show the major points and allow
for easy navigation. Examples seem to constantly require an explanation from another section. |
added hyperlinks throughout the document, but I believe the Table of Contents/Bookmarks will
help users navigate the content.

2) Read the first section, Getting Started. | tried to pack as much useful information that
most designers need. Even if you have a good grasp on TimeQuest, it’s probably worth a quick
run through.

3) Read as much of this document as you can. Hopefully this helps the user get "the big
picture” of static timing analysis, rather than only a small sub-section. User's that immediately
jump to an example that is similar to their own often miss the many facets of static timing
analysis, and are more likely to become frustrated or, worse yet, make mistakes.

4) Use TimeQuest. I've seen many users do the opposite of the last recommendation,
where they pour over documentation, trying to understand every nuance of every sentence and
screenshot before opening the tool. As much as | would like users to read everything, it's just as
important to start adding SDC constraints to your design, running TimeQuest, and analyzing
what happens. By the end of the Getting Started section, the user should have most of their core
timing constraints entered, possibly some 1/0 constraints, and a good handle on timing analysis.

Contact:

TimeQuest support is not my primary responsibility, and so | will not be able to directly
assist users. That being said, if there is anything ambiguous, incorrect, or missing, please contact
me via www.alteraforum.com, sending an email to user Rysc. | also monitor the forum a good
amount and will try to answer questions there, as | much prefer helping with issues on the forum
rather than direct email, since it can hopefully help multiple users. If you post something and |
don’t respond, feel free to send me an email through the forum. That being said, if I am unable
to respond, please don’t be offended.

© 2010 Altera Corporation. The material in this wiki page or document is provided AS-IS and is
not supported by Altera Corporation. Use the material in this document at your own risk; it might
be, for example, objectionable, misleading or inaccurate.
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Section 1: Getting Started

This first section is meant to get a user up and running as quickly as possible. It touches
on multiple topics that are detailed later, and is meant for application and a quick understanding.
That being said, I think all users should look through this section and make sure they understand
it.

The last portion of Getting Started covers analyzing results, which is an integral part of
entering constraints. One can't enter core timing or 1/0 constraints without being able to read the
analysis reports, so it is recommended to read that section in conjunction with the information at
the beginning.

Quartus Setup

Within Quartus, there are a number of quick steps for setting up your design with
TimeQuest. These are accessed through the pull-down menu Assignments -> Settings:

Project Processing Tools Window Help
i 2-4’ Device. ..
@ Pins
E-? Timing Analysis Settings...
'té’ EDA Tool Settings...
AUTO Cirl+5hift+E
0_ S5
1) Along the left panel, select Timing Analysis Settings and select the "Use TimeQuest..." radio
button. The Classic Timing Analyzer is the old timing analysis engine, which is not
recommended for any new designs or architectures, and will eventually become obsolete.

2) Select TimeQuest Timing Analyzer in the left panel. The screenshot should look like below,
whereby the user can add a new SDC file. SDC stands for Synopsys Design Constraint, which is
the format TimeQuest uses, along with many other tools. If no .sdc file exists, we will create it
in the next section. Note that SDC files are analyzed in the order listed, top to bottom.



Settings - flop2flop

Categany:

General
Files
Libraries Specify TimeQuest Timing Analyzer options.
Device
+- Operating Settings and Conditions
—1- Compilation Process Settings
Early Timing E stimate SDC filename: J
Incremental Compilation
Phyzical Synthesis O ptimizations File name [ Type

=)- ED& T ool Settings flop2flop.sdc Synopsys Desig...
Design Entry/Synthesiz 4

SDC files to include in the project

Simulation
Tirming Analysis < > ]

Formal Verification

FPhyzical Synthesis v

Bo.ard-Level X X [v Enable multicorner timing analysis during compilation |
= &nalysis & Syrthesis Settings - £

WHDL Input [v Enable common clock path pessimism removal

“erilog HDL Input I~ Report worst-caze paths during compilation

Default Parsmeters Tel Script File for customizing reports during compilation

Fitter Settings
—I- Timing Analysiz Settings Tcl Seript File name: J
Timeluest Timing Analyzer
| +- Classic Timing Analyzer 5 ettings hde=abahilit (e

3) The following options are discussed more in the section on Quartus Il and Timing
Constraints.

Check the following, which should be on by default:

- Enable multicorner timing analysis - This will analyze all the timing models of your
FPGA against your constraints. This is required for final timing sign-off. Unchecked, only the
slow timing model will be analyzed.

- Enable common clock path pessimism removal - Prevents timing analysis from over-
calculating the effects of On-Die Variation. This makes timing better, and there really is no
reason for this to be disabled.

Optional:

- Report worst-case paths during compilation. This option will show a summary of the
worst paths in your Quartus report. We will be analyzing these paths in more detail in the
TimeQuest tool. Some users like to see this summary up-front, but it also bloats the
<project>.sta.rpt with all of these paths.

- Tcl script file for custom reports. We will use this later, adding custom reports for the
user to run a custom analysis. For example, if the user is only working on a portion of the full
FPGA, they may want additional timing reports that cover that hierarchy.

@ Compilation Report - Slow 1200mY 85C Model Setu... l 4) S I m p I e 1 Comp rehensive Stati C
t gg;i::gsztﬂmiﬂg Analy’ZEIA Clock. Slack End Point timlng anaIySiS Summarles Wi” be
S summary the_systern_pllaltpll_componentiauto_generatedipll lck[1]|0.373 ;EUSU Written to the Quartus I I report
the_system_pllalkpll_componentlauto_generatedipll clk[0]|5.526 | 0.000 d u ri n g com p i I ati on. Th ese re po rts

&SR Paralel Compilation
the_adc_plilaltpll_component|auto_generatediplllchk[2]  |5.623 |0.000

&8 SDC Fle List
s ck 5975 10000 cover the full analysis of everything

SHEE Clocks
the_adc_plllaltpll_componentlauto_generatedlplil|ck[1] 8.792 | 0.000

I & Slow 1200mY 85C Maod
SHEE Fmax Summary
sdc_ck_100_ex 2408 0000 constrained in the design. On a fully
é@ Recovery Summar the_adc_plllaltpll_componentlauto_generatedlplil|ck[0] 18,962  0.000
& B Removal summary

=L setun Sunmer |
588 Hold Summary
sdo.ck 19127 0000 constrained design, these reports are
Iy iy enough to show if a design passes

[z

+ Datasheet Report H 1
S e e timing or not. The screenshot on the

+1 &1 Slow 1200mV OC Mode
+-¢&Zh([]) Fast 1200mV OC Mode!

B8 Multicorner Timing Ana 6
+ &) Multicorner Datasheet
+-¢&p(1] Advanced 1O Timing
+- &1 Clock Transfers

&hB Report TCCS

EHB) ReportRSKM

&I Unconstrained Paths

éﬂl‘) Messages




left shows the setup slack to every clock domain in the design, and hence every setup analysis in
the design is passing timing.

5) For more detailed analysis, the user must launch TimeQuest. Either go to the pull-down
menu Tools -> TimeQuest Timing Analyzer, or click on the stopwatch icon in the Quartus 11
toolbar:

r-:«'»»wm;@®ua|

Core Timing

After compiling a project and launching TimeQuest, the user can now enter timing
constraints. If no SDC file has been created, go to File -> New and create a new .sdc file. It can
be saved with the same name as the project, and generally should be stored in the project
directory.

Constraining the Core with Four Commands
Every beginning .sdc file should start with four components:

- create_clock

- derive_pll_clocks

- derive_clock_uncertainty
- set_clock_groups

The first three are almost trivial, and can get a user up and analyzing most of their design
in a matter of minutes. As we go through these commands, be sure to look at The Iterative
Method, which shows how to quickly modify .sdc files, re-run analysis, and keep iterating
through more changes. Also, details about these commands can be found directly in TimeQuest
by typing -long_help, such as:

create_clock -long_help
derive_pll_clocks -long_help
derive_clock_uncertainty -long_help
set_clock_groups -long_help

create_clock

When starting a new SDC file, the first thing to do is constrain the clocks coming into the
FPGA with create_clock. The basic syntax looks like so:

create_clock -name sys_clk -period 8.0 [get_ports fpga_clk]

Notes:



- The above command creates a clock called sys_clk with an 8ns period and applies it to
the port in the user’s design called fpga_clk.

- Tcl and SDC are case-sensitive, so make sure fpga_clk matches the case used in your
design.

- The clock will have a rising edge at time Ons, and defaults to a 50% duty cycle, hence a
falling edge at time 4ns. If the user wants a different duty cycle or to represent an offset, please
use the -waveform option. This is very seldom necessary.

- Users often create a clock with the same name as the port it is applied to. This is
perfectly legal. In the example above, this would be accomplished by:

create_clock -name fpga_clk -period 8.0 [get_ports fpga_clk]

There are now two unique things called fpga_clk, a port in the user’s design and a clock
that emanates from that port.

- In Tcl syntax, square brackets will execute the command inside them, so [get_ports
fpga_clk] will execute a command that finds all ports in the design that match fpga_clk and
return them. This is discussed more in the Tcl syntax section. Although commonly used, many
designers simply enter the port name like so:

create_clock -name sys_clk -period 8.0 fpga_clk

- Repeat this step for all known clocks coming into the design. (If the user is unsure, just
enter all the known clocks. Later on we will show how Report Unconstrained Paths can identify
any unconstrained clocks).

Hint: Rather than typing constraints, users can enter constraints through the GUI. After
launching TimeQuest, open the .sdc file from TimeQuest or Quartus 11, place the cursor where
the new constraint will go, and go to Edit -> Insert Constraint, and choose the constraint.
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sz p sl er@ee LA R R R A
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Also, DO NOT enter constraints from the TimeQuest GUI's Constraints pull-down menu:

4 TimeQuest Timing Analyzer - C:/fwaveforms/design/1_original/top - top
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Although it looks similar, these constraints will be applied directly to the timing database
and not put into the .sdc file. Advanced users may find reasons to do this, but beginners should
stay away from these and instead open the .sdc file and access them from Edit -> Insert
Constraint.

derive_pll_clocks

Add the following command into your .sdc:
derive_pll_clocks
That’s it. Just type in that command.

Notes:

- Each output of a PLL should be constrained with create_generated_clock.

- When PLLs are created, the user enters how each PLL output is configured. Because of
this, TimeQuest can auto-constraint them, which is what derive_pll_clocks is doing.

- This command does other useful things too. It constrains transceiver clocks. It adds
multicycles between LVDS SERDES and user logic.

- To see all the low-level commands executed by derive_pll_clocks, the TimeQuest
messages will explicitly show them as Info messages under Derive PLL Clocks:



tcl: read_sdc

\i') Info: Reading SDC File: 'top.sdc'
= \i.) Info: Deriwing PLL Clocks

Info: create_generated_clock -source {the_adc_p11|altpll_component|auto_generated|pll

inclk[0]} -duty_cycle 50.0
Info: create_generated_clock -source {the_adc_p11|altpll_component|auto_generated|plli|inclk[0]} -multiply_by 2 -
Info: create_generated_clock -source {the_adc_p11|altpll_component|auto_generated|pl1i|inclk[0]} -multiply_by 3 -

! 1

I 1

I 1

Info: create_generated_clock -source {the_sy em_pl11|altpll_component |auto_generated |pl111|inclk[0]} -duty_cycle &
_ p
_ p

Info: create_generated_clock -source {the_system_pl1|altpll_component |auto_generated|plli|inclk[0]} -phase 11.25
Info: create_generated_clock -source {the_system_pl1|altpll_component |auto_generated|plli|inclk[0]} -divide_by &S

- New designers often have the urge to not add derive_pll_clocks, and instead cut-and-
paste each create_generated_clock assignment directly to the .sdc file. Technically there is

nothing wrong with this, since the two are identical. The problem is that anytime a user modifies
a PLL, they must remember to change the .sdc. Examples include modifying an existing output

clock, adding a new PLL output, or making a change to the PLL's hierarchy. | have seen too
many designers forget to modify their .sdc and spend time debugging something that
derive_pll_clocks would have fixed automatically. My recommendation is to stick with
derive_pll_clocks.

derive_clock_uncertainty

Add the following command to your .sdc:
derive_clock_uncertainty
Just type it in.

Notes:

- This should be in all SDC files for designs at 65nm and newer.

- It does not hurt to be in the .sdc file of older architectures, it just won’t do anything.

- This command alculates clock to clock uncertainties within the FPGA, due to
characteristics like PLL jitter, clock tree jitter, etc.

- A warning occurs if the user does not have this command in their .sdc.

Those are the first three steps, which can usually be done very quickly. For a sample
design with two clocks coming into it, their .sdc might look like so:

create clock -period 20.000 -name adc clk [get ports adc clk]
create clock -period 8.000 -name sys clk [get_ports sys clk]

derive pll clocks

derive clock uncertainty

set_clock_groups

With the constraints above, most if not all of the clocks in the design are now

constrained. In TimeQuest, all clocks are related by default and it is up to the user to un-relate
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clocks. So, for example, if there are paths between an 8ns clock and 10ns clock, even if the
clocks are completely asynchronous, TimeQuest will see a 2ns setup relationship between these
clocks and try to meet it. This is the conservative approach, in that TimeQuest analyzes
everything known, rather than other tools which assume all clocks are unrelated and require the
user to relate them. It is up to the user to tell TimeQuest which clocks are not related. The SDC
language has a powerful constraint for doing this called set_clock _groups. The syntax, which
may look complex at first is:

set_clock_groups -asynchronous -group {} -group {} -group {}

Notes:

- Each -group is a list of clocks that are related to each other

- There is no limit to the number of group options, i.e. -group {}. If a design needs fifty
groups, that's fine. If entering the constraint through Edit -> Insert Constraint, it only has space
for two groups, but this is only a limitation of that GUI. Feel free to manually add more into the
.sdc file.

- User's look at the command and often think it is grouping clocks, but again, TimeQuest
assumes all clocks are related, and so they're already in one big group. This command is really
cutting timing between clocks in different groups within a set_clock_groups command.

- Any clock not listed in the assignment keeps the default of being related to all clocks, so
if you forget a clock, it will conservatively be analyzed to all other domains it connects to.

- A clock cannot be within multiple -groups in a single assignment

- A user can have multiple set_clock_groups assignments

- This command is usually unreadable on a single line. Instead, make use of the Tcl
escape character "\". By putting a space after your last character and then "\", the end-of-line
character is escaped. (And be careful not to have any whitespace after the escape character, or
else it will escape the whitespace, not the end-of-line character). The syntax for this will be
shown shortly.

- For designs with complex clocking, writing this constraint can be an iterative process.
For example, a design with two DDR3 cores and high-speed transceivers could easily have thirty
or more clocks. In those cases, | just add the clocks I’ve created. Since clocks not in the
command are still related to every clock, I am conservatively grouping what I know. If there are
still failing paths in the design between unrelated clock domains, | start adding in the new clock
domains as necessary. In this case, a large number of the clocks won't actually be in the
set_clock_groups command, since they are either cut in the IP's .sdc file(like the ones generated
by the DDR3 cores), or they only connect to clock domains they are related to.

- | generally leave virtual clocks created for I/O analysis out of this constraint. The only
clocks they connect to are generally real paths, so there is no need to cut their analysis to other
clocks.

- The option after set_clock_groups is either -asynchronous or -exclusive. The -
asynchronous flag means the clocks are both toggling, but not in a way that can synchronously
pass data. The -exclusive flag means the clocks do not toggle at the same time, and hence
mutually exclusive. A good example of this might be a clock mux that has two generated clock
assignments on its output. Since only one can toggle at a time, these clocks are -exclusive.
TimeQuest will analyze your design identically for either flag. This option is really used for
ASICs, that will analyze Sl issues like cross-talk between clocks that are -asynchronous, but not

11



analyze cross-talk between clocks that are -exclusive. If going to Hardcopy, which uses ASIC
analysis tools on the back-end, it is recommended to get this right. For FPGAs it really does not
matter. The more conservative value is -asynchronous, since this states the clocks can interfere
with each other, and what | use by default.

- Another way to cut timing between clocks is to use set_false_path. To cut timing
between sys_clk and dsp_clk, a user might enter:

set_false_path -from [get_clocks sys_clk] -to [get_clocks dsp_clk]
set_false_path -from [get_clocks dsp_clk] -to [sys_clk]

This works fine when there are only a few clocks, but quickly grows to a huge number of
assignments that are completely unreadable. In a simple design with three PLLs that have
multiple outputs, the set_clock_groups command can clearly show which clocks are related in
less than ten lines, while set_false_path may be over 50 lines and be very non-intuitive on what
IS being cut.

Quick tip for writing set_clock_groups constraint

1) Since derive_pll_clocks is creating many of the clock assignments, the user may not
know all of the clock names. A quick way to make this constraint is to create an .sdc with steps
1-3 above, i.e. 1) add create_clock on each incoming clock, 2) add derive_pll_clocks and 3) add
derive_clock_uncertainty to your .sdc.

2) Double-click in the left Task panel of TimeQuest on Report Clocks. This will read in
your existing SDC and apply it to your design, then report all the clocks. From that report, I
highlight all of the names in the first column that I know, right-click copy, as shown below:

File Edit View MNetlist Constraints Reports Script Tools Window Help
-« x Clocks Summary

< | ? Base  |10.000 |100.0 MHz
“ x Base 2000 [125.0MHz
% Report Metastability PR E]the_adc pliatpll_componentlauto_generatedplllick[D]  [EEiEE=e UL L IEr
Ela Diagnostic I the_adc_pliattpll_componentlauto_generatedipll Ticlk[1]  [EEEE s IEXLEVRPC R v
v B [Report Clocks] . _dBlthe_ade_pliattpll_componentlauto_generatediplichk[2]  [EEyEr C Rk ggpiv N1EY Iy

% Report Clock Transfers [ the_system_pliatpll_componentiauto_generatedipll 1k (0] [BEEE e JEALEURRPL iV ITF
% Report Unconstrained Paths Pl the_system_pliatpll_componentiauto_generatedipll ek 1] EEEE e IEAL GRS IRF

~E8l Report SDC [lihe system plisitpll componentiaut. generatadinl 1l 2] e S T
- Report Ignored Constraints Copy Ctrl4+C

_ -8 Check Timing Select Al Ctrl+a
flom Blanart Dadition

You have just copied all the clocks in your design in the exact format TimeQuest
recognizes them. Paste them into your .sdc file.

3) Now that you have a columnar list with every clock in the design, format that list into
the set_clock_groups command. For example, I may start with the following empty example:

set_clock_groups -asyncrhonous -group { \
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-group {\
}

And then paste clocks into groups to define how they’re related, adding or removing
groups as necessary.
4) Finally, format the list of clocks to make it readable. Here is a screenshot of an .sdc:

tart Constraints:

(%]

E# Core Timing Quick
create_clock -name sys_clk -period 8.0 [get ports sys_clk]
create_clock -name adc clk -period 10.0 [get_ports adc clk]
derive pll clocks

derive_ clock uncertainty

set_clock groups -asynchronous A

= —group {adec _clk \
the adc plljaltpll component|auto generated|plll|clk|
the_adc pll|altpll component|auto_generated|plll|clk[
the_adc plljaltpll component|auto_generated|plll|clk[
PN

= -group {sys_clk \
the system pll|altpll component|auto generated|plll|clk([0] *\
the system pll|alcpll component|auto_generated|plll|clk[l] A
PN

—group {the system pll|altpll component|auto generated|plll|clk[2]}

[T S ]
-

Note that the last group has a PLL output system_pll|..|clk[2] while I put the input clock
and other PLL outputs into a different group. That is because | made this clock a frequency that
can't be related to the other clocks, and must be treated asynchronously to them. Usually most
outputs of a PLL are related and hence in the same group, but it's not a requirement, and up to
the user's design.

That's it. For many designs, that is all that's necessary to constrain the core. Some
common core constraints that will not be covered in this quick start section that user's do are:

- Add multicycles between registers which can be analyzed at a slower rate than the
default analysis, i.e. opening the window. For example, a 10ns clock period will have a 10ns
setup relationship. If the data changes at a slower rate, or perhaps the registers toggle at a slower
rate due to a clock enable, than the user wants to apply a multicycle that opens the the window
that the data passes through. This will be a multiple of the clock period, making the setup
relationship 20ns, 40ns, etc., while keeping the hold relationship at Ons. These types of
multicycles are generally applied to paths.

- The second common form of multicycle is when the user wants to shift the window.
This generally occurs when the user does a small phase-shift on a clock. For example, if the user
has a 10ns clock coming out of a PLL, and second clock coming out that is also 10ns but with a
0.5ns phase-shift, the default setup relationship from the main clock to the phase-shifted clock is
0.5ns and the hold relationship is -9.5ns. It is almost impossible to meet a 0.5ns setup
relationship, and most likely the user wants data to transfer in the next window. By adding a
multicycle from the main clock to the phase-shifted clock, the setup relationship becomes 10.5ns
and the hold relationship becomes 0.5ns. This multicycle is generally applied between clocks

13



and is something the user should think about as soon as they do a small phase-shift on a clock.
This multicycle is called shifting the window.

If any of this discussion on default setup and hold relationships is confusing, please read
the basics of setup and hold, as well as the following section on determining default setup and
hold relationships.

- Add a create_generated_clock to ripple clocks. Basically anytime a register's output
drives the .clk port of another register, that is a ripple clock. Clocks do not propagate through
registers, so all ripple clocks must have a create_generated_clock constraint applied to them for
correct analysis. Unconstrained ripple clocks will show up in TimeQuest's task "Report
Unconstrained Paths", so they are easily recognized. In general, ripple clocks should be avoided
for many reasons, and if possible, a clock enable should be used instead.

- Add a create_generated_clock to clock mux outputs. Without this, all clocks propagate
through the mux and will be related. TimeQuest will analysis paths downstream from the mux
where one clock input feeds the source register and the other clock input feeds the destination,
and vice-versa. Although it could be valid, this is usually not what user’s want. By putting
create_generated_clock constraints on the mux output, relating them to the clocks coming into
the mux, the user can correctly group these clocks with other clocks.

I/O Timing

(Note: This section does not explicitly cover source-synchronous interfaces, although
they use the same principles.)

There are only two 1/O specific .sdc commands, set_input_delay and set_output_delay,
and they can be difficult to grasp at first. The most important concept is that these constraints
describe what is going on outside of the FPGA, and with that information TimeQuest figures out
what is required inside the FPGA. | break this down into 5 steps, which is important for the first
time through, although quickly becomes intuitive:

Steps for 1/0 Timing:

1) Add create_clock to create a virtual clock for the 1/0 interface

2) Add set_input_delay or set_output_delay to the 1/O port/s. Add it twice, once using
the option -min and once using -max, and have 0.0 be the value in both cases. (This will be
modified in step 5)

3) Determine the default setup and hold relationships between the FPGA clock and the
virtual clock

4) Add multicycles if these default relationships are not correct

5) Modify the -max and -min delay values to account for external delays

I want to point out that the values used for the set_input_delay and set_output_delay are
entered last, which is the opposite of what most new users do. Going through the first steps will

make it apparent why. Also note that bidirectional 1/O are really analyzed as inputs and outputs,
so they usually have both set_input_delay and set_output_delay assignments.

Step 1) Use create_clock to add a virtual clock for the I/O interface
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This is always the first step, which is certainly not intuitive. If the FPGA communicates
with a PCI device that runs at 66MHz and a DAC running at 200MHz then the user might add
the following to their SDC file:

create_clock -period 15.151 -name pci_clk_ext
create_clock -period 5.0 -name dac_clk_ext

Note that I did not apply these clocks to anything in the FPGA, which is what makes
them virtual clocks; they exist outside of the FPGA. How this will be used becomes apparent in
the next few steps, but this step is usually easy since it reflects what's occurring in hardware.

Step 2) Add set_input_delay or set_output_delay on the I/O port/s

Add it twice, once using -min and once using -max. Use the value 0.0 for both
delays, and the virtual clock for the clock.

The instructions are long, but it's really quite easy. If constraining an output port called
DAC_DATAJ5], I might put in my .sdc:

set_output_delay -clock dac_clk_ext -max 0.0 [get_ports DAC_DATA[5]]
set_output_delay -clock dac_clk_ext -min 0.0 [get_ports DAC_DATA[5]]

As specified, the -clock option was filled with the virtual clock created in step 1), and the
-max and -min values are 0.0. That 0.0 is just a placeholder we will modify in step 5.
For an input bus where I want all ports to have the same constraint, | might do:

set_input_delay -clock adc_clk_ext -max 0.0 [get_ports ADC_DATA[*]]
set_input_delay -clock adc_clk_ext -min 0.0 [get_ports ADC_DATA[*]]

This step is straightforward since it’s just following the instructions without any analysis,
but it's important to understand what the command does. Intrinsically they do not really
“constrain” anything, and instead describe what is going on outside of the FPGA. Looking at our
output constraint, let's break down its components:

1. set_output_delay There is a register being driven by an FPGA output
2. -clock dac_clk_ext This register is clocked by our virtual clock dac_clk_ext
3. -max/-min 0.0 The external delay has a max of 0.0 and min of 0.0

4. [get_ports DAC_DATA[5] The register is driven by port DAC_DATA[5]

Let's look at this command in schematic format:
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As can be seen, we just described a circuit outside the FPGA. We also now have a
register feeding another register. This is the standard path analysis done on every path inside the
FPGA.

Step 3) Determine the default setup and hold relationship between the
FPGA clock and virtual clock

This step requires the user to determine the setup and hold relationship between the clock
inside the FPGA and the virtual external clock. This is usually very straightforward, as in most
cases the launch clock and latch clock have the same period and are edge aligned, and hence
have a setup relationship equal to the clock period, and a hold relationship of Ons, as shown in
the top-left example:

Default Setup and Hold Relationship

Examples
=1
1
10ns launch clock | 10ns launch clock
\\‘__— ! wi/2ns shift
—
k :
10ns latch clock : 10ns latch clock
i
Setup = 10ns | Setup = 8ns
Hold=0ns i Hold=-2ns
___________________________________________________________ O
1
1
10ns launch clock | 10ns lanch clock
| w/2ns shift
]
1
|
10ns latch clock i 10ns latch clock
Falling Edge Register | W/ 2ns phase shift
1
Setup = Ins H
-5 Setup = 2ns
=_ ]
Hold =-3ns & Hold = 8ns
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For 1/0, the virtual clock will be the launch clock for input constraints, and the latch
clock for output constraints. I've shown a few more cases, but won't delve into too much detail
on how to determine the setup and hold relationship, which is covered in-depth in Timing
Analysis Basics.

Rather than delve into calculating the relationship, I'll show how TimeQuest will show
the relationship it is using, and hence the user doesn't have to figure it out beforehand. For
example, a user might have a 100MHz clock coming into the FPGA, which goes through a PLL
and drives data out at 100Mbps. After following the previous steps, the user creates a 10ns
external clock and applies it to the output ports like so:

create_clock -period 10.0 -name tx_clk_ext
set_output_delay -clock tx_clk_ext -max 0.0 [get_ports {TX_DATA[*] TX_PAR}]
set_output_delay -clock tx_clk_ext -min 0.0 [get_ports TX_DATA[*] TX_PAR}]

In this example, they've created a virtual clock called tx_clk_ext. They also said the ports
TX_DATA[*] and TX_PAR drive external registers clocked by tx_clk_ext, and the max and min
delay to those registers is 0.0ns. Since the internal clock also has a period of 10.0ns, and neither
is phase-shifted, then the default setup relationship is 10.0ns and the default hold relationship is
0.0ns. If the user is unsure of this, they can read in the .sdc file using the iterative method and
run report_timing to those ports. In TimeQuest's pull-down menu: Reports -> Custom Reports -
> Report Timing. Simply put the virtual clock name, tx_clk_ext, in the To Clock section, and run
report_timing twice, once for setup and once for hold. In this example, I got the following two

reports:
setup: -> bx_clk_ext o
Command Info Summary of Paths ] Command Info  Summary of Paths ]
Slack |From Node |To Mode |Launch Cl... |Latch Clock ations. .. ock Skew |Data Delay Slack | From Mode To Node [ Launch Clock | Latch Clock {ationship ock Skew | Datz

1 220 st br d b cl be_cl d (.000 I 1 9 =t bc d b cl be_cl i LI I
214.040 |inst8[1] be_data[1] |b_clk be_clc_ext  §110.000 2.454 3.486 215.345 |domaininst Tinst4 |bc_par be_clk be_clk_ext 000 2 380 258
314180 |inst8]0] be_data[l] |bx_clk be_clk_ext 0.000 2.453 337 35640 |inst3[0] be_data(l] |be_chk be_clk_ext 000 2 368 325
414484 | instTinstd |b_par be_clk be_clk_ext  §110.000 2 467 3.029 415778 |inst8[1] be_data[1] |be_chk be_clk_ext 000 2 368 3.43
514664 |inst8]2] be_data[Z] |be_clk be_clk_ext 0.000 2.455 2.861 516515 |inst8[3] be_data[3] |be_chk be_clk_ext 000 2 369 4.16
Path & < D Sia 1S | Path 3 Dl Si3 IS

Path Summaryl Statistics Data Pat aveform Path Summary ] Statistice Data Path om ]

Data Arrival Path Data A al Pat

Total Incr RF & Fanout Location Element Total cr RF Tvp Fanout Location Element

11| 0.000 0.000 ) launch edge time 1] 0.000 0.000 . launch edge tir
12 [ 2454 2.454 clock path 2 2370 2370 clock path
|11 & 6.760 4306 data path 14| = 5188 2819 data path

< | > <

Data ] el At D 3 Ren =d Patl

Toatal Incr RF Type Fanout Location Element Tatal Incr RF Type Fanout Location Element

|1 | 10.000 10.000 lstch edge time 1 0.000 0.000 latch edge time
|2 [ 10.000 0.000 clock path 2| = 0.000 0.000 clock path
|4 | 93580 -0.020 clock uncertainty 4] 0020 0.020 clock uncertair
15 | 9.980 0000 |F obx 0 PIN_31 bx_data[3] 5| 0020 0000 |R oFxt 1] PIN_34 tx_data[?]

The left panel is the setup analysis, and the Relationship column, shown in red, is 10ns.
This is expected, as we have a 10ns clock feeding another 10ns clock. Below the Summary of
Paths is the detail for the first path. The 10ns is used such that the launch edge time is Ons and
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the latch edge time is 10ns. Likewise for hold analysis, the relationship is Ons. The launch edge
time is Ons and the latch edge time is Ons.

So what is this really saying? When the launch clock comes into the FPGA, travels to the
source register, which is the output register in this case, then through the output port to the
external register, it must get there in greater than Ons(the hold relationship) and less than
10ns(the setup relationship). Since our external -max and -min delays are Ons, i.e. there is no
external delay, than the delay within the FPGA must be greater than Ons and less than 10ns. At
this point, we have a full constraint that TimeQuest can analyze, but it is probably not the
analysis we want.

Step 4) Add multicycles

This step is usually unnecessary. But if step 3) resulted in a default analysis that is
incorrect, the user may want to modify the setup and hold relationships with multicycles. The
most common cases for this are when the user wants to open the window or shift the window.
Note that we are not accounting for external delays like the Tsu or Tco of an external device or
board delays, as that will be done in step 5. This step is just to make sure the clock relationships
are correct.

An example would be interfacing to a flash device that takes multiple clock cycles to
perform each operation, than the user may want to open the window. An example may look like
S0:

set_multicycle_path -setup -to [get_ports {FLASH_DATA[*]}] 4
set_multicycle_path -hold -to [get_ports {FLASH_DATA[*]}] 3

These two assignments tell TimeQuest that there are 4 clock cycles for the
FLASH_DATA to get out of the FPGA. So if the original setup and hold relationships were
10ns and Ons, they would now be 40ns and Ons(assuming the clock period is 10ns).

If the clock inside the FPGA has a phase-shift, generally through a PLL, and the external
clock does not, then the user may want to shift the window. For example, if the FPGA clock
feeding an output register were phase-shifted -500ps in order to help meet output timing, the
default setup relationship would be 500ps. To shift the window, the user would add:

set_multicycle_path -setup -to [get_ports {FLASH_DATA[*]}] 2
or:
set_multicycle_path -setup -from [get_clocks {pll|clIk[0]} -to [get_clocks clk_ext] 2

The first one modifies the clock relationship on the output path, while the second one
modifies all relationships between these clocks. Either one of these will work as long as they
cover what the user wants covered. If the clocks have a 10ns period, the multicycle will modify
the setup relationship from 0.5ns to 9.5ns, and the hold relationship from -9.5ns to 0.5ns.

Note that if the FPGA clock were phase-shifted forward a little, then a multicycle would
most likely not be necessary. If the default setup relationship were 10ns, and the source clock
inside the FPGA were phase-shifted 500ps forward, then the default relationship would become
9.5ns, which is probably what the user wants.
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Inputs work the opposite, whereby if the user phase-shifts the latching clock inside the
FPGA forward a little, then they probably want a multicycle to shift the window, but if they
phase-shift the clock back, they probably do not. This is easily seen by drawing the launch and
latch clock waveforms, as explained in the section on default setup and hold, specifically the
affect of phase-shifts.

Step 5) Modify the -max and -min delays to account for external delays.

Now that we have the correct setup and hold relationship, it is time to modify the -max
and -min values. They are currently set to 0, which means there is no external delay to the
register. This allows the entire data window to be used by FPGA delays. In reality, part of the
data window is used by the external device and board delays, only leaving part of the data
window for the FPGA. The -max and -min values account for these external delays. Let's see
how they affect the analysis before determining how they account for external delays.

With both -max and -min at 0, we are stating that there are no external delays, and
basically have no affect on the analysis. As the -max value gets larger, it cuts into our setup
relationship. So if the our default setup relationship were 10ns, and the -max output delay were
4ns, that would mean the FPGA must get it's data out in less than 6ns to meet timing. Note the
setup relationship is still 10ns, but the FPGA's delay plus the external delay must be less than
that. So the larger -max gets, the more quickly the FPGA needs to get its data out and the harder
it is to meet timing. As the -max value gets larger, the FPGA needs a faster Tco.

The -min value is often more confusing because it works in the opposite way, whereby
the smaller it gets, the harder it is to meet timing. If the hold relationship is Ons, and the -min
value was -1ns, then the only way to meet timing would be for the FPGA to get its data out in
more than 1ns. Looking at this through waveforms:

(ns 10ns

_ —»  Setup = 10ns

L 4 T
ext el — Hold=0ns

foga. clk _ \—I setontout, delay —max 4.0

- T set_outout_delay —min -1.0

The top waveform shows the default relationships, while the second waveform shows
what happens after accounting for the external delays. Rather than the FPGA needing to get it's
data out between Ons and 10ns, it must now get out between 1ns and 6ns. Likewise, for internal
paths, if a user entered similar external delays:

19



- —»  Setup = 10ns

¥ T
foea clk —— Hold=0ns

stk ——— lns | dns set_input_delay —max 4.0

k Y set_input_delay —min -1.0
foga..clk

It may seem confusing that the green and purple arrows do not start at the same point.
What's being shown is that when the external clock launches data, it can take anywhere from -
1ns to +4ns to reach the FPGA. We use the larger number for the setup analysis, and the smaller
number for the hold analysis.

How these external delays are actually added into the timing reports is shown in the
upcoming section on correlating constraints to the timing reports.

One thing to note is that, as the difference between -max and -min values grows, the more
difficult it is for the FPGA to meet timing. In the output example above, the default relationship
says the data must transfer between Ons and 10ns. As the external delay spreads from our
original placeholder of Ons for -min and -max, to -1ns and 4ns, the external device now uses 5ns
of that 10ns window, and so the FPGA only has 5ns to work with. | wanted to point this out,
because users often don't see the relationship right away, and it often helps with understanding.

So now that we conceptually know how the external delays work, let's account for real
external delays by looking at the output side first:

External device parameters:
Tsu_ext = Tsu of external device
Th_ext = Th of external device
Data delays on board:
Max_fpga2ext = Max board delay to external device
min_fpga2ext = min board delay to external device

set_output_delay -max = Tsu_ext + Max_fpga2ext
set_output_delay -min = -Th_ext + Min_fpga2ext

For input constraints, they look like so:

External device parameters:
Tco_ext = Tsu of external device
minTco_ext = Th of external device
Data delays on board:
Max_ext2fpga = Max board delay from external device to FPGA
min_ext2fpga = min board delay from external device to FPGA
Clock delays on board:
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Max_clk2fpga = Max delay from board clock to FPGA
min_clk2fpga = min board delay from clock to FPGA
Max_clk2ext = Max delay from board clock to external device
min_clk2ext = min board delay from clock to external device

set_input_delay -max = Tco_ext + Max_ext2fpg
set_input_delay -min = minTco_ext + min_ext2fpga

The user could actually put variables and equations into their .sdc file, which is shown in
the Tcl Syntax section.

Note that these equations did not take into account board level clock skew, and is
basically assuming the clock to the FPGA and external device are equivalent. There is a very
nice .sdc constraint for entering board-level clock delays, which I will show in a second, but
what | see most users do is roll their board-level clock skews into the -max and -min values.
(Note that clock skew is positive when the delay to the destination is larger than the delay to the
source). Anyway, rolling clock skew into the delays looks like so:

External device parameters:
Tsu_ext = Tsu of external device
Th_ext = Th of external device

Data delays on board:
Max_fpga2ext = Max board delay to external device
min_fpga2ext = min board delay to external device

Clock delays on board:
Max_clk2fpga = Max delay from board clock to FPGA
min_clk2ext = min board delay from clock to external device
Max_clk2ext = Max delay from board clock to external device
min_clk2fpga = min board delay from clock to FPGA

set_output_delay -max = Tsu_ext + Max_fpga2ext - (min_clk2ext - Max_clk2fpga)
= Tsu_ext + Max_fpga2ext - (min_clk_skew)

set_output_delay -min = -Th_ext + min_fpga2ext - (Max_clk2ext - min_clk2fpga)
=-Th_ext + min_fpga2ext - (Max_clk_skew)

For input constraints:

External device parameters:
Tco_ext = Tco of external device
minTco_ext = min Tco of external device
Data delays on board:
Max_ext2fpga = Max board delay from external device to FPGA
min_ext2fpga = min board delay from external device to FPGA
Clock delays on board:
Max_clk2fpga = Max delay from board clock to FPGA
min_clk2fpga = min board delay from clock to FPGA
Max_clk2ext = Max delay from board clock to external device
min_clk2ext = min board delay from clock to external device

set_input_delay -max = Tco_ext + Max_ext2fpg - (min_clk2fpga - Max_clk2ext)
= Tco_ext + Max_ext2fpg - (min_clk_skew)

set_input_delay -min = minTco_ext + min_ext2fpga - (Max_clk2fpga - min_clk2ext)
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=minTco_ext + min_ext2fpga - (Max_clk_skew)

Here's a diagram:

External Transmit Device FPGA External Receive Device

ext2fpga fpgalext
Device Datasheet- > i > Device Datasheet: |
]

I&Q ] E&kl
| minTco | Ib

>
*
»
>

clk2ext
clkZext

clk2lpga
clk2lpga

The on-board clock source is shown twice, once for the input and once for the output, but
often they are the same source.

Again, the equations are given above, and | find most people roll their clock delays into
the FPGA -max and -min values. That being said, SDC has a very nice constraint that allows the
user to enter board-level clock delays externally:

set_clock_latency -source -late 2.0 [get_clocks clk_fpga]
set_clock_latency -source -early 1.8 [get_clocks clk_fpga]
set_clock_latency -source -late 2.3 [get_clocks clk_ext]
set_clock_latency -source -early 2.1 [get_clocks clk_ext]

TimeQuest will then properly roll these into the timing analysis. This is very nice in that
it simplifies worrying about clock skew, what sign to use and whether to add or subtract delays,
as the analysis takes care of it all for you. Whether you want to roll board-level clock delays
into the external -max/-min delays, or use set_clock_latency, is purely up to the user’s
preference. If done correctly, the analysis will be the same either way.

Analyzing Results

This is one of the most important sections for getting started, not because it's overly
difficult, but because most other documents gloss over the analysis. | see time and time again
where users concentrate on their .sdc files without understanding what it will look like in the
final analysis. Knowing what your constraints will look like when analyzing a path is one of the
most important skills, since it completes the user's understanding and lets them correlate their
.sdc input to the back-end analysis, and from their determine how the FPGA delay’s affect

timing.
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The lterative Methodology

When entering constraints, users will make mistakes, and want a quick method to modify

their .sdc files, analyze the results, then repeat. First, launch TimeQuest, either from the Tools
pull-down menu or the TimeQuest button:

Window Help

Run EDA Simulation Tool

-

I s

Run EDA Timing Analysis Toal

Launch EDA Simulation Library Compiler
E Launch Design Space Explorer

@] TimeQuest Timing Analyzer
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L L3

Once open, the first thing I would recommend clicking on is the Task's Macro "Report all
Summaries"”, shown below:

x

L L3

ER TimeQuest Timing Analyzer Summary S
BH SOC File List

BE Summary (Setup)

% Summary (Hold)

Summary {Recovery)

Summary (Remaoval) b

s

s
o
s

L

& Open Project...

5 Netlist Setup

------ B Create Timing Metlist

------ # Read 5DC File

------ # Update Timing Netlist

5 Reports

B3 Slack

--E% Report Setup Summary
B Report Hold Summary

> ----- % Report Recovery Summary
..... BH Report Removal Summary
.3 Report Minimum Pulse Width Summary
-5 Datashest

B Report Fmax Summary
.. Report Datashest

-5 Device Specic

----- B Report TCCS

----- EH Report RSKM

----- B Report DDR

----- B Report Metastability
-5 Diagnostic

..... % Report Clocks

----- EB® Report Clock Transfers

----- B Report Unconstrained Paths
----- B Report SDC

----- % Report lgnored Constraints
----- BH Check Timing

----- B Report Parttions

B3 Custom Reparts

----- 1 Report Timing...

----- ] Report Minimum Pulse Width...
----- ] Report False Path...

..... D Report Path...

----- | Report Exceptions...

----- ] Report Bottlenecks...

----- ] Report Met Timing...

----- [] Create Slack Histogram...
El-5 Macros

----- EH [Report All Summaries|

----- E&l Report Top Failing Paths
----- B Report Al 140 Timings

----- E® Report All Core Timings

----- BH Create All Clock Histograms
D Wwite 5DC File...

B Resst Design

] Set Operating Conditions. .

Doing so will run the three steps in Netlist
Setup. These are:
1) Create Timing Netlist. The default is to
create a slow timing model netlist. If the user
wants a different netlist, they should access
Create Timing Netlist from the Netlist pull-down
menu.

2) Read SDC file will read in the user's SDC
files. If any were added in Quartus Il's
Assignment -> Settings -> TimeQuest or -> Files,
they will be read in, otherwise TimeQuest will
look for any .sdc files matching the project name.
If the user makes changes to the TimeQuest .sdc
list in Quartus 11, they must re-launch TimeQuest
for those changes to take affect.

3) Update Timing Netlist will then apply the
SDC constraints to the design netlist.

4) The Report All Summaries macro will the run
Setup, Hold, Recovery, Removal Summaries, as
well as Minimum Pulse Width checks. This is
basically a summary analysis of every
constrained path in the design. (Device Specific
checks are not run...)

The iterative method is when the user
makes a change to their .sdc. | recommend user's
edit .sdc files from within TimeQuest or Quartus
I. Besides syntax coloring, there are pop-ups to
assist command syntax, as well as the power of
entering constraints with a GUI using the SDC
editor's Edit -> Insert Constraint.

Once a user modifies their .sdc file and
saves it, they should double-click Reset Design.
This takes TimeQuest back to the point where it
has created the timing netlist but not yet read in
the .sdc files. Double-clicking Report All
Summaries will re-read in the edited .sdc files
and re-create the timing summaries.
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In essence, the iterative method is:

1) Open TimeQuest

2) Double-click "Report All Summaries”
3) Analyze results

4) Make changes to .sdc file and save
5) Double-click "Reset Design"

6) Double-click “Report All Summaries
7) Analyze results

8) Repeat steps 4-7 as necessary.

Be aware that this method just re-runs timing analysis using new constraints, but the fit
being analyzed has not change. The place-and-route was run with the old constraints, but the
user is analyzing with new constraints, so if something is failing timing against these new
constraints, it may just be that the user needs to run place-and-route again.

For example, the fitter may concentrate on a very long path in the user’s design, trying to
close timing. Within TimeQuest, the user may realize this path runs at a lower rate, and so they
add set_multicycle_path assignments to open the window. Running TimeQuest iteratively with
these new multicycles, those paths no longer show up but something else does. The paths may
have sub-optimal placement since the fitter was concentrating on the other paths when it ran,
since they were more critical. The iterative method is recommend for getting the .sdc files
correct, but the user will have to re-run a full compile to see what Quartus Il can do with those
constraints.

A diving tool

The previous section had users run "Report All Summaries™. This will run the four major
types of analysis on every constrained clock domain in the design: setup, hold, recovery and
removal. The top-left TimeQuest box is called Reports, and is similar to a table of contents for
all the reports created. Highlighting any name in the Report's box will show that report in the
main viewing pane. Below is a design with the Summary (Setup) report highlighted:

4k Quartus Il TimeQuest Timing Analyzer - C:/waveforms/design/1_original/top - top
File Edit View Metlist Constraints Reports Script Tools Window Help

B eport_

ER TimeQuest Timing Analyzer Summary Clack Slack | End Poirt TNS
% :%VCE“;TETJL{O Timing 1 fthe system plllaltpll componentiauto generatediplliclke[1] 0.373 Copy Ccrl4c
= |2 |x_clk_ext 3.220 |0.000 Select Al Ctrl+A
B2 Summary I'HDICI} |3 _|the_system_plllaltpll_componentlauto_generatedipll1iclk[0]|5.526 | 0.000
T —— IEF!ecuvery} 4_the_adCJ:IIaltpll_compnnentautu:n_qenevatedpl”clk[2] 5623 |D.000
Summary (Femaoval) 5 Jsys_ck 6.975 0.000 Create Setup Slack Histogram
% Summary (Minimum Pulse Width) ﬁ_tx_clk 7.562 |0.000
% Clocks Summany _f"_the_adc:JJII altpll_componentiauto_generatedipll Ticlkc[1]  (8.752 |0.000
8 |adc_clk_100_ext 5408 |0.000
|9 |the_adc_pllisttpll_componentisuto_generatedipllTiclke[0] | 18.962 |0.000
|10 |adc_clk 19.127 |0.000

The main viewing pane shows the Slack for every clock domain. For example, row 5
says that, for every path where sys_clk feeds the destination register, the worst slack is 6.975ns.
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Positive slack is good, saying these paths meet timing by that much. The End Point TNS stands
for Total Negative Slack, and is the sum of all slacks for each destination and can be used as a

relative assessment of how much a domain is failing.
Of course, this is just a summary. To get details on any domain, the user should right-

cl

ick that row and select Report Timing...

4 Report Timing g|
Clocks
Fram clock: hd
1 T
rTD clock: the_syskem_pll| altpll_component | auto_generated|pllt | clk[0] A
Targets
Frarm: EI
Through: E]
=

Analysis bype Paths

(%) Sstup Repart number of paths: 10

' Hald Maxirnurn number of paths per endpaoint;

O Rerovery Maxirnurn slack limit: nis
O removal [ Pairs anly

Cubpuk

Detail level; Path only

Report panel name:

[] File name:

[] console

Tcl command:

~{a

File options

Overwribe Append

-panel_name {Setup: the_system_pll|altpll_component|auto_generated|pllt | clk[0TF

| | Set Default

Setup: the_sysktem_pll|altpll_component|auto_generated|plll|clk[0]

Open

[Report Timing] [ Close

J

Help

]

report_timing
The command report_timing is by far the most important analysis tool in TimeQuest.
Many designs require nothing but this command. Because of this, | recommend the user typing
"report_timing -long_help" in the TimeQuest console, just to see every option available. This
command can be accessed from the Tasks menu on the left, from the pull-down menu Reports ->
Custom Reports pull-down menu, and by right-clicking on just about anything in TimeQuest.

The report_timing dialogue box
appears, auto-filled with the Setup
radio button selected and the To
Clock filled with the selected clock.
This is done because the user was
looking in the Setup Summary
report, and right-clicked on that
particular clock. As such, the worst
10 paths where that is the destination
clock will be reported. The user can
modify the settings any way they
want, such as increasing the number
of paths to report, adding a Target
filter, adding a From Clock, writing
the report to a text file, etc.

Note that any report_timing
command can be copied from the
console at the bottom into a user-
created Tcl file, so that a user can
analyze specific paths again in the
future without having to click so
many buttons. This is often done as
users become more comfortable with
TimeQuest and find themselves
analyzing the same problematic parts
of their design over and over, but is
by no means required. Many
complex designs successfully use
TimeQuest as a diving tool, i.e. just
starting with summaries and diving
down into the failing paths after each
compile.
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Looking at the screen-shot above, the major options are shown for report_timing. The From
Clock and To Clock filter paths where the selected clock is used as the launch or latch. The pull-
down menu allows you to choose from existing clocks(although admittedly has a "limited view"
for long clock names).

The Targets for From and To allow the user to report paths with only particular
endpoints. These are usually filled with register names or 1/0 ports, and can be wildcarded. For
example, a user might do the following to only report paths within a hierarchy of interest:

report_timing -from *|egress:egress_inst|* -to *|egress:egress_inst|* -(other options)

If the -from/-to/-through options are empty, then it is assumed to be *, i.e. all possible
targets in the device. The -through option is to limit the report for paths that pass through
combinatorial logic, or a particular pin on a cell. My experience is this is seldom used, and
troublesome to rely on due to combinatorial node name changes during synthesis. | try to only
use -from and -to options when possible. Also, the [...] box after each target will open the Name
Finder, which is a GUI for searching on specific names. This is especially useful to make sure
the name being entered matches nodes in the design, since the Name Finder can immediately
show what matches a user's wildcard.

The Analysis type will be -setup, -hold, -recovery or -removal. These will be explained
in more detail later, as understanding them is the underpinning of timing analysis.

The Detail level, -detail, is an option often glanced over that should be understood. It has
four options, but I will only discuss three. The first level is called Summary, and will only give
Summary information, specifically the Source Register, Destination Register, Source Clock,
Destination Clock, Slack, Setup Relationship, Clock Skew and Data Delay. The summary report
is always reported with more detailed reports, so the user would choose this if they want less
info. A good use for summary detail is when writing the report to a text file, where -detail
summary can be quite brief.

The next level is -detail path_only. This report gives all the detailed information, except
the Data Path tab will show the clock tree as one line item. This is useful when the user knows
the clock tree is correct, and does not want to be bothered with all the details. This is common
for most paths within the FPGA. A useful data point is to look at the Clock Skew column in the
summary report(which is shown for all options of -detail), and if it's a small number, say less
than +/-150ps, then the clock tree is well balanced between source and destination.

If there is clock skew, the detail option should be set to -detail full_path. This breaks the
clock tree out into explicit detail, showing every cell it goes through, including such things as the
input buffer, PLL, global buffer(called CLKCTRL_), and any logic. If there is clock skew, this
is the way the user determines what in their design is causing the clock skew. The -detail
full_path option is also recommended for I/O analysis, since only the source clock or destination
clock is inside the FPGA, and therefore its delay plays a critical role in meeting timing.

Here are screen-shots of the same path analyzed with -detail summary, -detail path_only,
and -detail full_path. Note that the clock delays are identical between path_only and full_path,
but full_path has more details:
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Quartus 11 9.1 added the +/- feature to the Data Path report, whereby a user can "roll-up”
their clock and data path. So -detail full_path can be used all the time, and the user would roll-
up the clock tree if they don’t need it. The -detail path_only is more useful is when writing to a
text file, which does not have the roll-up feature, or when locating a path to the Chip Planner, so
it does not also locate the clock path.

The Data Path tab of a detailed report gives the delay break-downs, but there is also
useful information in the Path Summary and Statistics tabs, while the Waveform tab is useful to
help visualize the Data Path analysis. | would suggest taking a few minutes to look at these in
the user's design. The whole analysis takes some time to get comfortable with, but hopefully is
clear in what it's doing.

Report_timing also has the Panel Name, which is what name will be used in TimeQuest's
Report section. There is also an optional -file, which allows the user to write the information to a
file. If they name the file <filename>.htm, it will write out an HTML report.

The command report_timing shows every path. Two endpoints that have a lot of
combinatorial logic between them might have many different paths. Likewise, a single
destination may have hundreds of paths leading to it. Because of this, the user might list
hundreds of paths, many of which have the same destination and might have the same source.
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Path #1: Setup slack is 6.975
Fath Summary | Satisics Data Path | Wavefom |

The checkbox option pairs only, will only list one path for each pair of source and destination.
An even more powerful way to filter the report is limit the Maximum Number of Enpoints per
Destination. | often set this to 1 and re-run timing analysis.
Finally, at the bottom is the Tcl Command, which shows the Tcl syntax of what is run in
TimeQuest. This can be directly edited before running the command. One thing I commonly
add is the -false_path. With this option, only false paths will be listed. A false path is any path
where the launch and latch clock have been defined, but the path was cut with either a
set_false_path assignment or set_clock _groups_assignment. Paths where the launch or latch
clock was never constrained are not considered false paths. This command is useful to see if a
false path assignment worked and what paths it covers, or to look for paths between clock
domains that should not exist. Note that the Task window's Report False Path is nothing more
than report_timing with the -false_path flag enabled.

Correlating Constraints to the Timing Report

One skill that is seldom explained is how timing constraints show up in the report_timing
analysis. Most constraints only affect the launch and latch edges. Specifically, create_clock and
create_generated_clock create clocks with default relationships. The command
set_multicycle_path will modify those default relationships, while set_max_delay and
set_min_delay are low-level overrides that explicitly tell TimeQuest what the launch and latch
edges should be. Let's look at the report_timing on a particular path. The top row is setup
analsys, and the bottom row is hold analysis.

Path #1: Setup slack is 10.975

lunch edgetime |
clock path

FF_x24_Y2_ M3

data path
o |1 FF_x24_Y2_N23 co8s_domain:NoPLL_CrossCocksinat7
FFCELL 1 FF_X24_Y2_N23 NoPLL_CrossClocksingt Ty
FC 1 LCCOMB_¥26_Y2_ N2 | NoPLL_CrossClocksinet 10datac
FF ElL 1 LCCOMB_¥28 Y2 N2 NoPLL_CressClocksinat 10combout
FF ic 1 FF_¥28 Y2 N3 HoPLL_CroasCocksinatBd
FF B 1 FF_X24_Y2_N3 cmss_doman:NoPLL_CrossClockainatd

cvoss_domain NoFLL_CrossClocksiinat 8

chock path
= 338 0953 dats path
FF_XQ4_Y2NE
FF_X24_Y2_NE3 MoPLL CroseClocksing T

LOCOMB_X24_YZ_N2 | NaPLL_ CrossClocksinat 10datec

FF_X24 Y2 N3
FF_X24_Y2_N3

MoPLL_CrossClocksine &d

cross,_domain:NoPLL_CrossClocksinet7

LOCOME _X24_Y2_N2 | NoPLL_CrossClockesinst 1ficombout

cross_domain:NoPLL_CrossClocksinat 8

FF_X24_Y2_N3

Path Summary | Statstics  Data Path | Warwefom |
2 Arvival

1

1

]

[a]= 338 0553 dxapath

5] 26 0m Yoo 1 FF 324 _Y2_N23 roms,_doman HoPLL CroseClocksinet?
[5] 266 000 FF cB 1 FF 28 Y22 HoPLL_CreasCiocisina7a

| e ewr FF € 1 LCCOMB_<26_¥2 N2 _|NoPLL_CromsCiocksina 10catac

2] 3% 00 |FF <o 1 LCCOMB 28 Y2 N2 _|NoPLL CrweClocksing 1combeut
[ im0 000 FFKC 1 FF_J28_Y2 NoPLL_CrassClocksinat B

0 A% 0AM PP CEL 1 FF e _Y2_ rom_coman NoPLL CroseClockainst?

B[

=
[ Tome o
Bl e e :
7 7 3] 27 [ 2u7 R clock rstwork deley.
deta path mEEG nane s pah
257 0232 iTeo 1 FF_X24 Y2 _N23 cross_doman:NoPLL_CrossClocksinat 7 2579 0232 Teo 1 FF_X24 Y2 N23 cross_domain NoPLL_CrossCockains7 5] 25739 | omm T 1 FF_Q4_T2_NI3 croms_doman NoPLL_CrossClocksing 7
257 | 0000 RR CELL 1 FF_x24_Y2_N23 MaPLL_CressCockslnat Tiq 2575 | 0000 RRCELL |1 FF_X24 Y2 N2 NoPLL_CrossClocksinst 7q O 257 0000 AR CELL 1 FF x24_v2 M) NoPLL Crosstlockaing T
282 [0246 RR IC 1 LOOOME_X24 Y2 N2 | NoPLL_CressClocksinat 10datac 2825 (0286 RR G 1 LCCOMB_#28_Y2 N2 NoPLL_CrossClocksinat 1 0datac : 2825 026 |RR T 1 LCCOMB_X24 Y2 N2 NoPLL_CrossCkeckalnat10datac.
3088 0.260 RF CELL 1 LOCOMB_X24_ Y2 N2 MNoPLL_CressClocksingt 10combout - 0.260 RF CELL 1 LCCOMB 24 Y2 N2 NoPLL_CrossCiocksirat 1 Ocombant |2 | 1085 0.2%0 ELL LCCOMB 04 Y2 N2 NoPLL_CrossClockain ) Dicombout
3065 | o000 |FF (= 1 FE_X24_Y2_N3 MNoPLL_CressClocksingt8d 3085 | 0000 |FF [ 1 FF_X24_¥2_N3 NoPLL_CrossCocksinst8d El 3085 | 0000 |FF 1 IFF_x24 Y2 W3 MoPLL_CrossClocksins &
EA Y] 0% FF CELL 1 FF_X24_Y2_N3 erose_doman:NoPLL_CreesClocksingt8 3961 0.07% F CELL 1 FF_X24 Y2 N3 erots_domain NoPLL CrossClocksinst® <
=
. il
imeh adontes | laich edge e 31
clock path lock path e
clock uncentsnty clock uncettarty 5] aaw 0020 clock Lncetanty
uTh 1 FF_X24_Y2_N3 crose_doman:NoPLL_CressClockeinet8 uTh 1 FF_X24 Y2 N3 erots_demain NoPLL_CrossClockeinm 8 6 4623 0186 uTh 1 FF_X24_Y2 N3 crom_doman NoPLL_CrosQockainm
create. clock —period 8.0 —name sys_clk [gef_ports sys_clk] set_multicycle path —from sys_clk —to sys. clk —setup 2 setmagz, delay —from sys_clk —to sys_clk 12.0

Setup ==> Launch at Ons. Latch at 8ns == 8ns Setup Relationship
Hold == Launch at Ons, Latch at Ons => (Jns Hold Relationship

set multicvele, path —from sys_clk —to sys._ clk —hold 1

Setup == Launch at Ons, Latch at 16ns == 16ns Setup Relationship
Hold == Launch at Ons, Latch at Ons => (Jps Hold Relationship

st min, delay —from sys clk —to sys_clk 2.0

Setup == Launch at Ons. Latch at 12ns == ]2ns Setup Relationship
Hold => Launch at Ons, Latch at 2ns => 2ns Hold Relationship

This is an eyeful, but going from left to right, we start with a clock driving the source and
destination registers with a period of 8ns. That gives us a setup relationship of 8ns(launch edge
= Ons, latch edge = 8ns) and hold relationship of Ons(launch edge = Ons, latch edge = Ons). In the
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middle column, we have added multicycles to open the window, making the setup relationship
16ns while the hold relationship is still Ons. In the third column, we use set_max_delay and
set_min_delay constraints to explicitly override the relationships. Note that the only thing
changing for these different constraints is the Launch Edge Time and Latch Edge Times for
setup and hold analysis. Every other line item comes from delays inside the FPGA and are static
for a given fit. Whenever analyzing how the user’s constraints affect the timing requirements,
this is the place to look.

For 1/0, this all holds true except we must add in the -max and -min values. They will be
shown as Type iExt or oExt. Let's look at an output port with a set_output_delay -max 1.0 and
set_output_delay -min -0.5:

Path Summary | Statistics Data Path lWavefunn]

Data T

Total i Element Total Incr RF Type Fanout Location Blement

1 0.000 0.000 launch edge time 1]  0.000 0.000 launch edge time
2] = 2254 2454 clock path 2] = 2362 2368 clock path

B L2454 2454 R clock network delay 3 l..2368 | 2368 R clock network delay
2] = 5340 3286 data path 2] = 578 3430 data path

5] |--2.686 0.232 uTeo 1 FF_X4_YS_N1 inst8[1] 5| L2600 | 0232 uTeo |1 FF_X4_Y5_N1 inst8[1]

6] 2686 0000 FF  CELL 1 FF_X4_Y5_N1 inst8[1)q a 2600 | 0000 |RR [CELL |1 FF_X4_Y5_N1 inst8[Tlq

7 3701 1015 [FF IC 1 IOOBUF_X0_YS_N3  |be_data[1]~outputi 7 l-3549 | 0343 |[RR I 1 IOOBUF_X0_Y3_NS |be_data]1] outputi
E |-5.940 2239 |FF CELL 1 IOOBUF_X0_YS_NS |bx_data[1I~outputio A .-5798 | 2249 |RR  (CELL |1 IOOBUF_X0_Y9_N3 |bx_data[1] outputio
< <

ta Required Path Data Required Path
Total RF Type F: Total Incr RF Type Fanout Location Element

g
2
5
8
g
|

1] 10000 10.000 Iatch edge time 1| 0000 0.000 latch edge time

2] = 10.000 0.000 clock path 2] & 0.000 0.000 clock path

3] T [oow |R clock network delay 3]  -0000 | 0000 |R clock network delay

4] 9920 £0.020 clock uncertainty 4] 0020 0.020 clock uncertainty

5| 8980 [l1000 |F oBd |0 PIN_28 be_data[1] 5| 0520 [os0 R 0Bt |0 PIN_28 be_data[1]
set.outont, delay —clock gxf,clk —max 1.0 [get. ports tx. datal set.outont, delay —clock exf clk —min -0.5 [gef, ports tx.datal

Once again, the launch and latch edge times are determined by the clock relationships,
multicycles and possibly set_max/min_delay constraints. The set_output_delay's value is also
added in as an oExt value. For outputs this value is part of the Data Required Path, since this is
the external part of the analysis. The setup report on the left will subtract the -max value,
making the setup relationship harder to meet, since we want the Data Arrival Path to be shorter
than the Data Required Path. The -min value is also subtracted, which is why a negative number
makes hold timing more restrictive, since we want the Data Arrival Path to be longer than the
Data Required Path.
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Section 2: Timing Analysis Basics

Basics of Setup, Hold, Recovery and Removal

When just learning digital design, usually in school, most designers learn about the setup
and hold of a register, calling them Tsu and Th. The Tsu is how long the data must be stable
before the clock edge and Th is how long it must be stable after the clock edge. If we violate
those requirements, the register can go metastable. These values are a characteristic of the
register, and are independent of the clock rates, the place-and-route of the FPGA, etc. We call
them micro-parameters, and when used, will reference them as the micro-setup and micro-hold,
or uTsu and pTh, of the register. These micro parameters are used by TimeQuest during timing
analysis, but they are NOT the fundamentals when we talk about setup and hold relationships.
For the most part, the user can ignore these micro parameters since they are always properly
calculated by TimeQuest, and should worry about the Setup Relationship and Hold Relationship.

The basic infrastructure of TimeQuest is based on clocks. Clock are first created and
applied to the design. Those clocks have relationships within their domain and to other domains.
Those relationships create a setup relationship and a hold relationship based on the clocks.
These relationships are the fundamental building block of static timing analysis.

Two quick notes before continuing:

Note 1: TimeQuest uses the terms Setup Relationship and Hold Relationship. 1 will try
to follow that nomenclature, but have always thought of them as requirements, and so may say
Setup Requirement or Hold Requirement, in which case | mean the same thing. The setup and
hold relationships are requirements for the fitter to meet, and are used to determine final timing
sign-off, so the two can be inter-changed.

Note 2: Whenever I refer to the Setup Relationship, I also mean the Recovery
Relationship. Any mention of the Hold Relationship also includes Removal Relationship.
Recovery and Removal are analogous to Setup and Hold, except they deal with signals driving
the asynchronous ports on the latching register. This is all discussed in the upcoming Recovery
and Removal section. For brevity, | will just write out setup and hold relationship, while
inferring recovery and removal.

TimeQuest, and static timing analysis for that matter, is based on the principle of
repeatable, periodic data relationships. In other words, they rely on clocks. Pretty much every
analysis begins with a launch clock and a latch clock. Let's look at a basic case:

fi o0
U1 1Uns

Launch Clock
L ——+ Setup=10ns

4 o — » Hold=0ns
Latch Clock ‘!—|_

This waveform is the fundamental case most users understand without even thinking
about it. The setup relationship is 10ns and the hold relationship is Ons. The setup relationship
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means that when the Launch Clock sends a rising edge, it must get to the latch register before the
Latch Clock's 10ns edge gets there. The hold relationship means it must get there after the Latch
Clock's Ons edge gets there. Note that this waveform is based on how the .sdc describes the
clocks. The Launch clock and Latch clock may be from a create_clock or
create_generated_clock statement, they may be the same clock or different clocks. The
relationships are the same regardless, as the Launch and Latch clocks are 10ns clocks, with rising
edges at Ons and falling edges at 5ns.

Let's look at how this applies to a schematic:

Data Arrival Path ,
sfc_reg dst reg
data_delay
lkc_dly
Launch Edge |——="9 >
Latch Edge dst_ck_dly
Data Required Path .

So let's look at this in equation form:

Data Arrival Path = Launch Edge + src_clk_dly + src_reg_uTco + data_delay
Data Required Path = Latch Edge + dst_clk_dly

So when we do a setup check on this path, the Data Arrival Path must get to the FPGA
before the Data Required Path's micro setup time(uTsu).

Data Arrival Path + uTsu < Data Required Path
Launch Edge + src_clk_dly + src_reg_uTco + data_delay <
Latch Edge + dst_clk_dly - dst_reg_uTsu

Let's look at this in an actual timing report:
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Setup: sys_dk

Command Info Summary of Paths

Slack | From Node

1 9,170 | cross demain:MoPLL CrossClockslinsts cross domain:NoPLL CrossClodksinst? sys ok

Path #1: Setup slack is 9.170

Statistics Data Path

Path Summary
Data Arrival Path

Total Incr RF Type
1 [0.000! 0.000
2 =t 3.260 3.260
3 3.280 320 R
4 = 3.875 0.615
5 3,360 0.100 uTco
[} 3.360 0.000 RR CELL
7 3,635 0,275 RR Ic
8 3.749 0.114 RR CELL
9 3.749 0.000 RR Ic
10 3.875 0.126 RR CELL
Data Required Path

Total Iner RF Type
1 10.000 10.000
2 = 13.197 3.157
3 13.166 3.166 R
4 13,187 0.031
5 13.177 -0.020
(] 13.045 -0.132 uTsu

To Node:

Waveform

Fanout

It bt b P s

Fanout

Location

FF X22 Y1 N3
FF X22 Y1 N3
LABCELL X22 Y1 N14
LABCFLL X22 Y1 N14
FF ¥X22 ¥1 N15
FF X22 ¥1 N15

Location

FF X22 Y1 N15

Launch Clock Latch Clock  Relationship Clock Skew Data Delay

sys ck 10.000 -0.063

Element

launch edge time

cdock path

dock network delay

data path

cross domain:NoPLL CrossClockslinsté
NoPLL CrossClocks|instalg

NoPLL CrossClocks|inst7~feeder [dataf
NoPLL CrossClocks |inst7~feeder jcombout
MoPLL CrossClockslinst7|d

cross domain:MNoPLL CrossClocks linst?

Element

latch edge time

clock path

dock network delay

cdock pessimism

dock uncertainty

cross domain:MNoPLL CrossClockslinst?

0.615

}
]

Launch Edge
+Launch Clock Delay
+Launch Reg uTco

+Data Delay

Latch Edge
+Latch Clock Delay

-Latch Reg uTsu

Data
Arrival
Path

Data
Required
Path

As can be seen, the Data Arrival Path starts with the Launch edge at Ons and adds all the

delays until it gets to the destination register. This results in a total delay of 3.875. The Data

Required Path starts at time 10ns and goes through the latch clock's delay to the destination
register, ending in 13.045ns. This meets timing since the Data Arrival Path is less than the Data
Required Path, and it's 8.963ns less, which is the slack on this path.

(Note that the clock path’s are a single line item. This is because | ran report_timing with
the option -detail path_only. If it were -detail full_path, then the clock tree would have been

broken out in more detail. This is explained in the report_timing section of Getting Started.)

The Waveform tab also shows this information, although at a higher-level. 1 find the two

tabs work together nicely, where the Waveform view helps users understand what is going on,
and if the path fails timing, the Data Path tab helps detail why it fails, giving individual delays,
placement information, Interconnect Delalys(IC), and Cell Delays(Cell).

Let's now look at the hold relationship of the same path. Going back to the waveform:

Launch Clock

Latch Clock

(nz

10n=

- I—l— ——+  Setup=10ns
'—I _"“*’—l— — » Hold=0ns

As can be seen, the hold relationship is Ons, i.e. the latch edge is now at Ons, and we want
our data to arrive after the latch edge in order to meet timing. Looking at the same path above in

a timing report:
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Command Info Suenmary of Paths

Slade  From Node To Node

Launch Clock | Latch Clock  Relabionship | Clock Skew  Diata Delay

1 0,396 oot domanchoPLl Crosslocks nstt | oross domaniNoPLL CrossCldafret?  sys ok zys ok 0. Do 0.063 0,534
Path #1: Hold slack s 0.396
Path Summary | Statsbics | Data Path Waveform
Data Arrival Path
Total Ing RF Type Fanout Locaton Elemen?
1 0.000 0,000 launch edoe tme
2 = 1166 3,166 Sodk path
3 3. 165 3. 165 R dlode nedwork delay
4 3700 0,534 dats path
5 3,265 0,100 uTom 1 FF X Y1 N3 aoss domain:MofLl CrossClodos insth
& 3.265 0,000 FF CELL 2z FF X22 Y1 N3 Mol CrossOocks rsStsla
7T 3.520 0. 254 FF Ic 1 LABCELL X232 ¥1 N14 MoPlL CrossCiods nst 7 ~feeder idataf
B 3.555 0.075 FF CELL 1 LABCELL X22 ¥1 Nid MoPLL Crosslioks brst Tadeader irombout
] 3,585 10,000 FF I FF X222 Y1 N15 MoPLL CrossCods lnst7id
10 3.0 0. 105 FF CELL FF X22 Y1 MN15 cross doman-NoPLL CrossClads inst?
Data Required Path
Total Incr RF Tiype Fanout Liscaken Element
1 0000 0,000 Iatch edos tme
2 —RE . 3,389 dodk path
3 3.260 . 260 R ok network delay
4 By ] 0.031 ok pesEmES
3 32499 0.0 o0k Lncer tanty
& 3304 0,055 WTh FFE X22 Y1 N1E cross _domain:HofLl CrossClocs linst?

—+ LaunchEdge
} + Launch Clock Delawy
T+ +LaunchEezulco

:|> + Data Delay

Latch Edge
} + Latch Clock Delay

-LatchReguTsu

Data
Arrival
Path

Data
Bequired
Path

Note that the differences between the setup and hold analyses are:
- The Launch and Latch Edges change. In this case the Launch Edge stayed the same,
but the Latch edge went from 10ns to Ons
- UTh is the micro parameter used for the Latch register instead of the uTsu.
- The Data Arrival Path is supposed to be greater than the Data Required Path. The slack
is Data Arrival Path - Data Required Path, while for setup it was Data Required Path - Data
Arrival Path. (This one is not apparent to everyone, but makes sense when you go back to the

original waveform.)

- The delays vary slightly. This is due to rise/fall variation, on-die variation, and other
timing model effects. For setup checks we wanted to compare the longest possible Data Arrival
Path to the shortest possible Data Arrival Path, while for hold checks we want the shortest
possible Data Arrival Path compared to the longest possible Data Required Path.

Hopefully these equations make sense and the user feels comfortable looking at their own
paths and analyzing the results. Note that most paths are internal to the FPGA, have the same
source and destination clock(are in the same clock domain), and that clock is on a global. When
these conditions exist, the launch and latch clock delays are close to equal and subtract out of the
equation, leaving the data path delay as the major component. This is what users often think of
for static timing analysis, whereby if they have 10ns clocks, the data delay must be greater than
Ons and less than 10ns. This is a simplistic approach, but approximately correct when the clock

delays are balanced.

Now that we've looked at how the initial clock waveform's default setup and hold
relationship are used to analyze a path, let's find out how those default setup and hold
relationships are calculated.
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Default Relationships

By default, all clocks are related in TimeQuest and hence have a default setup
relationship and hold relationship. This is easy to see when the clocks are straightforward, such
as the following which have the same period and are edge-aligned:

(ns 10n=
Launch Clock
—_—_ I—I I— —+ Setup=10ns
Y T — + Hold=0ns
Latch Clock

Most paths fall into this simple relationship, but it is important to understand how default
relationships are calculated for anything more complicated. Examples would include clocks with
different periods, clocks with phase-shifts or offsets, registers clocked on the falling edge, etc.

Determining Default Setup and Hold Relationships in Three Steps

There are three simple steps for determining default setup and hold relationships:

1) Draw clock waveforms based on SDC constraints

2) The default setup relationship comes from the closest edge pairs where Launch Edge
< Latch Edge

3) The default hold relationship comes from the closest edges where Launch Edge +
Setup Relationship < Latch Edge

4) Optional - Verify/Validate in TimeQuest

Note that | use equations for steps 2) and 3), but rely on the waveforms to really
determine the relationships, as we'll see. Let's go through these steps in more detail:

1) Draw clock waveforms based on SDC constraints

This is the step most users want to skip. Waveforms seem simple and the user can
picture them in their head, but note that I use TimeQuest every day, and still find benefit in
drawing out waveforms, no matter how simple they may be. So taking some SDC constraints:

create_clock -period 10.0 -name system_clk [get_ports system_clk]
create_clock -period 8.0 -name adc_clk -waveform {1.0 5.0} [get_ports adc_clk]
create_clock -period 10.0 sys_clk_ext
derive_pll_clocks
Info: Calling derive_pll_clocks {
create_generated_clock -name sys_clk \
-source [get_ports system_clk] sys_pll|c[0]
create_generated_clock -name sys_clk_shift -phase 90 \
-source [get_ports system_clk] sys_pll|c[1]

create_generated_clock -name alu_clk -multiply by 4 -divide_by 5\
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-source [get_ports system_clk] sys_pll|c[2]
}
create_generated_clock -name sys_div2 -divide_by 2\
-source sys_pll|c[0] [get_keepers sys_div_reg]

I show derive_pll_clocks since | recommend having that in the .sdc, but then show what
generated clocks were created from that, copied from the TimeQuest messages. | also shortened
the PLL names for readability. The final generated clock is on a divide-by-2 register in the
design.

Anyway, drawing out the waveforms shows:

create. clock -period 10.0 -name system._clk
svstem_clk [(get. ponts sustem..clk]
o - craare. clock -period 8.0 -name gde clk
i cl -waveform {1.0 5.0} [get. ports ade.clk]
svs.clk ext create..clock -period 10.0 sys..clk. ext
svs.clk creare. generated.clock -name gus clk

— — -source [get, ports system. ok sys pll c[0

sys.clk shift create. generated. clock -name sys. clk shift -phase 90
-source [gef, ports system..clid sys_plilc[ 1

alu.clk create. generated. clack -name gly, clk -multinly, by 4 -4l

-source [ger. ports svstem ok sys_pllcf2

svs_div_2

create generated. clock -name svs_div2 -divide by 2

-source sys_pll c[0] [gat Keepers sus.div..

The purpose of this is not to show how to draw waveforms. Instead, let's take note of a few
things:

- The waveforms are not dependent on the whether they are from create_clock or
create_generated _clock. System_clock comes in on a port, while sys_clk is the output of a PLL,
but their waveforms look the same.

- The waveforms are not dependent on their target. Clock sys_clk_ext is a virtual clock
that is not applied to any target, yet has the same waveform as system_clk and sys_clk.
Likewise, sys_div_2 is applied to a ripple clock register in the design, yet it's waveform is
aligned with the other clocks.

- Only explicit options in the .sdc affect the waveform. Clock adc_clk has a -waveform
option that offsets it by 1ns. Clock sys_clk_shift has -phase option that shifts it 90 degrees.
Clocks alu_clk and sys_div_2 use -multiply by and -divide_by that affect the waveform.
Nothing from the user’s HDL affects what the clock waveform looks like. Obviously the clocks

36



in the .sdc should match the clocks in hardware, the point is that making changes in the hardware

will not change these waveforms.

Now that we’ve drawn the waveforms, let's go to step 2:

2) The default setup relationship comes from the closest edge pairs where

Launch Edge < Latch Edge

This is an equation, but easier to do from our waveforms. In essence, assume every edge
launches data. Start with the first launch edge in your waveform and move forward to the
nearest latch edge AFTER the launch edge. A difference as littls as 1ps counts. Then go to the

next launch edge and repeat. Continue until a pattern shows up(values start repeating). The

smallest latch-launch value is the default setup relationship.

Let's look at a complicated example, where a register clocked by adc_clk feeds another
register clocked by sys_clk. As shown above, adc_clk is an 8ns clock with a 1ns offset, and

sys_clk is a 10ns clock. Finding the default setup relationship looks like so:

17ns

25ns

Ins 9ns
E—— N
Ons 10ns

—* Setup Relationship for Each Launching Edge

. 3ns

"‘\‘

20ns

33ns

41ns

——— Sns

]

— Ons

30ns

Setup Relationship = Most Restrictive Setup Relationship = 1ns

S50ns

The waveforms were drawn per step 1, then a line was drawn from every launch edge to
the nearest latch edge after it. The default setup relationship is the smallest of these lines. So in
this example, any transfers from adc_clk to sys_clk will default to a 1ns setup relationship. Note
that we’re not saying the other relationships don’t matter, but that if we can meet the 1ns
relationship then we’ve automatically met the other setup relationships. Of course, 1ns might be

too tight of a requirement, and we will shortly be analyzing exceptions, which tell TimeQuest

that the default relationship is not correct.

Now, the two clocks above are definitely strange, and most designs wouldn't transfer data
between them. Most transfers are between clocks that are edge-aligned, or perhaps have a
manual phase shift. Some common examples:
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Ons

10ns

20ns

Case #1: Setup Relationship = 10ns

Case #2: Setup Relationship = 2 5ns

sys_clk_div2

svs.clk

Case #5: Setup Relationship = 10ns

Case #1 is just a 10ns clock edge-aligned with another 10ns clock. In the original

constraints above, system_clk is what comes in the FPGA input port while sys_clk is this signal
going through the PLL. Even though the clocks are created differently and applied to different
targets in the design, they still have a 10ns setup relationship. Only once the placed and routed
design is analyzed will the skew between these clocks be analyzed.

Cases #2 and #3 deal with sys_clk and sys_clk_shift, which is the same period as sys_clk

but phase-shifted 90 degrees, or 2.5ns. When the latch clock is phase-shifted forward, the
amount of that phase-shift amount of 2.5ns becomes the setup relationship. When the launch
clock is phase-shifted forward, then (period - phase-shift) becomes the setup relationship.

Cases #4 and #5 deal with transfers between edge-aligned clocks, where one clock is a
multiple of the other clock. In each case, the period of the faster clock becomes the default setup
relationship.
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These are just common examples. If ever unsure, follow Step 2) for determining the
default setup relationship.

3) The default hold relationship comes from the closest edges where
Launch Edge + Setup Relationship < Latch Edge

Again this is an equation, but let's look at it from the waveforms. We have drawn them
out and determined the most restrictive setup relationship. For the hold relationship, we will
similarly assume that every launch edge sends data. So start with the first launch edge in the
waveform, moving forward by the amount of the Setup Relationship, and then look for the first
Latch Edge before that. Let's take our previous clock transfer used for the setup relationship:

Ins Ons 17ns 23ns 33ns 41ns
ade_clk
9 —
-1ns ’_\_ I \\H—?m-———""’/ o -5ns -———-"/\‘ 3ns—" -lns1/ \\\
svs_clk
Ons 10ns 20mns 30ns 40ns

—* Setup Relationship from Each Launching Edge

— > Hold Relationship for Each Launch Edge, found by moving
forward bv setup relationship and then back to first Latch Edge

Hold Eelationship = Most Restrictive Hold Relationship = -1ns

In the diagram we start at each launch edge and move forward by the setup
relationship(straight green arrow). We then move back to find the first latch edge before
that(curving blue arrow). The difference between the launch edge and latch edge is the hold
relationship, and TimeQuest will use the most restrictive one. Note that for hold, the most
restrictive is the largest number, since we need to make sure the data arrival path is larger than
the data required path by the hold relationship.

Rather than strange clock relationships like this, most designs have related clocks like the
following examples:
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Ons

10ns

20ns

—  Default Setup Relationship

—*  Default Hold Relationship

Case £1: Setup Relationship = 10ns

Hold Relationship = Ons

Case #2: Setup Relationship = 2.5ns

Hold Relationship = -7 5ns

Case #3: Setup Relationship = 7.5ns

Hold Relationship = -2 5ns

Case #4: Setup Relationship = 10ns

Hold Relationship = Ons

sys_clic_div2

svs.clk

Case #5: Setup Relationship = 10ns

Hold Relationship = Ons

- Note that Cases #1, #4 and #5 all have hold relationships of Ons. For transfers with
aligned edges, the default hold relationship will be Ons.

- The Ons hold relationship is independent of the clock period. The clocks in Case #1
could have a period of 1 Hertz, and the hold relationship would still be Ons. When designs have
a timing failure, users often try to slow the clock down until it works. This is often valid for
setup failures, but hold failures are generally immune and will fail at any frequency.

- Case #4 has different launch edges used for the setup relationship and the hold
relationship. There is no requirement that the launch edge be the same edge for setup and hold
analysis, it just works out that way most of the time. Remember that we assume all edges launch
data and all edges latch data. If the user only looked at the launch edge at 10ns, they would
determine the most restrictive latch edge to be at Ons, for a hold relationship of -10ns. By
looking at the other launch edges, specifically Ons, we find a more restrictive hold relationship of
Ons, that still meets our requirement of being less than the setup relationship.
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- Cases #2 and #3 are phase-shifted clocks. Note that the setup relationship - hold
relationship adds up to the clock period. This is not guaranteed, but for most clock relationships
this is true. It also makes sense, as that would be the fastest rate at which data can be passed
between these clocks.

4) Optional - Verify/Validate in TimeQuest

The previous three steps show how to determine the default setup and hold relationship.
They are mainly for understanding, since TimeQuest will be doing this on its own and reporting
it to the user. Since TimeQuest is doing this, all the user needs to do is run report_timing on a
path between the specified clock domains to get the relationships. For the difficult case above,
where the launch clock has an 8ns period with a 1ns offset, and the latch clock has a 10ns period,
we calculated the default setup relationship to be 1ns and the default hold relationship to be -1ns.
Running report_timing -setup and report_timing -hold between these clocks in TimeQuest

shows:
s: adc_dlkc-> sys_dlk oK
Command Info Summary of Paths | Command Info Summary of Paths |

Clock Skew |Data Delay Slack |From Node

Element

1 launch edge time 1 d launch edge time

2 | = 18988 9988 clock path 2_ B 4505 3505 clock path

3 i..18.988 55988 |R clock network delay 3_ 4905 3905 [R clock network delay

il EREEE 0.542 data path l4 | = 5402 0.457 data path

5 i--19.073 0.085 uTco FF_X12_Y10_N21 cross_domain:NoPLL_CrossClocksinst 5_ - 4,590 0.085 uTco FF_X12_Y10_N21 cross_domain:NoPLL_CrossClocksinst
6 i-.18.073 0.000 |RR CELL 2 FF_¥12_Y10_N21 NoPLL_CrossClocksinstlq 6 | 4590 0.000 |FF CELL 2 FF_X12_¥10_N21 NoPLL_CrossClocksinstig

7 -19.337 | 0284 |RR ic MLABCELL_X12_Y10_N22  |NoPLL_CrossClocksinst 10idataf 17 | 5245 | 0255 |FF c & MLABCELL_X12_Y10_N22 |MoPLL_CrossClocksinst 10idataf

8 --19.427 0080 |RF C 1 MLABCELL_X12_Y10_N22  |NoPLL_CrossClocksinst10icombout 8 5318 0.073 |FR [ 1 MLABCELL_X12_Y10_N22 |MNoPLL_CrossClocksinst 10icombout

9 {-19.427 0000 |FF | 4 1 FF_X12_Y10_N23 NoPLL_CrossClocksinst8id 3 | 5318 0.000 |RR 1 FF_X12_10_N23 NoPLL_CrossClocksinst8id

10 i-.19.530 0103 |FF ACELL 1 FF_X12_Y10_N23 cross_domain:NoPLL_CrossClocksinst8 [10] 5.402 0084 |RR CELL 1 FF_X12_Y10_N23 cross_domain:NoPLL_CrossClocksinst8
< B

Daf

Total Element Element

1_ 10.000 10.000 latch edge time 1 0.000 0.000 latch edge time
|2 [= 12513 2513 clock path HEEES 2.996 clock path
3_ L.12.913 2913 |R clock network delay 3_ 299 29% R clock network delay
4| 9&m3 3040 clock uncertainty la| 303 0.040 clock uncertainty
15 | 5771 -0.102 uTsu 1 FF_X12_Y10_N23 cross_domain:NoPLL_CrossClocksinst8 5_ 3.086 0.050 uTh 1 FF_X12_Y10_N23 cross_domain:NoPLL_CrossClocksinst8

The left timing report shows the setup analysis, where the setup relationship is 1ns. The
launch edge time is 9ns and the latch edge time is 10ns. Likewise on the right panel we see the
hold analysis, where the hold relationship is -1ns, shown with a launch edge time of 1ns and
latch edge time of Ons.

Now, we already knew this would be the setup and hold relationships based on our
analysis, but it's good to see the correlation with TimeQuest. Most importantly, if you're not
completely sure how to calculate a relationship, you can always have TimeQuest do it for you.

Points of Interest for Default Relationships

Now that we know how to determine default setup and hold relationships, there are some
points of interest worth noting:
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Falling Edge Analysis

Up until now, this section has assumed the registers are clocked on the rising edge, but
the analysis can also be done for registers clocked on the falling edge. Note that the steps for
determining setup and hold relationships should be run independently for these transfers. In
fact, when a user defines two clocks, TimeQuest determine 16 different relationships between
those clocks. For example, if we define sys_clk and adc_clk, TimeQuest determines:

sys_clk rising -> adc_clk rising setup relationship ~ sys_clk rising -> adc_clk rising hold relationship
sys_clk rising -> adc_clk falling setup relationship  sys_clk rising -> adc_clk falling hold relationship
sys_clk falling -> adc_clk rising setup relationship  sys_clk falling -> adc_clk rising hold relationship
sys_clk falling -> adc_clk falling setup relationship  sys_clk falling -> adc_clk falling hold relationship
adc_clk rising -> sys_clk rising setup relationship  adc_clk rising -> sys_clk rising hold relationship
adc_clk rising -> sys_clk falling setup relationship  adc_clk rising -> sys_clk falling hold relationship
adc_clk falling -> sys_clk rising setup relationship  adc_clk falling -> sys_clk rising hold relationship
adc_clk falling -> sys_clk falling setup relationship adc_clk falling -> sys_clk falling hold relationship

Now, in most designs these relationships will be the same for multiple scenarios. In
determining the default setup and hold relationship for falling edge registers, just follow the

same steps used, but the launch and/or latch edges should use the falling edge, depending on the

situation. For example, let's look at the clock transfers we've been using, but re-analyze them
when the source register is clocked on the falling edge:
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—_— Default Setup Relationship
Falling Edge Launch -> Rising Edge Latch

—_— Default Hold Relationship

Ons 10ns 20ns
system..clk

— T — - Case £1: Setup Relationship = 5ns
svs.clk I Hold Relationship = -5ns
svs.clk

'r-—"’h-""‘— — - Case #2: Setup Relationship = 7 5ns
svs.clk,_shift I Hold Relationship = -2 5ns
sws.clk, shift
— A
— TN Case #3: Setup Relationship = 2. 5ns

svs.clk I Hold Relationship = -7 5ns

SR D N
- e . . .
— —— Case #4: Setup Relationship = 5ns
sys_clk_div2 Hold Relationship = -5ns
sys_clk div2 I
l\--____ T T Case #5: Setup Relationship = 10ns
svs.clk Hold Relationship = Ons

Since we’re analyzing a falling launch edge to a rising latch edge, the edge of concern
have been highlighted. Most falling to rising edge transfers(or vice-versa) occur within a
domain, and so most relationships are like Case #1, where the setup relationship is a half period
and the hold relationship is a negative half period.

Also note that the Setup Relationship - Hold Relationship still adds up to the period of the
faster clock. I also think, if I had this hooked up in my design, this is the relationship I would
expect. When there are problems with falling edge registers, it's usually not that the user doesn't
understand the default relationships, or that the defaults are not the user's intent, it's usually that
they don't realize a register is clocked on the falling edge. This results in case #1 above, where
the setup relationship is half the clock period, and they end up not meeting timing. There are
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some identifiable points in TimeQuest. The following report timing is on a design where there
are a chain of registers, and one in the middle is clocked on the falling edge:

Report Timing
Command Info  Summary of Paths l
Slack |FromNode | To Node | Launch Clock. |Latch Clock | Relationship | Clock Skew | Data Delay |
|1 |3.864 [MuETyFy=ey s e domain inst 7inst2 |b_clk be_clk ' ! 0.819
2_4.25[!' domaininst 7inst 2 | domain inst Jinst3 | be_clk be_clke 0623
|3 8466 |inst[1] inst3[1] be_clic be_clie 1.323
|4 |8.967 |inst[3] inst3[3] be_clk be_clk 0.815
|5 |8.967 |inst[2] inst3[2] be_clk be_clk 0813
6 |9.165 |inst3[0] inst8[0] be_clk be_clke 0.616
|7 19170 [inst3[1] inst&[1] be_clk be_clk L 0.616
8 |9.170 |inst3[3] inst &[] be_clk be_clk 10.000 0.062 D16
Path #1: Setup slack is 3.864 Path #1: Setup slack is 3.864
Path Summary | Statistics Data Path | Wavefom | Path Summary | Statistics | Data Path  Wavefom |
Data Arrival Path
Total Incr RF Type Fanout Location i
|1 0.000 0.000
2| = 3174 3174
— : L h Clock Launch
3] 317 |37 m aunch Cloe I
4|3 33533 0.819 L 5.0 ns
5] 327 | 0100 uTeo |1 FF_X1_Y22_ setup Relationship
a L-3274 | 0000 |FF CELL |1 FF_X1_Y22_
< | > Latch Clock J '—atChI
ata B gl 1]
Total |Ir1c:r RF Type Fanout Location Data Arrival X
|1 5.000 5.000
2| = 8.008 3.009
3] P79 | 297 m
4] -2D09 | 0.030
|5 7983 -0.020
6] 7.857 0132 uTsu 1 FF_X1_Y22_NZ' — . 3:854 s
4 | >

As can be seen, two paths have a 5ns setup relationhip. This is the Rise->Fall transfer to
the register, and the Fall -> Rise transfer from the register. In the Data Path tab, the launch clock
is shown with R for a rising edge while the latch clock is shown with an F for falling edge. The
Waveform tab also clearly identifies the Launch edge is rising while the Latch edge is falling.

Periodicity

The way to determine default setup and hold relationships requires the user to look at
edges over time. Admittedly, in most cases the first edge or two is the correct one to use, but as
we'll see in a moment with unrelated clocks, it may be many cycles out in time before the most
restrictive setup or hold is found. The nice thing about this is that our waveforms are considered
periodic, not just a single snapshot. For example, a designer could take a clock coming out of a
PLL and phase-shift it +270 degrees or -90 degrees, and they would get the same relationships to
other clocks:
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All dlock periods are 10ns

svs_clk
Latch Clock phase-shifted +270 degrees
S —
e T Setup Relationship = 7 5ns
sys_clk_pos270 Hold Relationship = -2.5ns
svs_clk
Latch Clock phase-shifted -90 degrees
S —
e T Setup Relationship = 7 5ns

sys_clk_neg90 Hold Relationship = -2.5ns

Other examples of periodicity are:

- Moving the launch clock back 90 degrees or the latch clock forward 90 degrees will
result in the same relationships between those two clocks.

- Inverting a clock to a register or phase-shifting it +/-180 degrees results in the same
relationships to other clocks.

This periodicity matches what occurs in hardware, so it's good to see timing analysis
reflect that.

Relationships between Unrelated Clocks

What happens when two clocks are clearly unrelated? For example, what is the setup
relationship if the launch clock has a 4.567ns period and the latch clock has a 7.777ns period?
TimeQuest will do exactly what it is supposed to, and find the most restrictive setup relationship
over time:
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Command Info  Summary of Paths ]

Slack | From MNode To Node Launch Clock | Latch Clock | Relationship | Clock Skew | Data Delay

-10.760 | cross_domain:MoP LL_CrossClocksingt |cross_domain:NoPLL_CrossClocksinst® |adc_clk

Path #1: Setup slack is -10.760 (VIOLATED) Path #1: Setup slack is -10.760 (VIOLATED)

Path Summaw] Statistics Data Path lWavefonﬂ ] Path Summary | Statistics I Data Path Waveform
Data Arrival Path

Total Incr RF Type Fanout Location
1] [%7e3 1407638 140936 ns
2 | @ 1417689 10.053
1= | . Launch
3]  i-1417e83 | 10053 R Launch Glock I H
4 |E 14?18.231 0.542 cetn Belat ionar 00 NS
ER b 1417.774 0.085 uTco 1 FF_X24 Y42 _N11 FLup Relatlonznip e
5 | 141777 0.000 RR CELL 2 FF_¥24 Y42 N1 —
7 | 1418041 | 0267 |RR|IC 1 MLABCELL_X24_Y42, Latch Clack Latch]
ER £.1418.128 0.087 RF CELL 1 MLABCELL_X24 Y42
ER i-1418.128 0.000 FF IC 1 FF_X24 Y42 N5 Data frrival )
|10} L 1418231 0.103 FF CELL 1 FF_X24 Y42 N5
£ | *
Data Reguired Eh

Total Incr RF Type Fanout Location
11 1407.637
2 | & 1410613 25976 -10.76 nz
— - Slack
El L 1410613 2576 R
14 | 1407.573 -3.040 ]
5 | 1407.471 0102 uTsu |1 FF_X24_Y42_N9 Data Reguired (

Following the procedure, it finds that after launching data at time 1407.636ns, there is a
latch edge exactly 1ps after that, which becomes the setup relationship. The path naturally fails
timing and shows up at the top of their list.

How is a user supposed to calculate that? They're not. In reality, these clocks can't be
related and the user shouldn't care how TimeQuest relates them. Instead, the user should either
be fixing the data path or applying a set_clock_groups or set_false_path assignment on the path
or between the clocks, to tell TimeQuest not to analyze this path in a synchronous manner. The
important point is being able to recognize why this occurs.

Some users rely on this phenomenon to find code problems. For example, if they
mistakenly modify their RTL so there is a path from adc_clk to sys_clk, it will get a 1ps setup
relationship, fail timing, and show up at the top of their list as a failure for that domain. They
then analyze the path and either realize they need to synchronize properly between the domains,
or apply a set_false_path directly on the path. The problem with this is that there is no guarantee
the default setup relationship will be 1ps. For example, let's say the user has two independent
20ns clocks coming into the FPGA, which they constrain like so:

create_clock -period 20.0 -name clk_a [get_ports clk_a]
create_clock -period 20.0 -name clk_b [get_ports clk_b]

Now, if the clocks are from independent sources, the will have no known phase-
relationship and will vary from each other by some parts-per-million(PPM) difference. In
essence, it will be impossible to synchronously pass data between these clock domains. But if a
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user mistakenly passes a data bus from clk_a to clk_b, TimeQuest will see a default setup
relationship of 20ns, the fitter will try to meet timing on those paths, and assuming it can, the
paths will not show up as a timing failure. So in this case, relying on a tight relationship between
unrelated clocks to identify mistakes in the code did not work.

Phase-Shift Affect on Setup and Hold

Manually phase-shifting a clock, usually done with a PLL, naturally affects the setup and
hold relationships to other clocks, but it is important to understand exactly how. Let’s look at
some quick examples usingthree 10ns clocks, one without any phase-shift, one with a 9ns phase-
shift, and one with a 100ps phase-shift.

Ons

10ns

svs clk Case#l:

- Setup Relationship = 9ns
sys_clk_9ns Hold Relationship = -1ns
svs_clk_Ons Case#2:

— “‘-a Setup Relationship = Ins
sys_clk Hold Relationship = -9ns
svs_clk Case #3:

svs_clk 100ps

—

Setup Relationship = 0.1ns
Hold Relationship = -9 9ns

svs_clk 100ps

svs_clk

—

Case#4:
Setup Relationship = 9 9ns
Hold Relationship = -0.1ns

Case #1 shows transfers from the base clock to the 9ns phase-shifted clock. The setup
relationship is 9ns and the hold is -1ns. This makes sense and probably what the user wants. But
when we go to Case #2, which are transfers in the other direction, the setup relationship is 1ns
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and the hold relationship is -9ns. This is probably not what the user wants. Note that there may
not be any transfers in this direction, in which case they don’t care what the relationships are, but
if there are, a multicycle may be necessary.

As mentioned, clocks are periodic, so a 9ns phase-shift has identical relationships as a -
1ns phase-shift.

Case #3 is even more extreme, whereby the latch clock is phase-shifted by a mere 100ps.
Since the default setup relationship is the most restrictive latch edge after a launch edge, the
setup relationship is now 100ps. If the clock was phase-shifted as little as 1ps, then that would
be the setup relationship. Again, this is probably not what the user wants, and a multicycle may
be necessary.

Important Note: When the user phase-shifts their clock, they should determine the
relationship to other clocks and determine if they need a multicycle to shift the window data is
passed through. Multicycles are discussed in the next section, including this specific scenario
where the user wants to shift the window

Of course, a phase-shift does not always mean a multicycle is necessary. Let’s say the
clock was phase-shifted 180 degrees. The default setup and hold relationship to the unshifted
clock would be 5ns and -5ns, which is probably what the user wants.

New users often think that, if they phase-shift a clock 100ps, TimeQuest should be able
to figure out that they don’t want that to be the setup relationship and should target the next edge.
By itself, this is probably true. The question does come up of determining what phase-shift is
obviously not targeting the next edge? 90 degrees? 180 degrees? More importantly, there are a
number of technical reasons that make TimeQuests’s methodology correct. It preserves
periodicity. It allows generated clocks of generated clocks, each of which have phase-shifts. It
allows various clocks from various sources and their generated outputs to all have easily
determined relationships. In the simple case of a single phase-shifted clock with a small shift, it
may look silly, but for a robust timing engine, it is correct.

Multicycles

Now that we’ve examined all the ins and outs of default setup and hold relationships, it’s
time to examine multicycles, which are the main way users tell TimeQuest to use a relationship
other than the default. Multicycles are based on existing edges defined by the clocks, and just
tell TimeQuest to use a non-default launch or latch edge.

A major benefit of using multicycles is that they work in conjunction with the clock
assignments. Since multicycles are based on existing clock edges, a user can modify their clock
constraints and all the multicycles should adapt accordingly. This phenomenon is described
here.

Note that most multicycles fall under two common cases, and if users know those, they
can get by without understanding the ins and outs of multicycles. Those are explained at the end
of this section, and may users could just skip to that part. Also, step 6) below just points out that
TimeQuest will always tell you what a multicycle does to a relationship, so it’s certainly possible
to get by without understanding how multicycles are calculated, and just follow step 6) whereby
the user guesses at a multicycle value, looks at what TimeQuest calculates it to be, and the user
determines if that is what they want or if they should try a new multicycle value.
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Determining Multicycle Relationships in Five Steps

1) Draw clock waveforms based on SDC constraints

2) The default setup relationship comes from the closest edge pairs where Launch Edge
< Latch Edge

3) Apply multicycle —setup modification

4) The default hold relationship comes from the closest edges where Launch Edge +
Setup Relationship < Latch Edge

5) Apply multicycle —hold modification

6) Optional - Verify/Validate in TimeQuest

Note that steps 3) and 5) are new. The other steps are identical to the steps in determining
the default setup and hold relationships. We’re going to skip steps 1) and 2) since they have
been covered and go right to step 3). An important point is that the default setup relationship is
considered the “1” edge. If a multicycle applies a larger number, then the setup relationship gets
larger(easier to meet). Let’s look at some examples:

set_multicvcle path —setup

Ons 10ns 20ns 30ns
svs clk Casez1:
— Default Relationship
sys_clk (or set_multicvcle path —setup 1)
Setup Relationship = 10ns
svs clk Case#2:

— set._multicvele path —setup 2
sys_clk o Setup Relationship = 20ns
svs cll Case #3:

—_— - set_multicycle path —setup 2

| . .
sys_clk Setup Relationship = 30ns
svs clk Case#4:
set_multicvcle path —setup 0
svs_clk T Setup Relationship = Ons

Case #1 is the default setup relationship. If a user applied a multicycle -setup 1, they
would get the same results, which is why the default is called the 1 edge. As the multicycle
value gets larger, the setup relationship grows by that many clock periods. So in Case #2, with a
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multicycle -setup of 2, the setup relationship is 20ns. Case #3 takes it to 30ns. | put in Case #4,
where the multicycle setup is 0, and since the value is 0, the setup relationship is reduced by a
clock period to Ons. This is occasionally what a user wants in source-synchronous interfaces,
which is why I point it out. In essence:

setup relationship = default_setup_relationship + (MC_setup_value — 1) * clk_period

So in Case #2, we start with the default relationship of 10ns. A multicycle of 2 was
applied, so our new setup relationship is 10 + (2-1)*10 = 10 + 10 = 20ns.

As discussed in the section on set_multicycle_path, the actual constraint could be applied
between nodes in the design, or between clocks. The -from/-through/-to options determine what
paths the assignment is applied to, while the -setup <value> determines how much the
assignment modifies the default relationship by.

Now, in the equation above we use the term clk_period. What if our launch and latch
clocks have different periods? This is determined by the option -start/-end. If no option is given,
set_multicycle_path defaults to -end. This option determines whose clock period to use,
whereby -start means to modify the relationship by the period of the launch clock, and -end
means to modify the relationship by the period of the latch clocks. Another way to think of this
is to begin with the default setup relationship, and if the option is -start, move the start of the
arrow back in time that many edges, and if the option is -end(the default if no option is
specified), move the end of the arrow forward this many edges. Some examples:

set_multicvcle path —setup —start/~end

-10ns Ons 10ns 20ns
svs el Case #l:
p -~ Default Relationship
sys_clk ‘ ‘ ‘ ‘ ‘ ‘ | ‘ | ‘ ‘ ‘ Setup Relationship = 3ns

e set, multicvele path —setup —start 2
svs_clk ‘ ‘ ‘ ‘ ‘ ‘ | | | | ‘ ‘ ‘ Setup Relationship = 15ns

svs_clk —I—I—I—‘ Case#3:

-— _— set_multicvcle path —setup —end 2
svs_clk ‘ ‘ ‘ ‘ ‘ ‘ | | ‘ | ‘ ‘ ‘ Setup Relationship = 10ns

svs_clk Case#4-

— — set. multicvele path —setup —end 3
svs_clk ‘ ‘ ‘ ‘ ‘ ‘ | | | | ‘ ‘ ‘ Setup Relationship = 13ns




Case #2 has a multicycle -setup -start 2. Since we use the -start, we’re going to move the
start of the green arrow back one cycle, so our setup relationship increases by the period of the
launch clock, from 5ns to 15ns. Case #3 is a multicycle -setup of 2, but the -end option is
specified(and the default if -start/-end is not specified), and the end of the arrow is moved out a
clock cycle, taking the setup relationship from 5ns to 10ns. Case #4 takes it to 15ns. So in this
particular example, where the destination clock is half the period of the source clock, a
multicycle -start 2 and a multicycle -end 3 both result in a setup relationship of 15ns. Remember
that our relationship is the difference between the launch and latch edges, so Case #2 and #4
have the same relationship, even though the arrow is drawn between different edges.

From an equation perspective, we need to introduce some logic, making the calculation
look something like the following, whereby -start and -end are mutually exclusive options:

-start setup relationship = default_setup_relationship + ((MC_setup_value — 1) * launch_clk_period)
or

-end setup relationship = default_setup_relationship + (MC_setup_value — 1) * latch_clk_period)
Now that we’ve done the newly added step 3), let’s look at step 4):

4) The default hold relationship comes from the closest edges where
Launch Edge + Setup Relationship < Latch Edge

We already did this step when determining default relationships, but note that step 4)

comes after the multicycle -setup is applied, so the default hold relationship follows the setup
multicycles, like so:
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Default hold relationship follows the setup relationship

Ons 10ns 20ns 30ns
svs clk Case#l:
—_ Default Relationship
svs clk T o Setup Relationship = 10ns
Hold Relationship = (Ons
svs clk Case#2:
N— set multicvele path —setup 2
svs clk o o Setup Relationship = 20ns
Hold Relationship = 10ns
svs dk Case #3:
e ——— - set_ multicvele path —setup 2
svs dk A y Setup Relationship = 30ns

Hold Relationship = 20ns

As can be seen in Case #2, after applying a multicycle -setup 2, not only does the setup
relationship increase to 20n, the default hold relationship increases to 10ns. This is because the
default hold relationship is determined from the setup relationship, even if the setup relationship
was modified with a multicycle. So following our methodology of determining default hold
relationships, in Case #2 we assume every launch edge launches data. We start at the first launch
edge at Ons, go out by the setup relationship which is now 20ns, and start moving back until we
find the first latch edge, which occurs at 10ns. This is our default hold relationship now.

Case #3shows this again, as the setup relationship goes to 30ns due to multicycles, the
default hold relationship also increases to 20ns. As can be seen, the multicycle hold tends to
shift the window data passes through but doesn’t change how big it is. (By window | mean the
difference between the setup relationship and hold relationship, where data passes through.) If
the default hold relationship is not what the user wants, they can apply a multicycle -hold.

(Note: The default hold relationship follows the setup relationship with multicycles. If a
user applies a set_max_delay constraint to override the setup relationship, the default hold
relationship does NOT follow that. It is still based on the setup relationship, either the default or
with multicycles).

5) Apply multicycle —hold modification

In step 4, the default hold relationship is called the “0” edge. As seen in the last set of
waveforms, this default hold relationship changes with multicycle setups, but is still considered
the “0” edge for each case. Applying a multicycle hold greater than 0 will loosen(make smaller)
the hold requirement by that many edges. Multicycle holds are usually applied to paths that have
a multicycle setup applied first, so we will look at a case with a multicycle -setup of 4:
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Ons 10ns 20ns 30ns 40ns Case #1:

sys_clk Multicycle —setup 4
T — No Multitvcle Hold

svs_cllk ) Setup Relationship = 40ns
Hold Relationship = 30ns

svs_clk Multicvcle —setup 4

R — — Multicvcle —hold 1

svs_clk Setup Relationship = 40ns
Hold Relationship = 20ns

sys_clk Multicvele —setup 4
N — Multicvcle —hold 2

sys_clk Setup Relationship = 40ns
Hold Relationship = 10ns

svs_clk Multicvcle —setup 4
T Multicycle —hold 3

svs_clk Setup Relationship = 40ns
Hold Relationship = Ons

As can be seen in Case #1, the default “0” edge for the hold relationship is at 30ns. As
we apply multicycle holds that are greater than 0, the end of the arrow moves back in time,
making the hold requirement smaller, and hence easier to meet. With a multicycle setup of 4, we
need to apply a multicycyle hold of 3 to get the hold relationship back to Ons.

Just like setup multicycles, when the launch and latch clock have different periods, the -
start/-end option determine which clock’s period to move the hold relationship by. The -start
option moves the start of the hold arrow forward by one clock cycle, while the -end option
moves the end of the arrow back by one clock cycle. Looking at it as an algorithm where the
multicycle can only have -start or -end:

-start hold relationship = default_hold_relationship - (MC_hold_value * launch_clk_period)
or
-end hold relationship = default_hold_relationship - (MC_hold_value * latch_clk_period)

6) Optional - Verify/Validate in TimeQuest
Just like with default relationships, TimeQuest’s report_timing will explicitly report the
setup and hold relationships it is using. So if you’re unsure of what you’re doing or just want to

make sure your analysis is correct, quickly enter the multicycles you think are correct and do
report_timing -setup and report_timing -hold on the path and see what setup relationship and
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hold relationship TimeQuest calculates. If they are not what you want, modify the multicycle
values and re-run TimeQuest.

When analyzing a path, the waveform tab nicely shows the previous 5 steps. For
example, let’s say | have a 10ns clock and put in the following constraints:

set_multicycle_path -setup -from {*source} -to {*dst} 2
set_multicycle_path -hold -from {*source} -to {*dst} 3

For this example, let’s not worry about why the user has these multicycles, but how they
are reported. When I look at the report_timing -setup waveform tab:

Path #1: Setup slack is 16.095

Path Summary I Statistics ] Data Path Wavefom ]

Launch Clack Launch]

Setup Relationship 20,9 ns

Latch Clock J '-atChI

Step 1 was to draw the waveform, which is done above. Step 2 is to determine the
default setup relationship. That is the dotted arrow labeled No Exceptions, and shows what the
setup relationship would have been without a multicycle setup. This is purely informational, as
the Setup Relationship arrow shows the relationship after the multicycle setup of 2 is applied.
This is what is used for the anlaysis. Now let’s look at the report_timing -hold waveform tab:

Path Summary] Statistics ] Data Path VWaveform l

Launch Clock J Launch I

=20.0 ns

Hold Relationship

Lateh Clock '—atChJ ‘ |

The No Exceptions is what the hold would be if there were no setup or hold multicycles.
The No Hold Multicycle Exceptions is step 4), where the hold relationship is determined based
on the setup relationship, showing what it would be with just the multicycle setup but before the
multicycle hold. Since the multicycle setup shifted the setup by one clock period, the hold
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relationship has also increased by one clock period to 10ns. Both of these arrows are for
informational purposes only.

Finally, we do step 5) and apply the multicycle hold of 3, which shifts the hold
relationship by 3 clock cycles, moving it from +10ns to -20ns.

Note that if you had done all these steps with pencil and paper, you might end up with
different edges then what the waveform viewer shows. For example, my final hold relationship
started with a launch edge at Ons and a latch at -20ns, while the one above launches at 20ns and
latches at Ons(I cut off the time scale). These different launch and latch times will give the exact
same analysis and the exact same slack, since it’s the difference between the launch and latch
edges that we ever care about. Don’t get hung up if TimeQuest chooses different edges as long
as the difference between your launch and latch edges is the same.

Designing with Multicycles

I’ve found the previous steps for calculating multicycle relationships to be the best way to
learn how they work, whereby the user can take different multicycle values and determine what
the new relationships will be. The user may encounter this when given an .sdc with multicycles,
either inside IP or when working on a design written by someone else. That being said, it is not
the normal approach for designing with multicycles. Instead, a user will create logic and
determine that the default setup and hold relationships are not what they want. They must
determine what relationship they do want, and then apply multicycles to get that relationship.

The step of determining what relationship the user wants was left out, as it’s not really a
step for understanding TimeQuest, but a step in hardware design that could probably be a whole
other chapter. Once the user determines what the new setup and hold relationships should be,
they then use the steps above to determine what multicycle assignments would give that analysis.

I’ve added this comment because this question comes up for users who are new to
multicycles and being taught how they work. In a training session, where there is no real design,
it’s easy to view this backwards. Remember, the normal flow is not, “I have multicycles in my
.sdc and need to determine the new setup and hold relationships.” Instead, it’s usually “I’ve
created hardware that needs a relationship different than the default. What multicycles do | need
to apply to get the timing relationships to match my hardware?”

Multicycles - Two Common Cases

The previous section covered how multicycles affect setup and hold relationships, and
will hold true for any clock relationships and any multicycle value. In reality, almost all
multicycles fall under two different cases, and most users will be fine just understanding those
two scenarios.

Case 1 - Opening the Window

When paths transfer data at a slower rate than the clock rate, users want to open the
window. For example, let's say a design has a 10ns clock, but a group of registers in the design
are fed by a toggling clock enable, and hence only toggle on every other clock. Since they are
fed by a 10ns clock, the default analysis is a 10ns setup and Ons hold, but the data is really
transferring as if the clocks were 20ns, and hence a 20ns setup and Ons hold is how the paths
should be analyzed. The user wants to open the data window, making the setup relationship
larger while keeping the hold relationship constant. This is done like so:
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set_multicycle_path -setup -from src_reg* -to dst_reg* 2
set_multicycle_path -hold -from src_reg* -to dst_reg* 1

Note that the multicycle -hold assignment is necessary. Without it, the hold relationship
would have been 10ns, which is not what the user wants. So to open the data window during
analysis, the user needs to make their multicycle -setup with a value of N, and a multicycle -hold
with a value of N-1. Here are two examples, where the user wants to open the data window to 2x

and 3x its original size:

Ons 10ns 20ns 30ns No Multiyel
—‘ | | I—‘ (Default Relationship)
| — . —>  Setup = 10ns
| \—‘ | — Hold=0ns
Ons 10ns 20ns 30ns Iticycl h —setup 2
| ’—‘ ’—‘ set_multicvele path —hold 1
"-- I N ——  Setup=20ns
| —» Hold=0ns
Ons 10ns 20ns 30ns set multicvcle path —setup 3
| — — set_multicvele_path —hold 2
"L_ e e L - _ — % Setup=30ns
| "—I— ——+» Hold=0ns

For an even larger data window, just continue the pattern. For example, if the user
wanted to say the data could change anywhere between Ons and 80ns, they would add:

set_multicycle_path -setup -from group_A -to group_B 8
set_multicycle_path -hold -from group_A -to group B 7

I see many .sdc files filled with pairs of multicycles like this. Note that these multicycles
are loosening the constraints, i.e making it easier to close timing. If the user knows a path runs at
a lower rate while designing, it is recommended they make the multicycle constraints
immediately, while the designer is intimately familiar with the logic. Too often designers say
they'll do it later, and then spend time trying to find multicycle paths in their design to help close
timing. Making the assignments up front is much easier.

Also note that these multicycles are often used for slow I/O interfaces. For example,
when writing to an asynchronous RAM, the design might send out address and data, and then a
few clock cycles later toggle the write enable signal. In this case, the address and data have extra
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cycles to settle, and hence a multicycle to the 1/0 ports can help close timing. To give it three
cycles, the designer might enter:

set_multicycle_path -setup -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 3
set_multicycle_path -hold -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 2

These multicycles assignments work in conjunction with the 1/O constraints
set_input_delay and set_output_delay, as described here.

Case 2 - Shifting the Window

This case occurs when a user’s PLL does a small phase-shift on a clock, and that domain
transfers data to/from other domains that do not have a phase-shift. For example, when the
destination clock is phase-shifted forward and the source clock is not, the default setup
relationship becomes that phase-shift. In the next example, the destination clock is phase-shifted
by 200ps. | show two ways this could be done in the constraints. In example 1), clk_b is a base
clock whose first rising edge is starts at 200ps rather than Ops. The constraints in 2) are more
common, whereby the PLL phase-shifts one of its outputs forward by a small amount. Both of
these scenarios result in a default setup relationship of 0.2ns, which is pretty much impossible to
meet, and probably not what the user intended.

If the user really wants data to transfer to the next edge, then they can add the following
constraint to get the relationship shown in the second waveform:

set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2

1) create.clock —period 10.0 —name ¢l a [gef.norts clk..a]
create, clock —period 10.0 —name clk, b [get, ports clk b] —waveform {0.2 52}

2} create, generated clock —source plljinclk[0] —name pll|clk[0] pll|clk[0]
create, generated, clock —source pll|inclik[0] —name pli|clk[1] —phase 30 pll|clic[1]

-10ns Ons 10ns 20ns No Multicveles
| ’—‘ I—I— (Default Relationship)
o "\* »  Setup=0.2ns
| | | | » Hold=-9 %ns
10ns Ons 10ns 20ns
icy —setup 2
S e T s Y s s H
\;-""‘—— — — Setup=102ns
| | | | — Hold=02ns

There is no need for a multicycle hold, since the hold relationship follows the setup
relationship. I call this "shifting the window", since the size of the data window between setup
and hold is the same, it is just the next window that we're sending data through.
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Note that the original relationship is not wrong, just not what the user intended. For
example, if the destination clock were phase-shifted forward by a larger amount, say 5ns, then
it's likely they would want the default relationship, which is a setup relationship of 5ns and a
hold relationship of -5ns. It's only the small phase-shifts where user's often do not want the
default relationship, but what constitutes a "small phase shift" must be decided by the user.

In recap, when adding a small phase-shift to a clock, a multicycle is often needed to shift
the window that the data passes through. If the phase-shift is positive, they would add:

set_multicycle_path -setup -from [get_clocks base_clk] -to [get_clocks shifted_clk] 2
If the phase-shift is negative, then the constraint would be:
set_multicycle_path -setup -from [get_clocks shifted_clk] -to [get_clocks base_clk] 2

Of course, this only has to be applied where there are real clock transfers. If a design has
forty clocks, and the user adds a small positive phase-shift on one of them, they do not have to
add multicycles from the other thirty-nine clocks to this one. Most of the clocks will not have
any paths to this shifted domain, and so the multicycle only needs to be applied between clocks
with real connections.

Max and Min Delays

We have looked at calculating default setup and hold relationships and how to modify
them with multicycles, which choose different clock edges of the existing waveforms. The
constraints set_max_delay and set_min_delay allow users to modify setup and hold relationships
to arbitrary values. In essence, these constraints are a low-level override allowing users to
directly define setup and hold relationships. Set_max_delay directly modifies the setup
relationship and set_min_delay directly modifies the hold relationship. Let’s look at an example
to understand it better. This first screen shot shows setup analysis on the left and hold analysis
on the right within a 10ns clock domain:

ssysdk O e S —

Command Info  Summary of Paths } Command Info  Summary of Paths l

Slack | From MNode

140 475 locksinst8 |. locksinstd |sys_clk sys_clk 0599
..._CrossClocksingté | .. _CrossClocksinst 7 |sys_clk 0.054 0717 210493 |, lockshinstE |..locksinst? |sys_clk sys_clc 9 0.054 0617
10.000 0.054 0.638 3|0.505 [P anEd .. locksinstd [sys_cl syaetlc / 0.054 0.629

.._CrossClockslinst® | ..._CrossClocksinstS |sys_clk

Stack | From Node |ToMede  |Launch Cl... [Latch Cleck |Relations... |Cleck Skew |Data Delay

Launch Clock | Latch Clock

Relationship | Clock Skew |Data Delay

Path Summary

Statistics  Data Path | i

Path #3: Hold slack is 0.505

Path Summary]Stahstics _'_. 1

Element

Total i
0.000 0.000

0.000
3.061
3.750

Total

launch edge time

launch edge time

3.061
0.725

clock path
data path

Elemert

clock path
data path

2976 2976
3605 0.625

Total Element

[>[[~]=

10.000
13.007

9.987

5.885

10.000
3.007

-3.020
-0.102

1
clock path 2_ 3.030 3.030 clock path
clock uncertainty 5_ 3050 0.020 clock uncertainty
uTsu 1 FF_¥24_¥42_N9 cross_domain:MoPLL_CrossClockslinst® G_ 3.100 0.050 uTh 1 FF_¥24_Y42 NS cross_domain:MoP

lztch edge time

0.000 0.000 latch edge time
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s:sys ok

Command Info ~ Summary of Paths I

As expected, the default setup relationship is 10ns, and the worst path meets timing with
a slack of 6.095ns. The default hold relationship is Ons, and the worst path meets timing with a
slack of 0.475ns. If the user puts the following in their .sdc:

set_max_delay -from [get_clocks sys_clk] -to [get_clocks sys_clk] 8.0
set_min_delay -from [get_clocks sys_clk] -to [get_clocks sys_clk] 1.0

This example applies the constraint between clocks, so all paths between those clocks are
modified, but in truth these constraints are more commonly applied between specific register or

1/0 endpoints. Re-running TimeQuest against the same fit shows:
CET eI

Command Info  Summary of Paths ]

3|4.126

7 |..rossClockslinstt | . rossClockslingt7 |sys_clk
..rossClockslinet |..rossClocksingtd |sys_clk

|Laur|ch Clock | Latch Clock | Relationship | Clock Skew | Data Delay

000 J0.054

Slack | From Node | To Node
10525 B sClockslinst? |...sClockslinstd [sys_clk sys_clk
ﬂd", B07 .. sClockslinst6 | ...sClocksinst 7 [sys_clk sys_lk
3 /

-0.455 ERGRIETERY | sClocksinstd [sys_clk |5

8.000 -0.054 0.658

Total

ath #3: Hold slack is -0.495 (VIOLATED)

Path Summary] Statitice  Data -_l__'. ™

Element

Location
launch edge time

N
[2 | & 2081
4 | @ 37%0

launch edge time
clock path 12 |
data path 4

clock path
data path

2976 2576
3.605 0.623

Element Elemert

Location

T_ 8.000 3.000 latch edge time 1 1.000 1.000

12 | 11.007 3.007 clock path 12 | 4030 3.030 clock path

5 7587 -3.020 clock uncertainty 5_ 4050 0.020 clock uncertainty
16 | 7.885 -0.102 uTsu 1 FF_X24_Y42 NS ..main:MoPLL_CrossClockslinst8 6] 4100 0.050 uTh 1 FF_¥24 Y42 NS ..main:NoPLL_Cros|

latch edge time

Looking at the setup analysis on the left, the relationship has changed from 10ns to 8ns.
That directly correlates to changes in the launch and latch edges. Note that everything else
analyzed for this path is the same, i.e. the clock delay, data delay, etc. The slack has now
changed from 6.095ns to 4.095ns, which is from the requirement being 2ns tighter. Likewise
with the hold analysis on the right side, the hold relationship is now a positive 1ns, which
changes the slack from +0.475ns to -0.525ns, and the design now fails timing.

An important note is that the physical clock delays are still being analyzed with this
constraint, and hence clock skew still can affect whether or not a path meets timing. Users many
times see the names set_max_delay and set_min_delay and assume it is constraining the data

path independently of the clock paths.

The Dangers of set_max_delay and set_min_delay

The constraints set_max_delay and set_min_delay allow users to easily override default
setup and hold relationships. It is important to note what is used to calculate the default setup
and hold relationship to be aware of what information is being ignored when a user applies
set_max/min_delay assignments. Some of the things that go into default analysis, such as clock
period, make sense when they are overridden. For example, in the previous example we
overrode a 10ns clock period and made it 8ns. The two places where | see problems are:

- Paths between registers clocked by different rise/fall edges
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- Paths where one clock is phase-shifted or offset from the other

In theory, a user could use set_max_delay and set_min_delay to explicitly constrain their
clocks. For example, if we wanted to overconstrain a 10ns clock to 8ns, we could apply:

set_max_delay -from [get_clocks sys_clk] -to [get_clocks sys_clk] 8.0

This would overconstrain the setup relationship on every path in this domain from 10ns
to 8ns while leaving the hold relationships at Ons, exactly what we want. The problem is that
clock relationships are more complicated, and clocks have multiple relationships, since falling
and rising edges can be used. If sys_clk has any falling -> rising transfers or rising -> falling
transfers, they would have a default setup relationship of 5ns. Our constraint has now loosened
the requirement on those paths to 8ns. If we really wanted to overconstrain this domain, we
would have to do:

set_max_delay -rise_from [get_clocks sys_clk] -rise_to [get_clocks sys_clk] 8.0
set_max_delay -fall_from [get_clocks sys_clk] -fall_to [get_clocks sys_clk] 8.0

set_max_delay -rise_from [get_clocks sys_clk] -fall_to [get_clocks sys_clk] 4.0
set_max_delay -fall_from [get_clocks sys_clk] -rise_to [get_clocks sys_clk] 4.0

This is necessary because the options -rise and -from are inclusive of all rise/fall edges,
whereby we need to be more specific. Of course, if there are no registers clocked on the falling
edge, none of this would have been necessary. Luckily, set_max_delay and set_ min_delay are
usually not used to constrain entire clock domains and are point solutions applied to specific
paths, whereby the user knows whether rise and fall paths exist and constrains them accordingly.

The second issue involves phase-shifted clocks. Let’s start with two 10ns clocks that are
not phase-shifted. The default setup relationship is 10ns, and if wanted to overconstrain it by
2ns, we would apply a set_max_delay assignment of 8ns. Now let’s say we phase-shift the
launch clock forwared by 90 degrees.

2.5ns 12 5ns
Case#1:
svs_clk 90deg ase
Ny ~ Setup Relationship = 7 3ns
"\\
svs clk
Ons 10ns
svs_clk_90deg Case #1:
N ) set_max_delav 8.0
Setup Relationship = 8
s ck \] etup Relationship = 8ns
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The default setup relationship between these clocks is now 7.5ns. If we apply a
set_max_delay constraint of 8ns, we’ve actually loosened the requirement. (Since
set_max_delay and set_min_delay are independent of what the clocks look like, they are always
analyzed with a launch edge of Ons and a latch edge of whatever value is used in the
assignment). In order to overconstrain this path by 2ns, we would want to enter a set_max_delay
of 5.5ns. We have to take into account the phase-shift in our constraint.

Another way to think about this is to take an example where everything in the FPGA is
constant except the phase-shift on the launch clock. With a 90 degree phase-shift, we have a
7.5ns requirement, and some slack number to tell us how much we meet timing by. If we change
the phase-shift to 180 degrees, our setup relationship changes by 2.5ns, and our slack drops by
2.5ns. But if this path were constrained with a set_max_delay of 8ns, then the phase-shift on the
launch clock could be 90 degree or 180 degrees and we would get the exact same slack. The
phase-shift amount is ignored by set_max_delay and set_min_delay assignments.

This only applies if one clock is phase-shifted and the other is not. If both the launch and
latch edges are phase-shifted 90 degrees, then that phase-shift would cancel out during analysis.

All of this may seem obvious, that phase-shifting the source clock by 90 degrees would
reduce the default setup relationship to 7.5ns, and if | wanted to overconstrain this path I would
need to enter a set_max_delay value less than 7.5ns. But when set_max_delay and
set_min_delay assignments are used for I/O constraints, this is often missed.

Using set_max_delay and set_min_delay for Tsu, Th, Tco, Min Tco and Tpd

The constraints Tsu, Th, Tco and Tpd are called device-centric constraints, as they
constrain the 1/0 ports of the FPGA device independently of its environment. These constraints
are not directly supported by TimeQuest, as it uses the system-centric constraints
set_input_delay and set_output_delay. They are called system-centric, since they will change
due to changes in system requirements, such as a change in the clock period or board delays to
external devices.

The Classic Timing Analyzer(the original static timing analysis engine in Quartus) used
device centric-constraints, and so when TimeQuest was first released, all Quartus user’s were
accustomed to using Tsu, Th, Tco, Min Tco and Tpd assignments. They had been doing this for
years and as a result did not like moving to set_input_delay and set_output_delay assignments,
which are reallythe ones designed for constraining 1/0. As a result, Altera showed users how to
use set_max_delay and set_min_delay as substitutes for these device-centric constraints.
Equations were given comparing the two:

Input Ports:
set_max_delay -from [get_ports {<input>}] <Tsu_Requirement>
set_min_delay -from [get_ports {< input >}] -<Th_Requirement>

Output Ports:
set_max_delay -to [get_ports {<portname>}] <Tco_Requirement>
set_min_delay -to [get_ports {<output>}] <MinTco_Requirement>

Combinatorial Paths through Device:
set_max_delay -from [get_ports {<input>} -to [get_ports {<output>}] <Tpd_Requirement>
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set_min_delay -from [get_ports {<input>} -to [get_ports {<output>}] <minTpd_Requirement>
Note that the <Th_Requirement> is negated. Everything else is directly converted.

So if a user wanted to constrain a 32-bit input bus call ram_data as well as a bit called
ram_parity to a Tsu of 4ns and Th of 1ns, they would use the equation and write:

set_max_delay -from [get_ports {ram_data[*] ram_parity}] 4.0
set_min_delay -from [get_ports {ram_data[*] ram_parity}] -1.0

This method was especially useful when converting legacy designs with Tsu/Th/Tco type
constraints over to TimeQuest. It’s important to understand what is going on though.

The constraints set_max_delay and set_min_delay were not designed to be 1/0
constraints. As discussed, they are low-level constraints that override the default setup and hold
relationship. But how do they work on an /O port that doesn’t have a default setup or hold
relationship? The answer is that TimeQuest infers a set_input_delay or set_output_delay
constraint. For example, if | constrain an output port like so:

set_max_delay -to [get_ports dout] 5.0
set_min_delay -to [get_ports dout] 1.0

TimeQuest will infer the following:

set_output_delay -max -clock n/a 0.0 [get_ports dout]
set_output_delay -min -clock n/a 0.0 [get_ports dout]

These inferred set_output_delay assignments state that port dout drives an external
register that is clocked by clock n/a, and the delay to that register is exactly Ons. It looks like so:

set_output_delay
|r FPGA :
|
I I Ons
i >
: — rl
I DAC+DATA[5]
I
foaa ck [ : C>
: : nla
| |
| |
| J

The fpga_clk is the clock coming into the FPGA and constrained by the user. If it goes
through a PLL or gated clock, those must be constrained too.

The clock n/a stands for “Not Applicable” since it’s not a clock that has been defined. It
doesn’t matter what this clock looks like, since it’s setup and hold relationships to the fpga_clk
get overridden by the set_max_delay and set_min_delay assignments(which is how these
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assignments work, as described). Since the external delay is Ons, it has no affect on the final
slack calculation. What is left is that our assignments override the setup and hold relationships
between fpga_clk and n/a clock to make them 5ns and 1ns. Since the external delays are all Ons,
then the FPGA’s delays are the only thing used, and must meet the 5ns setup relationship and 1ns
hold relationship.

The key to this is that it looks like the user has done the constraint with TimeQuest’s
normal constraints, set_input_delay and set_output_delay. The 1/O ports now have a full register
to register path, and can be reported as normal setup and hold paths. If the user runs:

report_timing -setup -detail full_path -to_clock n/a -npaths 200 -panel_name “Tcos”
report_timing -hold -detail full_path -to_clock n/a -npaths 200 -panel_name ““min Tcos™

They will see all setup and hold analysis to these external registers clocked by clock
“nfa”. Looking at one of the setup paths:
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Report Timing

Command Info  Summary of Paths |

Slack | From Mode To Mode | Launch Clock Latch Clock ‘Helatinnship |I:1nck Skew |Data Delay
1(1.480 |domaininst&inst4 dout the_system_plliatpll_componentauto_generatedipliliclk[1] n/a .464 3.056
Path Summar'_.rl Statistics  Data Path |Wa\refurrn I
Data A al Pat]

Total Incr RF Type Fanout Location Elemert
1 0.000 0.000 launch edge time
2 | & 0464 0464 clock path
T I 0.000 0.000 source latency
41 e 0.000 0.000 1 PIN_M3 ays_clk
51 - 0.000 0.000 RR IC 1 IDIBUF_¥53_Y22_N1 gys_clke™inputl
6| - 0.753 0.753 RR CELL 2 [DIBUF_¥53_Y22_N1 gys_clk™inputio
I 3.001 2248 RR IC 1 PLL_RZ the_system_pllialtpll_componentlauto_generatedipll 1inclk[0]
g | i -3.226 6227 |RR COMP 3 PLL_RZ the_system_plliatpll_componentiaute_generatedipll lobservablevooout
51 - -3.226 0.000 RR CHELL 1 PLL_RZ the_system_plliatpll_componentiauto_generatedipli1iclk[1]
LV IR -1.772 1.454 RR IC 1 CLKCTRL_G10 the_system_plliatpll_componentiauto_generatediclic[ 1] cllkctdlinclic
1] b -1.625 0.147 RR CHELL 15 CLKCTRL_G10 the_system_plilaltpll_componentiauto_generatedicli[ 1] clkctrloutclic
12 b 0.082 1.707 RR IC 1 FF_¥25 Y1_N5 ingt Ginstdiclk
) 0.464 0.382 RR CHELL 1 FF_¥25 Y1_N5 domaininst&inst4
14| & 3.520 3.056 data path
15 i 0.564 0.100 uTco 1 FF_X25 Y1 _N5 domain inst6inst4
16 b 0.564 0.000 RR CELL 1 FF_¥25 Y1_N5 inst&instdiq
LI 1.085 0.521 RR IC 1 [OOBUF_¥Z5 Y0 _MN35  |dout™outputh
18] b 3520 2435 RR CELL 1 [OOBUF_¥Z5 Y0_NS5  |dout™outputho
15 b 3520 0.000 RR CHELL 0 PIN_Y11 dout
i 1T’
Data Req d Patl

Total Incr RF Type Fanout Location Elemert
1 5000 5,000 latch edge time
2 | & 5.000 0.000 clock path
3 L.5000 | 0000 |R clock network: delay
4 5.000 0.000 R oEdt 0 PIN_Y11 dout

The setup relationship is 5ns, which is the value entered for the set_max_delay
assignment. Data Required Time uses all the delays through the FPGA, which can be seen going
down the Location column, from the clock entering on Pin_N3, through the 10 buffer and PLL,
the global clock tree G10, the output FF, 10 Output Buffer and finally Pin Y11. This all takes
3.520ns. The Data Required Path is outside the FPGA, and just has the latch edge time of 5ns,
which is our requirement. The external delay oExt is Ons, which means the external delay has no
affect. So our requirement is 5ns, our delay through the FPGA is 3.520ns, and we meet timing
by 1.480ns. Another way of stating this is that the Tco is 3.520ns and meets our requirement by
1.480ns. In this case, using set_max_delay 5.0 to our output port analyzed the path the same way
as a Tco requirement of 5ns would have. Everything looks good.
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But there are two dangers with set_max_delay and set_min_delay assignments. The first
issue is that negative edge analysis is ignored. This is not a big deal since Tsu, Th, and Tco work
that way too. A good example | often use it to think of a 20ns clock driving an output register,
where the Tco is reported to be 7ns. If the user modifies their code so the output register clocks
on the falling edge. In hardware, the output signal is now changing a half period, 10ns,
differently than it was before. How should the Tco value be reported? Does it change by a half
period to -3ns, to 17ns, or stay at the old value of 7ns? The answer is that it does not change at
all and would still be reported as a 7ns Tco. This was always a problem with device-centric
constraints. In this example, two output ports could have identical Tcos, but if one were clocked
on the rising edge and the other on the falling edge, their data would come out at very different
times. The constraints set_max_delay and set_min_delay will also ignore falling edges, since the
falling edge clocks affect the setup and hold relationships, and these constraints override those
relationships. This one is not that big of a deal though, since set_max_delay and set_min_delay
are behaving the same way as device-centric constraints Tsu, Th, and Tco.

The second danger is unexpected. Phase-shifts are also ignored by set_max_delay and
set_min_delay constraints. In the report_timing diagram above, the clock in the FPGA goes
through a PLL. If that PLL has a manual phase-shift, it would show up in the launch and latch
edges, but these are overridden by the set_max_delay and set_min_delay requirements, and are
basically ignored. The PLL could do no phase-shift, a 90 degree phase-shift, a -270 degree
phase-shift, i.e. anything, and the analysis would be the same. The slack would be identical.
This is exactly how set_max_delay and set_min_delay are supposed to work, but it is not
expected for 1/O constraints.

Most likely, the user needs to compensate for phase-shifts in their constraints. For
example, if the PLL did a phase-shift of 0.2ns, then the data will come out 0.2ns later. To
compensate for that, the user would need to make their set_max_delay assignment 0.2ns tighter,
at 4.8ns, and their set_min_delay assignment 0.2ns looser, at -0.2ns. The concerning part is that
there is no warning or anything that the PLL phase-shift is being ignored, as the set_max_delay
and set_min_delay assignments are working as they’re supposed to. This is one of the main
reasons | recommend against using these constraints as a substitute for device-centric 1/0
constraints. (There are others. Look at Device-Centric and System-Centric constraints.) Even
for users that understand this, | consider it dangerous in a project. The project may eventually get
passed to anther engineer, who begins modifying the phase-shift of clocks coming out of the PLL
but doesn’t know to modify their 1/0 set_max_delay and set_min_delay constraints accordingly.

In summary, the big concern with using set_max_delay and set_min_delay is that any
manual PLL phase-shift is not used in calculating slacks. As long as there is no phase-shift to
the 1/0 registers, it works quite nicely, and can still be used if the customer *“accounts for phase-
shifts” in their requirements. The .sdc could always do something like:

set phase_shift 0.0 ;#PLL phase shift in nanoseconds

#Input Ports:

set_max_delay -from [get_ports {<input>}] [expr <Tsu_Requirement> + $phase_shift]
set_min_delay -from [get_ports {< input >}] [expr -<Th_Requirement> + $phase_shift]

#Output Ports:
set_max_delay -to [get_ports {<portname=>}][expr <Tco_Requirement> - $phase_shift]
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set_min_delay -to [get_ports {<output>}] [expr <MinTco_Requirement> - $phase_shift]

This method creates a variable called phase_shift and uses it in all the device-centric 1/0
constraints. The user must remember to update this variable if they modify the PLL phase-shift,
as there is nothing that will warn if it is incorrect.

I personally think it is much better to learn how to use set_input_delay and
set_output_delay constraints, as they are not very difficult and are meant for 1/O constraints. |
wanted to explain this danger for those who choose not to.

A few other notes:

- This explains why a clock called “n/a” shows up. It will be the Launch Clock for input
ports and Latch Clock for output ports.

- Now that an external register exists, the 1/O paths can be reported as register-to-register
transfers. So input registers are fed from an external register clocked by n/a, and outputs feed an
external register clocked by n/a. To analyze these paths, you can still use the ports though, such
as:

report_timing -setup -from [get_ports {<input list>}] -npaths 100 -detail full_path
-panel_name “Tsu”

report_timing -hold -from [get_ports {<input list>}] -npaths 100 -detail full_path
-panel_name “Th”

report_timing -setup -to [get_ports {<output list>}] -npaths 100 -detail full_path
-panel_name “Tco”

report_timing -hold -to [get_ports {<output list>}] -npaths 100 -detail full_path
-panel_name “minTco”

- The inference of set_input_delay and set_output_delay only occurs if the user does not
have their own external delay constraint. If the designer already has this constraint on the /O,
then the values from that constraint are used. Note that set_input/output_delay and
set_max/min_delay constraints do not compete with each other, and instead work together.

Recovery and Removal

Recovery and Removal analysis is one of those things where what is occurring is very
easy to understand, but the why is very difficult. As a recap, the user describes clock waveforms
in their SDC file, and from there TimeQuest determines setup and hold relationships. The basic
principle is that the launch edge clocks data from the source register, and it must get to the
destination register before the setup latch edge and after the hold latch edge. This is described in
detail at the beginning of this section. Note for setup and hold we drew the following diagram:
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Data Arrival Path

stc_teg

data delay

sre_clic dly >

Launch Edge

Latch Edge dst_clkc_dly
Data Required Path

The data_delay path feeds a synchronous port on dst_reg, whether it be the data input, the
clock enable, the synchronous clear, etc. It is anything that is clocked in by the latch clock.

Recovery and removal is an identical analysis, except data_delay feeds an asynchronous
input on dst_reg. Here’s the new schematic, where the only differences are that an asynchronous
port on the destination register is being driven, and the name of signal was change to reset_delay.

Data Arrival Path
SIC_reg
reset_delay
sre_clk_dlv
Launch Edge — =
Latch Edge dst_clk_dly

Data Required Path

For simple understanding, if these registers were in a 10ns clock domain, and ignoring
clock skew, recovery states that the reset_delay must be less than 10ns, and removal states that
the reset_delay must be greater than Ons. Recovery analysis is identical to setup analysis, except
the signal feeds an asynchronous port on the destination register. Removal analysis is identical
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to hold analysis, except the signal feeds an asynchronous port on the destination register. To my
understanding, some tools don’t even have “recovery and removal”, they just analyze all
transfers, whether they’re synchronous or asynchronous, as setup and hold.

With that understanding, EVERYTHING else about setup and hold relates to recovery
and removal. Default relationships are determined the same way. Multicycles have the same
affect(set_multicycle_path -setup will affect the recovery analysis, and set_multicycle_path -hold
will affect the removal analysis). The constraints set_max_delay and set_min_delay still act as
low-level overrides of the relationships, and set_false_path will still cut timing analysis on a
reset path.

One thing | do want to make clear is the asynchronous register is an endpoint. There is
no analysis through an asynchronous port. In the diagram below, the recovery/removal analysis
is only from src_reg to dst_reg, and separately dst_reg to the logic_regs are analyzed as setup
and hold:

src_reg -= logic_reg is not analyzed

& ~
< >
logic reg[1]
STC_Teg dst reg >
reset delav

logic reg[0]

%

stc_reg = dst regis analvzed  dst _reg -=logic regs is analvzed

bvrecovery and removal by setup and hold
& >~
< >

There is absolutely no analysis from src_reg through dst_reg to the logic_regs. As a
result, when src_reg resets dst_reg we know it will occur within a clock cycle, but the
asynchronous change in dst_reg might reach the logic_regs before the next latch edge, after it,
some combination of both(where one logic_reg sees the new value and the other does not), or
right on the latch clock edge, causing logic_reg to go metastable. The moral is that the user
should NEVER use asynchronous ports for general logic and only use them as a domain-wide
reset. If the logic_regs are also asynchronously reset by src_reg, then the analysis from src_reg
through dst_reg to the logic_regs does not matter, since the logic_regs are also being reset and
hence immune to changes on their synchronous inputs.

68



If you understand the fundamentals of setup and hold analysis then you understand the
fundamentals of recovery and removal. The difficulty is usually not in understanding what is
being analyzed buy why. Let’s look at an example where a register asynchronously resets an
entire domain:

clk A

doma

mn_A

st

Domam A

cll A acl

In this schematic, the register domain_A_rst fans out to the aclr port of all the other
registers in Domain A. There might be 10 registers or 100,000 registers, it doesn’t matter Note
that the resets source and destination registers are synchronous to each other.

The best way to explain why recovery and removal is analyzed it to show a failure. So

let’s pretend domain_A rst is clocked asynchronously to Domain A, or that clk_A_aclr is not
analyzed by recovery and removal. Either way, the point is that we have no analysis on when
clk_A_aclr feeds the registers in Domain A. Let’s look at a 4-bit binary state-machine within
Domain A that resets to state “0000” and on the first clock cycle is supposed to transition to state

“0011”.
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SM[0].CLK | ‘ | | SM][0] does not transition to 1 on second clock

edge because aclr has not been released
SM[0].ACLE -
SM[1].CLK | ‘ | | SM[0] does not transition to 1 on second clock
edge because aclr has not been released
SM[1]ACLR

SM][3:0] is supposed to go to 0011 on first clock
SM[3:0]1.Q 0000 XUU]U edge but instead goes to 0010

Swvstem failure.

Due to the aclr port not being timed, it reaches the 4 bits of SM at different times that the
user cannot analyze. On one release from reset, it get to SM[1] before SM[0] and a clock edge
occurs in between. This releases bit SM[1] on the second clock edge, but still hold SM[0] in the
reset state, so only some bits of the state-machine transition. This could cause it to enter an
unknown state, or possible a known state that will never be valid because earlier parts of the
state-machine were never reached. This could cause a system failure, and is exactly what
recovery and removal prevents. By ensuring all registers within a domain are released from reset
on the same latch edge, this type of failure is avoided, and the system comes out of reset the
same way, every time.

In general, logic that changes on the first clock out of reset and that can hold its state is
the most susceptible to recovery/removal failures. (Logic that doesn’t hold its state, like a simple
multiplier, may calculate the incorrect value out of reset, but that value usually filters out of the
device before anything is done with the incorrect value). Because of this, most logic is immune
to recovery/removal failures. The problem is that there is no tool to determine which logic is
immune and which is not. Also, recovery/removal cannot be simulated since there are too many
different combinations of how the registers could come out of reset. Finally, recovery and
removal failures are extremely difficult to debug in the lab since they usually only occur on a
small percentage of system resets. Who hasn’t had a design not work in the lab, the designer
does a reset, and everything starts working? These problems are usually ignored, but may show
up as periodic failures in the field.

I have received the frantic calls from designers who have designs in the field exhibiting a
particular failure rate out of so many power-ups/resets. This is not the time to find out about a
timing issue like this, and my general suggestion is to design proper resets up front, close timing
on them, and get it right from the beginning.

Once designers understand what a recovery/removal failure looks like, the inevitable
follow-up question is, “Why not make the reset synchronous?”

There are two reasons for this. The first is that many designs require an asynchronous
reset for reliability. The great benefit of an asynchronous reset is that it can be reset without a
clock. So if the system failure occurs by a clock generator going bad, the user can still reset the
design. If it’s a medical scanning device that is emitting particles at the patient, the
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asynchronous reset allows them to reset to a safe state. If the device controls an automobile and
the user is accelerating when the clock driver goes bad, they can still reset to a non-accelerating
state. For conditions like these, it is imperative the reset be asynchronous.

Of course many designs don’t care. If the clock driver fails on a handheld video game
system, most likely the whole device is getting thrown out. Minimally, the user doesn’t care
what happens during this type of failure, and has no safety/security requirements. But the second
reason for using an asynchronous reset is that it gets better results in Altera FPGAs. There is a
dedicated asynchronous set/reset on each register, and if the design doesn’t use them, they are
wasted. More importantly, if the reset is synchronous, it will use up synchronous inputs, whether
it be the synchronous clear port or an input to the LUT, that could have been used for general
logic. So making the domain-wide reset synchronous will make the design a little larger and a
little slower.

We’ve said that the reset needs to be asynchronous for resetting the logic in case the
clock driver fails, and it has to be synchronous for de-asserting so that all registers can be timed
and come out of reset on the same cycle. So is the reset synchronous or asynchronous? The
answer is a circuit called the “asynchronous assert, synchronous de-assert reset” and looks like
S0:

vee A E DO Domain ACLR

ACLE

As can be seen, when ACLR asserts, it asynchronously goes through register B and
sets/resets all the registers in the domain without the need for any clock edges. This satisfies the
requirement to asynchronous assert reset. But when it de-asserts, there must be two clock cycles
for the VCC to travel through registers A and B before synchronously de-asserting all the logic
in the domain. This satisfies the requirement that the de-assert can be timed synchronously.
Two registers are used for metastability, since ACLR is often released asynchronously to the
clock. As the name says, it is an asynchronous assert, synchronous de-assert reset. Now
TimeQuests’s recovery and removal analysis can properly time everything from register B to all
the registers in the domain.
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My feeling is that without good reason, this structure should be in every design. Some
quick notes on it:

- ACLR can be completely asynchronous to the domain in question.

- The ACLR signal is usually more complex. Besides some sort of user logic to
determine when to reset(whether it be a push-button, a Nios command, an external CPU, etc.),
there are usually conditions for coming out of reset. The most common is making sure the PLL
for that domain has asserted its lock signal.

- The asynchronous assert, synchronous de-assert should be repeated for every group of
clocks. A group consists of all related clocks. For example, if a PLL creates a 50MHz, 100MHz
and 200Mhz clock that are all related, only one circuit is necessary to reset all three domains.
(There is no reason the user can’t create multiple versions). In general, the two registers should
be clocked off the slowest clock domain. This provides the easiest timing requirements to the
slower domains and provides consistent releasing of each clock domain.

- For timing closure of recovery and removal, the Domain_ACLR net often meets timing
by being put on a global. If globals are available and the domain is relatively large, that’s the
best option. Sometimes a domain is too fast for a global though. For example, the clock tree
may be longer than 4ns, which is too slow if the domain has a 4ns period and hence recovery
needs to meet that requirement. In these cases, taking the net off of a global often gives better
timing.

- If timing closure is still difficult in fast domains, the structure can be repeated for
various hierarchies within the domain, reducing the fan-out and distance the net must drive.

- Recovery and Removal failures can hurt setup and hold timing. The fitter considers
recovery and removal timing to be just as important as setup and hold, and will try to balance
timing between the two if it achieves a better overall slack. This is especially true when the
Domain_ACLR(see above schematic) net is not on a global and has a tight requirement. This
will pull all the destination logic close to register B, which could be at the expense of timing
within the domain. | recommend trying to close timing on recovery and removal early on, since
it is usually not very difficult. Another option is to add a temporary:

set_false_path -from B

B would naturally be replaced by the name of the register driving the asynchronous
set/reset of the domain. Since recovery/removal failures occur out of reset and are usually very
sporadic, it’s easy to work around them in the lab. If this helps meeting setup timing, it would
allow the designer to continue debugging the rest of their logic. The designer must be careful to
later remove the false path and fix the recovery timing issues.

I’ve found recovery and removal to get a varied reception. ASIC designers are usually
fully aware of this topic(even if they didn’t know the terms recovery and removal) and are
already building reset structures to meet their needs. On the other hand, many FPGA designers
have never paid attention to it, which was not helped by the fact that the Classic Timing
Analyzer did not do Recovery/Removal analysis by default, and the user had to go deep into the
menus to turn it on. These designers often ignore this whole topic and pretend it’s not an issue.
There does seem to be a general shift though, from ignoring it, to being aware, to understanding
its importance.
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Section 3: SDC Constraints

This section discusses the major SDC constraints. It is not meant to re-state the basics,
but as an additive source of information. To help understand a command, type command_name
-long_help in TimeQuest, e.g. to learn more about set_multicycle_path, type:

set_multicycle_path -long_help
To get a list of available commands, some suggested commands to type:

help
help sdc
help sdc_ext

The basic syntax for commands is to have the command followed by a list of options that
have a description, such as -period 10.0. Some commands have required options that do not
have a descriptor. For example, set_output_delay has two options <value> and <target>. The
<value> is the numerical delay for this command, and the <target> is what port/s it is applied to.
This can be confusing at first, as an SDC might have:

create_clock -period 10.0 -name sys_clk sys_clk

As can be seen, sys_clk is listed twice. The first one is linked with the -name option, and
is the user's name given to the clock. The second is the <target> it is applied to, which is a port
in the design called sys_clk. It could also be written like so:

create_clock -period 10.0 -name sys_clk [get_ports sys_clk]

The square brackets execute a command inside and return a value, so the command
get_ports finds any port that matches sys_clk and returns it.

create_clock

Note: In TimeQuest, type "create_clock -long_help" for more information.

This constraint is used to create base clocks. There are two major uses, the first being to
create a clock constraint coming into the FPGA. The second major use is when the constraint
does not have a <target> and is a virtual clock, which is used for I/O analysis. The launch and
latch edges for these clocks start at the commands target, which is why it is not recommend to
apply this constraint to clocks inside the FPGA. For example, if the user has a divide-by-2
register in their design, they might do something like so:

create_clock -period 20.0 -name div_clk [get_registers clk_blk:u2|div2reg]
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The problem with this is that the delay to div2reg is not analyzed, so on one fit it might
be 4ns and the next fit it is 8ns, while in both cases that delay is ignored. That is why this is only
recommended for clocks coming into the FPGA or virtual clocks outside of the FPGA. Also
note that set_clock_latency can be used in conjunction with this constraint to account for external
delays.

Options:

-waveform - This is used to describe what the clock looks like. If not used, the clock
defaults to having a rising edge at Ons, a falling edge at (period/2), and repeated edges from
there. | recommend using -waveform only if the user does not want this default, since it is a
possible source of error when changing a clock period. For example, if a design has:

create_clock -period 10.0 -name sys_clk -waveform {0 5} [get_ports sys_clk]

That constraint is correct, but if the period ever changes to 8ns, it is easy to just modify
the -period option and leave -waveform {0 5}. | have seen this done. The design now has an 8ns
clock with a rising edge at Ons and a falling edge at 5ns, which is no longer a 50% duty cycle.

The -waveform also allows for a clock offset. For example, if a clock has a -period 10.0,
a 2ns offset could be specified with -waveform {2.0 7.0}. The clock still has a 50/50 duty cycle,
but is offset by 2ns. Note that there is no way to do a negative offset since the first rising edge
must be between Ons and the period, but they can shift it a whole cycle to accomplish the same
thing. For example, if the user wanted to represent a -2ns offset on a 10ns clock, they would add
-waveform {8 13}. Due to periodicity, TimeQuest's default setup and hold relationships work
out the same way.

-add - If two create_clock assignments are applied to the same target, the second
assignment will be ignored and a warning will be issued. This option on the second assignment
means that it describes a second clock coming into the device. An example where this is used is
if a device plugs into two different boards, and the legacy board might drive a slower clock into
the FPGA. This allows TimeQuest to analyze both scenarios.

create _generated clock

Note: In TimeQuest, type "create_generated_clock -long_help™ for more information.

This command is used to create clocks based off of other clocks. The most common uses
are:

- PLL outputs. These are generally covered by derive_pll_clocks.

- Source synchronous outputs. This constraint is applied to the port sending a clock off
chip, and then used as the -clock option on the data’s set_output_delay constraint.

- Clock muxes. Although not always necessary, generated clock assignments on the
output of a clock mux, based on the clocks coming into the mux, give the user flexibility in
analyzing and constraining the muxed domains.
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- Ripple clocks. Any time the output of a register feeds the clock port of another rgister,
that is a ripple clock. The source register requires a generated clock assignment or else the ripple
clock will be unconstrained.

Note that it is acceptable to have generated clocks of generated clocks. I had a design
with a create_clock on the clock coming in, which then went through a PLL, a ripple clock, a
clock mux, and then fed out as a source synchronous output. There were four generated clock
assignments, at the PLL output, the ripple clock, the mux and the output, each based on the
previous clock. We were able to correctly constrain and analyze timing through the whole
design.

Options:

-name - The name of the newly generated clock.

-divide_by/-multiple_by - Used to divide and/or multiply the incoming clock period.

-phase/-offset - Used to shift the clock edges from the incoming clock. A PLL is the only
thing that can really shift a clock, so that is really the only place this would be used. In the end,
these two options can do the same thing, and really depend on how the user wants to represent
the shift, since -phase is based on the incoming clock period and -offset is a fixed time delay.

-invert - This is used when a clock is inverted and TimeQuest does not recognize the
inversion. The only time I use this is if I'm sending a clock off-chip through an altddio_out
megafunction, and I tie the high register's input to GND and the low register's input to VCC.
This inverts the clock as it leaves the FPGA, but in a way that TimeQuest does not recognize,
and hence the -invert option is necessary. When a user inserts an inversion on their clock line in
RTL, the inversion should be recognized and this option is unnecessary.

-source - This option specifies the physical point in a design where the generated clock's
waveform is derived from. Note that the -source is not a clock but a physical name in the design.
More often than not, a user will enter the <target> of the upstream master clock or generated
clock, but this is not a requirement as the <target> can be any point between the s previous
clock(create_clock or create_generated_clock). A good example of this is when
derive_pll_clocks calls its create_generated_clock assignments, the -source option is the input
pin of the PLL. This properly grabs the waveform at that point and the generated clock's
waveform will be based on this, but the delay to that point will still properly start at the FPGA
input. The beauty of this is that the assignment doesn't have to know the name of what drives the
generated clock. The PLL could be driven by an input clock port with any name chosen by the
designer, or by another PLL, or pretty much any clock source, and the assignment would still
work.

-master_clock - If the specified -source option has more than one clock traveling along it,
then -master_clock is required to specify which clock this generated clock is based on. For
example, the output of a clock mux might have two clocks going through it. If there is a
create_generated_clock assignment downstream from the mux, the user would use
-master_clock to specify which of the two clocks this generated clock is based on.

-add - If the <target> already has a clock on it, the -add option is used to add this
generated clock. Without it, TimeQuest will ignore the new constraint and issue a warning. This
is generally used with clock muxes, where multiple clocks go through a single node. Another
use is with the PLL's clock switchover(which is similar to a clock mux), where each output of
the PLL can be driven by one of two input sources, and hence there are two generated clocks
applied to each output and the -add option is used.
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How Generated Clocks are Analyzed

Generated clocks are analyzed as if they were coming into the device where the upstream
create_clock is applied. Take a look at the following diagram:

create..slock —period 10.0 —name main, clk [gef.ports svs.clk]
create. generated clock —name fast_clk —multinly_by 2 —source sys_clk [get_nins PLL|cO]
create..generated. clock —name main, shift —phase 90 —source sys_clk [gef. pins PLL|c1]

This design has a 10ns clock coming into the FPGA, which feeds a PLL where two
generated clocks come out, one that is 2x the frequency and one that is phase-shifted 90 degrees.
Now, most users think the PLL "does something" to the source clock, so the main_clk comes
into the PLL and the fast_clk and main_shift clocks come out. This is not how it is timed.
Instead, it will look like three clocks come into the FPGA. The main_clk feeds all the registers
in main_clk domain, fast_clk feeds all the registers in fast_clk domain, and main_shift feeds all
the registers in main_shift domain. Main_clk and fast_clk are edge-aligned, while main_shift
has a 90 degree phase shift. As a result, all clocks modifications will be represented by the
Launch and Latch edges during timing analysis. Look at Correlating Constraints to the Timing
Report to see more of this. Although many users accept this, it confuses some since they expect
to see something like a manual phase-shift show up in the PLL delays. In the example above,
they might expect to see main_clk as the original waveform and then a shift occur as it goes
through the PLL to create the clock main_shift. Instead, it looks like main_shift is coming into
the FPGA and feeds the registers clocked by PLL|c1.
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derive pll_clocks

Note: In TimeQuest, type "derive_pll_clocks -long_help"” for more information.

This command is not a true .sdc command, but calls out true .sdc commands. When
generating a PLL, the user must enter how each output is to be generated. Because of this,
TimeQuest knows how each PLL output should be constrained, and can therefore apply the
proper create_generated_clock assignment to each PLL output.

The command does more than constrain PLL outputs; it also configures clocks used in
the dedicated transceivers and adds multicycles between user logic and True LVDS SERDES. .
Note that after it is read in, the TimeQuest messages can be expanded to show every command
run by derive_pll_clocks, and as such, it is recommended every user run this command on their
design to see what it does. Personally, | recommend having this in the main .sdc of every design.

read_sdc

Info: Reading SbC File: 'top.sdc'

Info: Deriving PLL Clocks

i) Info: create_generated_clock -source {the_adc_pl11|altpll_component |auto_generated|pll

inclk[0]} -duty_cycle 50.00 -name {the_adc_pll

1
Info: create_generated_clock -source {the_adc_pl1|altpll_component|auto_generated|plli|inclk[0]} -mul

ot
b

0
w 2 -duty_cycle 50.00 -na
e

Info: create_generated_clock -source {the_adc_pl11|altpll_component|auto_generated|plli|inclk[0]} -mul ¥ 3 -duty_cycle 50.00 -na
Info: create generated_clock -source {the_system_pll|altpll_component|auto_generated|plli|inclk[0]} -duty_cycle 50.00 -name {the_syst
Info: create _generated_clock -source {the_system_pll|altpll_component|auto_generated|pllii|inclk[0]} -phase &0.00 -duty_cycle 50.00 -n

I find many users don't want to use this constraint and prefer entering the individual
constraints into their .sdc file. Technically, the two may be equivalent, but | have seen enough
users modify their PLLs and forget to modify their .sdc that I strongly recommend sticking with
derive_pll_clocks. There is a PLL-cross check warning if the user constrains a PLL in a manner
different than how it was configured, but it is easy to miss warnings.

The one advantage to not running this command is that the user can name the clock
whatever they want, rather than using the long, hierarchical PLL name chosen by
derive_pll_clocks. That being said, | feel the advantages of derive_pll_clocks outweigh this.

If the user wants to put generated clock assignments on some of their PLL outputs and let
derive_pll_clocks do the rest, they need to put the their create_generated clock assignments
before derive_pll_clocks to make sure they take priority. This is discussed in priority of derived

assignments.

Options:

-create_ base_clocks - This will add a create_clock assignment to the clock ports driving
the PLLs. If the system's clocks are all from input clocks that directly feed PLLs, then this single
line can constrain all the clocks in the FPGA. 1 generally use individual create_clock
assignments for clocks driving the PLLs, but it is up to the user.

-use_tan_name - This option is used when converting constraints from the Classic Timing
Analyzer(TAN) to TimeQuest. TAN named it's PLL outputs in a format different than
TimeQuest's derive_pll_clock command normally does. If the user had another assignment that
was converted from Classic that referenced these clock names, they would no longer match.

This option is used to prevent that from happening. Unless it's necessary, | recommend not using
this, since new designs do not need this and it just adds confusion as other users ask why this
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option was on. In reality, most designs from TAN didn’t reference the PLL clock names, and
this option wouldn’t be necessary with those designs.

derive_clock _uncertainty

Note: In TimeQuest, type "derive_clock_uncertainty -long_help" for more information.

For all devices on 65nm and newer, this option should be in used in every project. It
applies clock uncertainty between clock domains based on device characterization and models
clock issues like PLL jitter, but is not limited to PLL clocks. Much like derive_pll_clocks, the
command calls out individual set_clock_uncertainty for every clock transfer, and these
assignments can be found in the TimeQuest messages.

Options:

This command calls out set_clock_uncertainty assignments between all clocks in the
user's design, based on characterization. The options deal with prioritization if the user has their
own set_clock_uncertainty assignments.

-add - Adds derived uncertainty to any uncertainties explicitly added by the user.

-overwrite - Overwrites the user's uncertainty, independent of order.

In most designs the user does not need to manually enter any uncertainty, and so a single
call to derive_clock_uncertainty is all that is needed.

derive _clocks

Note: In TimeQuest, type "derive_clocks -long_help” for more information.

This is a shortcut command to quickly constrain incoming clocks without having to know
what ports they come in on. Under most circumstances, do not use this command. The
assignment derive_clocks applies a clock with create_clock to all unconstrained clocks in the
device, except for PLL outputs. Since only a single -period can be given for this option, it is not
very useful if more than one clock period is coming into the device.

This command is not recommended, and used only for benchmarking small pieces of
logic, where they user wants to constrain it without thinking about creating a .sdc file. It could
also be used for something simple like a CPLD or small FPGA that only has one clock, but
writing a create_clock directly makes more sense.

set_clock _groups

Note: In TimeQuest, type "set_clock_groups -long_help" for more information.
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By default, all clocks are related in TimeQuest, and so paths going between different
clock domains will be analyzed with a setup and hold relationship, and the fitter will try to close
timing on those paths. Yet most designs have paths between unrelated clock domains. The
set_clock_groups command is an eloquent way to tell TimeQuest what clocks are not related,
and thereby cut timing on those paths. It basically creates groups of clocks, and any paths whose
launch and latch clocks are in different groups will not be analyzed. The syntax looks like so:

set_clock_groups -asynchronous \

-group {\
adc_clk \
the_adc_plljaltpll_component|auto_generated|pll1|clk[0] \
the_adc_plljaltpll_component|auto_generated|pll1|clk[1] \
the_adc_plljaltpll_component|auto_generated|pll1|clk[2] \
Ja

-group {\
sys_clk \
the_system_plljaltpll_component|auto_generated|pll1|clIk[0] \
the_system_plljaltpll_component|auto_generated|pll1|clk[1] \

}
-group {\
the_system_plljaltpll_component|auto_generated|pll1|clk[2] \

This looks complex at first glance, but the more | use it, the more I realize how elegant of
acommand itis. For example, if | were to use set_false_path assignments to cut timing between
each clock domain and try to mimic that above statement, it would take 38 individual
assignments, which would be difficult to understand. Instead, I can look at this command and
quickly ascertain which clocks are related.

Notes:

- Each -group is a list of clocks that are related to each other

- There can be as many -group {} as the user wants. If they need fifty groups, that's fine.
If entering the constraint through Edit -> Insert Constraint, it only has space for two groups, but
this is only a limitation of that GUI. Feel free to add more.

- User's look at the command and think it is grouping clocks, but TimeQuest relates all
clocks by default so in essence, they're already in one big group. This command is really cutting
timing between clocks in different groups within a set_clock _groups command.

- Any clock not listed in the assignment keeps the default of being related to all clocks

- A clock can only be in one -group in a single set_clock _groups assignment

- A user can have multiple set_clock_groups assignments

- PLL clock names get long, and so this command is unreadable if all clocks are on a
single line. Instead, make use of the Tcl escape character "\". By putting a space after your last
character and then "\", the end-of-line character is escaped. (And be careful not to have any
whitespace after the escape character, or else it will escape the whitespace, not the return
character).
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- For designs with complex clocking, writing this constraint can be an iterative process.
For example, a design with two DDR3 cores and high-speed transceivers could easily have thirty
or more clocks. In those cases, | just add the clocks I create and whose relationships |
understand into the set_clock _groups command. Since clocks not in the command are still
related to every clock, I am conservatively grouping what I know while leaving everything else
related. If there are still failing paths in the design between unrelated clock domains, | start
adding in the new clock domains as necessary. In this case, a large number of the clocks won't
actually be in the set_clock_groups command, since they are either cut in the IP's .sdc file(like
the ones generated by the DDR3 cores), or they only connect to clock domains they are related
to.

- | generally leave virtual clocks created for 1/O analysis out of this constraint. The only
clocks they connect to are real paths, so there is no need to cut their analysis to other clocks.

- The option after set_clock_groups is either -asynchronous or -exclusive. The -
asynchronous flag means the clocks are both toggling, but asynchronously to each other. The -
exclusive flag means the clocks do not toggle concurrently, and hence are mutually exclusive. A
good example of this might be a clock mux that has two generated clock assignments on it.

Since only one can toggle at a time, these clocks are -exclusive. TimeQuest will analyze your
design identically for either flag. This option is really used for ASICs, where Sl issues like
cross-talk between toggling clocks are analyzed. The -asynchronous option means cross-talk can
occur, while the -exclusive option means it cannot. If going to Hardcopy, which uses ASIC
analysis tools on the back-end, it is recommended to get this right. For FPGAs it does not matter
since the analysis is the same. The more conservative value is -asynchronous, since this states
the clocks can interfere with each other.

- If set_clock_groups has a single group, then the clocks in that group are implicitly cut
from all other clocks in the design. For example, the user could have:

set_clock_groups -asynchronous -group {clk_a clk_b}
set_clock_groups -asynchronous -group {clk_c clk_d}

The first command cuts clk_a and clk_b from all other clocks in the design, but clk_a and
clk_b are still related. The second command does the same for clk_c and clk_d. This special
syntax is not recommended because the cuts are implicit without detailing the other clocks. This
can lead to errors where users unintentionally cut timing between related clock domains.

- A quick tip for writing set_clock_groups can be found here.

set_multicycle_path

Note: In TimeQuest, type "set_multicycle_path -long_help" for more information.

By default, all clocks are related in TimeQuest and hence a default setup and hold
relationship will be found. This default relationship is not always what the user wants, and
multicycles allow the user to change this relationship. The key point of multicycles is that they
are still based on the clock edges, and the user is just specifying different edges. For example,
the following diagram shows the default relationship between two clocks, and the relationship
after adding a multicycles setup of 2 and multicycles hold of 1:
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Since the changes are based on the clock edges, if the user changes their input clock
period from 10ns to 8ns, the multicycles requirement will change with it, and hence the second
waveform would automatically have a setup relationship of 16ns instead of 20ns. | have seen
designs with hundreds of multicycles, and with a single modification of their input clock period,
all of their internal requirements are automatically updated.

How multicycles affect the default relationships are shown here. Be aware that there are
two common cases of multicycles, and most users get by with just understanding these two
cases.

Multicycles can be between keepers, i.e. between registers, 1/O ports, etc. They can also
be between clocks, in which case all transfers between those clock domains are affected by the
multicycle. For the two common cases, opening the window is usually done between keepers,
and reflects that the behavior on that logic is different than the default relationship. The second
case, shifting the window, is usually done between clocks, since the default clock relationship is
not the user's intent.

Options:
Most of the multicycle options control what paths the multicycles is applied to. For
example:

# Opens the window from halfrate_src to halfrate_dst
set_multicycle_path -setup -from *halfrate_src* -to *halfrate_dst* 2
set_multicycle_path -hold -from *halfrate_src* -to *halfrate_dst* 1

# Open the window to data driving flash device:
set_multicycle_path -setup -to [get_ports Flash_Data*] 4
set_multicycle_path -hold -to [get_ports Flash_Data*] 3

# Shifts the window for all transfers between clock domains a and b:
set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2

The above examples show different types of filters. The first one is between registers in
the design(and could have used get_registers or get_keepers, but | wanted to show an example
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without it.) The second example is a multicycle on all paths to an 1/O bus, and the third example
is between clocks, so that every path between these two domains gets multicycled.

-from/-rise_from/-fall_from - These options control the source. -from is inclusive of all
rising edge registers and falling edge registers, while -rise_from and -fall_from allow the user to
only multicycle paths on registers that are clocked on the rising or falling edge. If no option is
specified, then all sources are allowed, i.e. "-from *"

-to/-rise_to/-fall_to - These work in a similar manner, where -to is inclusive, getting
registers clocked on both the falling and rising edge, and -rise_to/-fall_to filter to registers that
are clocked on the rising or falling edge. If no option is specified, then all destinations are
allowed, i.e. "-to *".

The <value> used for a multicycle refers to the edge count. The default setup
relationship is called the "1" edge, and the default for hold relationship is called the "0" edge. As
these values increase, the relationship gets looser, i.e. the setup relationship gets more positive
and the hold relationship gets more negative. This is all covered in more detail in the section on
determining multicycle relationships.

-start/-end - This option determines which clock's period, the launch or latch, is used to
modify the default relationship. If no option is specified, the default is -end. The following
diagram shows the default setup relationship from a 5ns clock to 10ns clock. (The line is drawn
from 5ns to 10ns, but the setup relationship is the difference between these two values).

(nz ins 10ns 13n= 20ns
No Multicycles

S | l\______ l_ | | | | l (Default Relationship)

m T e
______ s s 10ss  150s  20ms

| | | | | | | | _

— . selumulticyele, path —start —setup 2

i — Setup=10ns
"""""" s oms 10ms  isms  20ms 77
— | l--.___ | | | | | l sel.multicysle path —end —setup 2

N e S e SRR B

The middle waveform shows what happens when a multicycles -setup 2 is applied using -
start. The "start" of the arrow is moved back one clock cycle, increasing the setup relationship
by the period of the launch clock. The third waveform shows what happens when -end is used.
The end of the arrow is moved forward one clock period, increasing the setup relationship by one
period of the destination clock. The user should use whatever is appropriate to reflect how their
design works.
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This option only matters if the period of the source clock is different than the destination

clock. If they're the same, the user gets the same result using -start or -end.

One last point is to show how multicycles affect the timing reports of report_timing. The
next example has clocks with a period of 6.666ns, but there is a multicycles -setup 2 applied to

the paths:

Setup: the_adc_pll|altpll_component |auto_generated | pll1 | clk[2]

Command Info  Summary of Paths I

Slack | From Node

To Node Launch Clack

Latch Clock

3|12.471 |domain:instdinst3|domain:instdinst4 |the_adc_plliatpll_componentlauto_generstedipll1iclk[2] {the_ade_pliiakpll_componentlauto_generstedipliliclk[2]|13.332

-0.071
-0.071

Path Summary | Siatistics | Data Path  Wavefom |

Path #1: Setup slack is 12.289

I

Launch Clack Launchl

I

Setup Relationship 1332 n3

Latch Clock

Latch I

Data Arrival

A

Element

Location
ﬂ._
0.385
-0.385 0385 |R
0.970
-0.617 0.232 uTco 1 FF_X17_Y1_N27
0.617 0.000 [FF CELL 1 FF_X17_Y1_N27
-0.954 0.337 FF IC 1 FF_X17_Y1_N13
-1.355 0.401 FF CELL 1 FF_¥17_Y1_N13

Location

1 - 73332 =ag
=
|2| £ 13.646 0.314 clock path
13 i-13.329 0003 R clock network delay
s 14| L1364 0.317 clock pessimism

i 13.626 -0.020 clock uncertainty
Slack 12,280 ns 16| 13.644 0.018 uTsu 1 FF_X17_Y1_N13  |domaininst4inst2
Data Reguired )

launch edge time
clock path

clock network delay
data path

domain inst4inst
instdinstlq

instdinst Zasdata
domain inst4inst2

Red rectangles show everything that has changed due to this multicycles. The Summary at the
top now has a relationship of 13.332ns instead of 6.666ns The Data Path tab on the bottom right
has a launch edge time of Ons and a latch edge time of 13.332ns. The Waveform tab on the
bottom left shows that the Latch edge is how the second rising edge, resulting in a Setup
Relationship of 13.332ns. The Waveform even shows the 6.666ns relationship if there were No
Exceptions, i.e. no multicycles. Finally, the Path Summary tab clearly states a Multicycle was

applied:

Path Summary | Statistics | Data Path | Wavefomn |

Property |Value
| 1|From Node domain inst4finst
12 [To Node domain inst4finst2
| 3 | Launch Clock the _adc_pliialtpll_componentizute_generatedipll 1ichk[2]
4 | Latch Clock the adc_plliatpl_componentlauto_generatedipll 1iclk[Z]
5

6 |Data Amval Time 1.385
7 | Data Required Time
8| Slack

13.644
12.285

get_fanouts
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set_max_delay/set_min_delay

Note: In TimeQuest, type "set_max_delay -long_help" or "set_min_delay -long_help" for
more information.

These two constraints act as low-level overrides of the setup and hold relationships. The
constraint set_max_delay overrides the setup, while set_min_delay overrides the hold
relationship. Note that these constraints are not point-to-point requirements between registers,
which is a common misperception, and clock skew is still used in calculating slack. These
constraints are similar to multicycles, but rather than being based on edges of the existing clock,
they are based solely on the <value> entered by the user. If a user applies a set_max_delay of
8ns between two registers, the user can modify their source and/or destination clock properties in
their SDC file, and it will have no affect on the slack calculation for that path.

Options:

-from/-rise_from/-fall_from - These options control the source. -from is inclusive of all
rising edge registers and falling edge registers, while -rise_from and -fall_from allow the user to
only multicycle from registers clocked by the rising or falling edge. If no option is specified,
then all sources are allowed, i.e. "-from *"

-to/-rise_to/-fall_to - These work in a similar manner, where -to alone is inclusive, getting
registers clocked on both the falling and rising edge, while -rise_to/-fall_to filter the multicycle
to apply to destinations clocked by the rising or falling edge. If no option is specified, then all
destinations are allowed, i.e. "-to *".

<value> - This is the override value, in nanoseconds.

These values show up in report_timing in the same manner as multicycles. The
following example uses the same paths from the previous multicycle example but applied:

set_max_delay 8.0 -from domain:inst4|inst -to domain:inst4|inst2

Running report_timing -setup shows the following:
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Setup: the_adc_pll| altpll_component | auto_generated | pll1 | clk[2]

Command Info  Summary of Paths l
Slack | From Node To Mode Launch Clock Latch Clock Relationship | Clock Skew | Data Delay
J8 6.957 |domaininstdinst |domaininstdinst2|the_adc_pliiahpll_componentlauto_generatedipll1ick[2] {the_adc_pliiattpl_componertisuto_generatedipllliclk[2] 3.000
212470 |domain:inst4inst 2| domain inst4inst 3 |the_adc_plliatpll_componertlauto_generatedipll 1iclk[2] the_adc_pliakpll_componentiauto_generatedipll 1iclk[2]|13.332 0.071 0.785
312471 |domaininst4inst3 domaininst4instd the_adc_pliatpll_compenentiaute_generatedipl 1ick[2] the_adc_pliattpl_componentizuto_generstedipll1iclk[2]| 13.332 0.071 0.788
Path Summary | Statistics | Data Path  Wavefom |
Total Element
8.562 ns 1 0.000 ‘ﬂ.D?D [ | | | |launch edge time
"""""""""""""" 2| 038 ECC ! ! ! Tolock path
jaunch Clack Laumhl __________________ 3| 0385 0335 R clock network delay
_ 8.0 ns 14| = 1._355 0.570 data path
Max Delay Exception 5 0617 | 0232 uTeo 1 FF_X17_Y1_N27 |domaininstdinst
5] L0617 | 0000 |FF  [CELL |1 FF_X17_Y1_NZ7  |instéinstly
H 0954 | 0337 FF Ic 1 FF_X17_Y1_N13 |instfinstZiasdata
,,,,,,,,,,,,,,,,,,,,,,,,, 12] L1385 0.401 FF CELL 1 FF_X17_Y1_N13  |domaininstdinst2
Lateh Clock '—at’:hl L
- ——— Data Required Path
Data Arrival H Total Incr RF Type Fanout Location Elemert
1_com A ! ! ! [lsich edge tme
[2[ = 2314 loatd | | | | Iclock path
i 7957 0003 |R clock network delay
4 L3314 0.317 clock pessimism
5] 8294 -0.020 clock uncertainty
6.957 ne A 8.312 0018 uTeu 1 FF_¥17_Y1_M13  |domain:instdinstZ
Slack m
Data Reguired )

The setup Relationship is now 8.0ns, where on the previous example it was 13.332ns.
The launch edge time becomes Ons, and the latch edge time becomes the <value> entered of 8ns.
The Waveform view on the bottom left is a good visualization, in that the launch and latch edge
times are now independent of the clock waveform.

The set_max_delay and set_min_delay constraints have two dangers that users should be
aware of, described here. These constraints can also be used for device-centric 1/O constraints,
specifically Tsu, Th, Tco and Tpd constraints, which are described here.

set_false path

Note: In TimeQuest, type "set_false_path -long_help" for more information.

This command tells TimeQuest not to analyze a path or group of paths. It can be between
keepers(registers, 1/Os, etc.) or between clocks. When the constraint is applied to clocks, then
all paths that are clocked by the respective clock will not be analyzed. Three examples:

# Cut timing from an input port to all of its destinations:
set_false_path -from [get_ports reset_button]

# Cut timing from a mode_select register, which is static in the design, to all of its destinations:
set_false_path -from [get_keepers *|mode_select]

# Cut timing from clk_a to clk_b:
set_false_path -from [get_clocks clk_a] -to [get_clocks clk_b]
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The last example cuts timing on all paths where clock clk_a drives the source register and
clock clk_b drives the destination register. Note that transfers in the other direction have not
been cut, and another set_false_path assignment would be necessary. Cutting timing between
clocks is often best accomplished with set_clock _groups.

set_clock_uncertainty

Note: In TimeQuest, type "set_clock uncertainty -long_help"” for more information.

When clocks are created, they are ideal and have perfect edges. This constraint is used to
add uncertainty to those perfect edges, and mimic clock-level effects like jitter. In general, most
designs never use this constraint and rely on derive_clock_uncertainty, which models all internal
clock effects for the user. If a user does want to use this, | suggest they use the -add option, so
their uncertainty is additive to that calculated by derive_clock uncertainty.

set_clock_uncertainy applied to a clock does not have its uncertainty propagate to
generated clocks downstream. The user needs to apply uncertainty to those clocks too, if that is
how they want it analyzed.

set_clock_latency

Note: In TimeQuest, run "set_clock_latency -long_help"” for more information.

This is a cool command that models board-level clock delays, although admittedly, |
seldom see it used. The basic syntax looks like so:

set_clock_latency -source -late 1.234 sys_clk
set_clock_latency -source -early 1.1 sys_clk

With such constraints applied to a clock, TimeQuest knows the board-level clock delay to
sys_clk can be as late as 1.234ns and as early as 1.1ns. Where this is most useful is for 1/0
constraints, where the user can specify the clock latency to the FPGA clock port, as well as the
clock latency to the virtual clock. TimeQuest will use the correct value when doing setup and
hold slack analysis. For example, on an output port, it will use the late clock latency to the
FPGA's clock and early clock latency to the external virtual clock. This analyzes the worst case
scenario where the data arrival path is as long as possible, and the data required path is as short
as possible. Likewise, for hold checks it will use the early value for the clock to the FPGA, and
the late value for the delay to the external virtual clock.

The second use for set_clock_latency is on feedback clocks, where a clock goes out an
FPGA port and then comes back. This scenario would have a generated clock on the output port
with -source from the clock driving it, and another generated clock on the input port, whose -
source would be the output port. This input generated clock needs a set_clock_latency
assignment to show the external delays from the output to the input.

One slightly annoying thing with set_clock_latency is that the -early and -late values are
used for internal clocks, and then removed through common clock path pessimism. For
example, let's say a design had the following:
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set_clock_latency -source -early 1.0 adc_clk
set_clock_latency -source -late 7.0 adc_clk

Now, -early and -fall times would never really vary by that much, but I made them large
for illustration purposes. Let’s run report_timing -setup on a path inside the FPGA clocked by
adc_clk. Highlighted below, the source register gets the 7ns late latency and the destination
register gets the 1ns early latency. This is not what we want, as the clock does not really vary by
6ns cycle to cycle within the FPGA. Note later on, the clock pessimisim adds 6.014ns back to
the path. This completely accounts for the 6ns difference. The extra 14ps is for pessimism
inside the FPGA, and would have been there regardless of using set_clock latency. In the end,
the set_clock _latency had no affect within the clock domain, and only has an affect when relating
to other clocks with different latencies, which is how board-level clock latencies should work.
The problem is that the math looks confusing in that it uses different latencies and then backs
them out with clock pessimism.

Path Summary | Statistics Data Path ]Wa\reforrn
Data A al Patl
Total Incr RF Type Fanout Location Element
1| 0.000 0.000 launch edge time
2 | = 5428 5428 | | | | |clock path
3| 700 m 5 5 5 5 Source latency )
14 | 7.000 LAL L [ 1 'F']N_ZE ladc_clk
5 7.000 0000 |RR IC 1 IQIBUF_XD_Y11_N1 adc_clkTinputh
E 7789 0785 |RR CELL 2 IOIBUF_X0_Y11_N1 adc_clk™inputio
7 7.992 0203 |RR IC 1 CLKCTRL_GO adc_clkTinputclkctdincli[0]
E 7.952 0.000 |RR CELL 4 CLKCTRL_GO adc_clkinputclicctrioutclic
9 8.830 0838 |RR IC 1 FF_X24_Y2_N13 MoPLL_CrossClocksinsticlk
E G478 0558 |[RR CELL 1 FF_¥24_Y2_N13 cross_domain:NoPLL_CrossClockslinst
11| =2 10229 0.801 data path
E ----- 9660 0.232 uTeco 1 FF_X24_Y2_M13 cross_domain:NoPLL_CrossClocksinst
113] 9,660 0000 |FF CHL 2 FF_X24_Y2_N13 MoPLL_CrossClocksinstlg
14 i 10 OO0 nn |FF I 1 ICCOMR X34 Y2 N [NAPII CrmeelClnekeinet 3faaderd=tad
Data Required Path
Total Incr RF Type Fanout Location Element
1| 20.000 20.000 latch edge time
12 | = 23.358 95358 | | | | |clock pﬂh
ER : 1000 | [ [ [ lsource latency |
4 (O ! i TPIN_2 [ade_ck
E 0000 |RR IC 1 IOIBUF_XD_Y11_N1 adc_cl™inputi
16 | 0785 |RR CELL 2 I0IBUF_XD_Y11_N1 adc_clk™inputio
7 0195 |RR IC 1 CLKCTRL_GO adc_clkTinputclkctdincli[0]
E 0.000 |RR CELL 4 CLKCTRL_GO adc_clk™inputclicctrioutcllc
9 0805 |RR IC 1 FF_X24_Y2_MN21 MoPLL_CrossClocksinst2iclk
E 0.555 [RR |CELL 1 |FF_X24_¥2_N21 |cross_domain:NoPLL_CrossClocksinst2
11 0141 [ [ [ |clock pessimism |
E a020 | [ [ [ |clock uncertainty
E 0018 uTsu 1 FF_X24 Y2 N1 cross_domain:NoPLL_CrossClockshinst2

set_input_delay/set_output_delay

Note: In TimeQuest, type "set_input_delay -long_help" or "set_output_delay -long_help"
for more information.
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These are the two dedicated commands for constraining 1/0. Personally, I find it better to
not think of them as constraints at all. Instead they describe a circuit outside of the FPGA and
that circuit, coupled with the circuit inside the FPGA, creates a full setup and hold analysis. The
steps for creating these constraints are found in the Getting Started - I/O Timing section. Please
look at that section before using this constraint.

Options:

<target> - This is the port the constraint is applied to. This means there is a register
external to the FPGA connected to this port.

-clock - This is the clock driving this external register. In almost all cases this clock
should be a virtual clock. The only major exception is for source-synchronous outputs, where
the -clock should be the name of a create_generated_clock that is applied to the port driving out
the clock.

-max/-min - This is the external delay to this external register. The -max value affects the
setup analysis, and the -min value affects the hold analysis. As the -max value increases, the
setup requirement gets tighter because the FPGA's internal delays must get smaller in order to
meet the setup relationship between clocks. Likewise, as the -min value decreases, the hold
requirement gets tighter, because the FPGA must add more delay in order to meet the hold
relationship between clocks. This makes sense, as the difference between -max and -min grows,
then a larger percentage of the data period is being used externally, and the FPGA’s delays must
tighten.

-reference_pin - This option is for set_output_delay only, and meant to reference the
output port that a clock goes out on, mainly for source-synchronous outputs. After doing many
of these interfaces, | recommend not using this option at all, and instead always putting a
create_generated_clock assignment on the output port driving out the clock, and referencing that
clock with the set_output_delay -clock option. By putting a generated clock on the output and
referencing that, the user can achieve identical analysis to the -reference_pin option, but can do a
lot more if need be. The ability to constrain source-synchronous outputs in two different way
probably adds more confusion than helps, and so | just recommend against using -reference_pin.
(Although if it is in your design and working, there is nothing explicitly wrong with this option).

-clock_fall - This option states that the external register is clocked on the falling edge of
the clock. This naturally affects the setup and hold relationships to clocks inside the FPGA.
This option is most commonly used on double-data rate interfaces, where -add_delay is also
used.

-add_delay - This option does not mean to add the delay from this constraint to any
previous external delays. In reality it means there is another external register connected to the
port. This is most commonly used with double-data rate interfaces, and often looks like so:

set_input_delay -clock ext_clk -max 0.5 [get_ports {ddr_data[*]}]
set_input_delay -clock ext_clk -min -0.5 [get_ports {ddr_data[*]}]
set_input_delay -clock ext_clk -max 0.5 [get_ports {ddr_data[*]}] -clock fall -add_delay
set_input_delay -clock ext_clk -min -0.5 [get_ports {ddr_data[*]}]-clock_fall -add_delay

The values of 0.5 and -0.5 were chosen arbitrarily. The above constraints basically state

that each input port of bus ddr_data is driven by two external registers, one clocked by the rising
edge of ext_clk(this is done in the first two lines) and one clocked by the falling edge(the last
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two lines). Without -add_delay on the last two lines, they would override the first two lines and
a warning would be issued.

set_max_skew

Note: In TimeQuest, type "set_max_skew -long_help" for more information.

This is not a true SDC constraints, and was added to TimeQuest because it was
commonly requested. It must be used in conjunction with report_max_skew. This command
constrains the skew, and running report_max_skew in TimeQuest will give a report of everything
that has been constrained. (Quartus Il 10.0 added a Task called Report Max Skew Summary that
can easily be clicked on, rather than manually typing report_max_skew, but it only gives a
summary. Re-run the command with -detail set to full_path to get a detailed analysis). There is
also a reporting command called report_skew, which reports the skew on specified paths, but
won’t actually constrain them during a compile. That command is useful for experimenting with
skew analysis, and when the user feels they have it right, using its parameters with
set_max_skew.

Note that | have often been asked how to constrain the skew of something, and when |
ask more, realize the user really wants regular setup and hold analysis. Source synchronous
interfaces are the common scenario, whereby the user claims they want to constrain the outputs
to have a specific skew, when in reality they want to constrain their data in relation to the clock
going off chip. My point is that user's should look at the original SDC constraints before using
set_max_skew.

Pretty much every real use I've seen involved inputs or outputs. On inputs, it's usually a
signal feeding multiple registers, all clocked by different phases of the same clock. In essence
it's an oversampling circuit, or a timing circuit(an edge comes in and the user is trying to time it
as accurately as possible). The command looks like:

set_max_skew -from [get_ports din] 0.5

Then in the analysis the user would run something like:

report_max_skew -npaths 20 -detail full_path -panel_name "Skew"

The second common case is when the user has multiple outputs they want aligned, and
are not feeding a synchronous interface(if they are feeding anything synchronous, skew is not the
correct command to use). The constraint might look like:

set_max_skew -to [get_ports led_data*] 0.5

Notes:

- The skew command is not just the datapath, but also includes the clock driving the
launch and/or latch registers. This can be modified with the -include/-exclude options.

- There are -include and -exclude options that give the user much control over what is
calculated for skew. Part of this is because there is not a consensus on how to report skew. For
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example, if the user is controlling skew on a single input being clocked by multiple registers at
different phases of the same clock. Should the capture register's micro-parameters of pTsu and
MTh be included against the slack budget, whereby it would add in uTsu for the long path and
subtract uTh for the short path, making the skew longer? Now technically these micro-
parameters aren’t a difference in the data delay, but on the other hand if the inputs is
asynchronous it will transition at times that violate these register's uTsu/uTh, causing it to go
metastable. Different scenarios deal with this in different ways, so it has been left up to the user.
(And again, if the input isn't really asynchronous, the user should not be using the skew
constraint).

- This is discussed in the fitter section, but note that the placer will not optimize for skew
and will try to place all signals as close together as possible. This can lead to a non-balanced
placement whereby two destinations of an input port might be placed in the LAB next to the
register and two other destination registers are placed a LAB over. (The four registers can’t be
placed in the same LAB because only two clocks can feed a LAB, and each register has its own
clock) It is the router that then adds delays and try to meet the skew requirements, but if the
placement is non-balanced, routing delays may be too coarse and the results may not be good. |
generally suggest hand-placing the registers with LAB location assignments, getting a balanced
placement that the router can then work with. This is relatively easy to do and gets better results
than relying completely on the fitter.

- The report can be a little confusing at first. Below is a screen shot of the skew on an
input feeding multiple registers:
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Command Info  Summary of Paths ]
Name |S|ack | Required Skew |Act|.|a| Skew | From Node |To Node | Launch Clock |Laich Clock
11| B set_max_skew 0.423 (0.500 0.923 [get_ports {in_skew}]
12| : ew for the Latest Amival
El 0.423 (0.500 m_skew inst9 n'a the_system_pllisttpll_componentlaute_generatedipll Thclk[1]
4 40.348 (0.500 0.245 in_skew inst17 n/a the_system_pliistpll_componentlaute_generatedipll icl[2]
5] H - 0.177 (0.500 0.677 in_skew inst14 n/a the_system_pllisttpll_componentlaute_generatedipll Thcllk[0]
6] [=l--- Skew for the Eadiest Amival
7] 0.423 (0.500 0.923 in_skew inst14 n/a the_system_pllisttpll_componentlaute_generatedipll iclk[0]
E 0219 (0500 0.719 in_skew inst9 nfa the_system_plligttpll_componentlauto_generatedipll ichk[1]
Path #1: Slack is -0.423 (VIOLATED)
Path Summary | Path Statistics  Data Path
Total Iner Element
7
12 | 0000 |R clock netwark delay
2] 0000 |F 1 PIN_34 in_skew
Z 0000 |FF IC 1 I0BUF_X0_Y5_MN15  |in_skewinputi
15 | 0934 |[FF CELL 3 IOIBUF_X0_Y5_N15  |in_skew inputio
16 | 0709 |FF IC 1 FF_X0_Y5_N17 instid
17 1 0240 |FF CELL 1 FF_X0_Y5_N17 inst9
|8 [ = Clock Amival
3 ;----2.1}73 0150 (R clock network delay
10 T o uTsu |1 FF_X0_Y5_N17 inst9
<
Earliest Path Arrival
Total Iner RF Type Fanout Location Element
1 | & Data Amival
2] 0000 |R clock netwark delay
ER 0000 |R 1 PIN_34 in_skew
4| 0.000 |[RR IC 1 IOBUF_X0_Y5_MN15  |in_skewinputi
5 | 0823 |RR CELL 3 IOIBUF_X0_Y5_N15  |in_skew™inputio
E 0585 |RR IC 1 LCCOMB_X1_Y5_N0  |inst14~feederdatab
17 1 0328 |RR CELL 1 LCCOMB_X1_Y5_N0 |inst14~feedericombout
18 | 0.000 |RR IC 1 FF_X1_Y5_N1 inst14id
19 | 0063 |RR CELL 1 FF_X1_Y5_N1 inst14
110}
11 0370 |R clock network delay
‘_E. 1186 uTh 1 FF_X1_Y5_N1 inst14

The Latest Arrival Path below shows the Data Arrival minus the Clock Arrival of the
longest path to a register, resulting in 2.178ns. The Earliest Arrival Path is the also Data Arrival
minus Clock Arrival of this early path, resulting in 1.255ns. The difference is 0.923ns, or the
Actual Skew shown at the top.

- Calculated skews tend to be larger than most users expect. This is because the skew
calculation includes On-Die Variation(ODV). Without ODV, which was not in device models
before the 65nm node, skew values looked extremely small. Without ODV, | have seen skew
values reported to be less than 10ps. This is unrealistic in hardware. Likewise, | have seen
Altera FPGA's skew compared to other FPGA's that do not model ODV, which makes Altera’s
look bad, but ODV is a significant component of skew and must be taken into account for
realistic analysis. This is discussed in detail in the On-Die Variation section.

Constraint Priority

There are three ways that constraints co-exist, and it's probably best to understand them
in that context. They are:

- Different constraints. What if a multicycles and a false_path are applied to a constraint?
Which one has priority?
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- Same constraint, different value. What if a path gets multicycles -setup assignments
from two different places?
- Multiple assignments applied to a node

Priority between Different Constraints

The basic hierarchy of different constraints from lowest priority to highest priority:

1) create_clock and create_generated_clock

These constraints create clocks that drive registers, and as a result have a default setup
and hold relationship.

2) set_multicycle_path

This constraint tells TimeQuest that the default setup and hold relationship is incorrect,
and the user wants a different relationship based on the clock edges.

3) set_max_delay and set_min_delay

These constraints tell TimeQuest that the setup and hold relationships, whether
determined by default or with multicycles, is incorrect, and the user wants the relationship to be
an explicit value. Note that set_max_delay overrides the setup relationship and set_min_delay
overrides the hold relationship, which are two mutually exclusive analyses.

4) set false path and set_clock_groups

These constraints tell TimeQuest not to analyze specific paths or clock transfers. Once a
path has been cut by either of these commands, there is no way to un-cut it, i.e. these constraints
have the highest priority.

You may note that I did not discuss set_input_delay and set_output_delay. This is
because they are not really constraints in the classical sense, and instead describe a circuit
outside of the FPGA. As such, they work in conjunction with these other constraints. For
example, let's say | have a signal coming into the FPGA on port din, which goes through some
combinatorial logic and out through dout. To constrain it, | might do something like:

create_clock -period 20.0 -name ext_clk
set_input_delay -clock ext_clk -max 4.0 [get_ports din]
set_output_delay -clock ext_clk -max 7.0 [get_ports dout]

(Note that I did not do -min delays. | am going to ignore hold time analysis for this
example, but normally a design should have this too.) Anyway, the set_input_delay and
set_output_delay describe registers outside of the FPGA and states they are clocked by ext_clk.
As such, there is a default setup relationship of 20ns when this clock is the source and
destination. This is the lowest priority. Since 11ns of delay are used externally, the FPGA must
get its signal from din to dout in 9ns.

A user could then add a multicycles if that is too tight of a requirement:

set_multicycle_path -setup 2 -from [get_ports din] -to [get_ports dout]
This multicycles has priority over the default clock relationship, and makes the setup

relationship two clock periods, or 40ns. Since 11ns are used externally, the FPGA must get its
data from din to dout in 29ns. If the .sdc also had:

92



set_max_delay -from [get_ports din] -to [get_ports dout] 30.0

This set_max_delay would have priority over the default setup relationship and the
multicycled relationship, making the new setup relationship 30ns. Since 11ns are used
externally, the FPGA must get its signal from din to dout in 19ns. Finally, if the .sdc had:

set_false_path -from [get_ports din] -to [get_ports dout]

The path is now no longer analyzed. This priority occurs independent of the order these
commands are read in. As you can see, the set_input_delay and set_output_delay commands
really just complete the circuit, and hence work with all the other commands.

One final note is the special case when set_max_delay and set_min_delay are applied to
an 1/0 port that has no set_input_delay or set_output_delay assignment. As discussed, this
special case will implicitly add a set_input_delay or set_output_delay constraint to the 1/0 with
Ons external delay and a clock called “n/a” behind the scenes. This only occurs if the user does
not have a set_input_delay or set_output_delay constraint anywhere in their .sdc files. If they do,
those constraints take priority over these implicit constraints.

Priority between Equal Constraints

This is when a path has two different multicycles assignments applied to it, or two
different set_max_delay assignments. These could be from two different .sdc files, or two
different levels of assignments. By levels, | mean a user might have the following two
assignments in their .sdc files:

set_multicycle_path -setup -from top|domainl:inst_ajreg_a\
-to top|domainl:inst_b|reg_b 4
set_multicycle_path -setup -from clk_a -to clk_b 2

If reg_ais clocked by clk_a, and reg_b is clocked by clk_b, then this would have two
different assignments, one directly on the path and one between the clocks. The priority is quite
simple, it is whatever constraint is read in last. Of course, knowing that may not always be so
straightforward, and so it is recommended to run the task Report Exceptions. This command
goes through the user's exception in their .sdc file and writes a report on if they were completely
followed, partially, or incomplete.

Priority between Multiple Assignments to the Same Node

This is different than exception priority, in that an actual attribute is assigned to the node.
These assignments include:

create_clock
create_generated_clock
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set_input_delay
set_output_delay

All of these are applied to a node, and have different behavior. If a create_clock or
create_generated_clock apply a clock to a node that already has a clock on it from a previous
call of these commands, then the second clock will not be added. If the user wants multiple
clocks on that node, then they should use the -add option for the second constraint.

Set_input_delay and set_output_delay assignments will overwrite any previous input or
output constraints. If the user wants multiple delay constraints on the port, then they should use
the -add_delay option for the latter assignments. Note that the -max and -min options are
mutually exclusive and don’t require -add_delay. A port feeding external DDR registers might
have:

set_output_delay -clock ext_clk -max 0.5 [get_ports {ddr_data[*]}]
set_output_delay -clock ext_clk -min -0.5 [get_ports {ddr_data[*]}]
set_output_delay -clock ext_clk -max 0.5 [get_ports {ddr_data[*]}] -clock _fall -add_delay
set_output_delay -clock ext_clk -min -0.5 [get_ports {ddr_data[*]}]-clock _fall -add_delay

The first two lines are -max and -min, and since they are mutually exclusive(one affects
setup analysis, the other is for hold analysis), there is no need for the -add_delay. The last two
constraints would override the first two if not for the -add_delay option.

Finally, for both clock and /O constraint conflicts, TimeQuest will issue a warning if the
user has multiple assignments that are not resolved with the -add or -add_delay option. The
warning for a second clock looks like so:

Warning: Ignored create_clock: Incorrect assignment for clock. Source node: adc_clk already
has a clock(s) assigned to it. Use the -add option to assign multiple clocks to this node. Clock
was not created or updated.

The warning for a second input/output delay constraint without -add_delay looks like so:

Warning: Assignment set_input_delay is accepted, but has the following problems:
Set_input_delay/set_output_delay has replaced one or more delays on port "adc_din_100".
Please use -add_delay option.

Priority between Derived Assignments and User Assignments

One common concern involves derive_pll_clocks and derive_clock_uncertainty, which
are making create_generated_clock assignments and set_clock _uncertainty assignments for the
user. These are handled in different ways due to what they are doing. The command
derive_pll_clocks runs when it is immediately met, executing create_generated_clock
assignments for each of the PLL output as if the user had them directly in their .sdc. If any of the
PLL outputs already had a generated clock assigned to them earlier in the .sdc files, the
command will not add a new assignment. If any generated clocks are applied to the PLL outputs
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after derive_pll_clocks is called, the latter assignment is ignored with a warning, unless it has the
-add option.

On the other hand, derive_clock_uncertainty’s individual calls of set_clock_uncertainty
occur when the timing netlist is being updated, which is after all SDC files have been read in. If
the user has set_clock_uncertainty assignments elsewhere in their .sdc files, those assignments
will have priority. If the user’s set_clock_uncertainty assignments or the
derive_clock_uncertainty assignment has the -add option, then the uncertainties will be additive.
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Section 4: The TimeQuest GUI

This section is not meant to give details on every option in the TimeQuest GUI, but
instead is meant to get the user familiar and comfortable with analyzing their design. Because of
that, the organization and recommendations will be based on how I use it. There is certainly
room for disagreement on many of these topics, but I want to give an opinion that new users can
evaluate. Starting off with an opinion...

Entering SDC Constraints from the GUI

There are two ways to use the TimeQuest GUI for entering SDC constraints. Method #1
is directly from the main window’s Constraints pull-down:

4 TimeQuest Timing Analyzer - C:/waveforms/design/1_original/top - top

File View Netlist WeEi=lyic Reports  Script Tools  Window

Report | Create Clock. .. ary (Setup)
ER TimeQuesty Create Generated Clack...
22 advanced Set Clock Latency...

% SDC File Li Set Clock Uncertainty. ..
% Summary Set Clock Groups...
Remove Clock...

e system plllaltpll componentlauto gen
vs ok

e system plljaltpll component|auto gen
e system plljaltpll component|auto geny
e adc pllaltpll componentlauto genera

Set Input Delay...
Set Qutput Delay...

Set Falze Path...
Set Multicycle Path...
Set Maximum Delay. ..
Set Minimum Delay. ..
Set Max Skew...

e adc plljaltpll component|auto genera
e adc pllaltpll componentlauto genera
dc dk

Generate SDC File from QSF
Read SDC File...
Write 5DC File...

Reset Design

I recommend that users do not do this. It does not save the actual SDC constraint to a
text file, so the user must go through extra steps to get the command into their .sdc file. Users
end up using the Write SDC command, which makes their .sdc machine-generated, and prevents
users from getting the many benefits of a user-created .sdc file, including useful comments,
variables, constraint ordering, wildcards, etc. This method also applies the constraint directly to
the database, which can cause difficulties in debugging priority issues. For example, a constraint
run this way may work because it was applied after a clock was created, but when the user adds
the constraint to their .sdc file it stops working, because they added it before the clock gets
created.

The bottom line is this works as a quick method for testing a constraint by an expert user
who is fully aware of what is occurring. Too many beginner/intermediate users run into trouble
with these pull-down menus and so | recommend avoiding them altogether. Most importantly,
there is another way to access these constraint dialogue boxes that is much, much better.
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Open your .sdc file in Quartus 11 or TimeQuest Place the cursor where you want your
constraint to be and go to Quartus 11’s pull-down menu Edit -> Insert Constraint. The exact same
dialogue boxes are accessible and the constraint will be added, in plain text, to your .sdc file. It
is not executed until the user reads the .sdc back into TimeQuest. This method is much easier to
understand and really what the user should be doing. Method #2 is entering constraints into the
.sdc file from the Quartus I1/TimeQuest editor’s Edit Insert Constraint:

(=:| View Project Assignments Processing Tools Window Help
& ' C d . ¥,
o4z p R S r L R AR A

sdo- l

ndo

create_clock -period 20.0 -name adc_clk [get_ports adc clk]

Select All

Create Clock g]
@ Find...
. Clock name: adc_clk
10 200 ns
47 Replace... 1}
iz
—+ GoTo... 13 | ne
e 14 L&
1= Increase Indent 15 ¢ 0.00 10.00 20,00
‘;E Decrease Indent 16 - -
7 [get_ports ade_ck] J
lm Insert File... f
ﬁ Insert Template. .. SDC command create_clock peniod 20,0 -name adc_clk [get_ports adc_clk]
Insert Constraint L4 Create Clock...
| Inzert | Cancel | Help ‘
Create Generated Clock...
A Toggle Bookmark Ctrl+F2
Set Clock Latency. ..
% Jump To Mext Bookmark F2

Set Clock Uncertainty...
Set Clock Groups. ..

‘)‘ Jump To Previous Bookmark  Shift+F2
¥$ Clear Al Bookmarks  Ctrl+Shift+F2

Remove Clock...

Two quick notes on using the GUI for entering constraints:

- The GUI menus do not show every option available for a constraint, only the most
commonly used ones. To see all options, type “command —help” in the TimeQuest
GUI, e.g. “create_clock —help”. Note that a user can point to a constraint in the .sdc
editor and a tooltop will pop-up showing all the options.

- The command dialogue boxes are good for new users, but I find most users quickly
abandoning them and cutting-and-pasting commands directly in their .sdc. The one
great benefit of the dialogue boxes is the [...] box that opens the Name Finder. This
lets the user enter a wildcard and see if it matches anything in the design database,
avoiding name-matching mistakes. This can be done from the main TimeQuest
GUI’s View -> Name Finder, which copies the name matching command to the user’s
clip-board, allowing the user to paste it into their .sdc.

Since this is about the options under TimeQuest’s Constraints pull-down menu, | will
briefly touch on the options that are not constraints:

Generate SDC File from QSF - This command is for designers that have constrains
from the Classic Timing Analyzer(TAN) stored in their .qsf, and want to convert them to an SDC
file so they can use TimeQuest. Note that this conversion is only a getting started point, and is
not guaranteed to be 100% correct. The Quartus Il Handbook has a whole section on converting
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to TimeQuest. | have seen user’s who understand the Classic Timing Analyzer try to convert
their designs without learning TimeQuest, and have a very difficult time. | recommend learning
TimeQuest up front, especially the Getting Started section of this guide. If you understand what
TimeQuest is doing, it is much easier to convert a design. The other big issue 1’ve seen is that
the Classic Timing Analyzer allowed designers to constrain a design without understanding
much about timing analysis. It basically makes a lot of assumptions, which are right in most
cases, but problematic when they are wrong. Since users of the Classic Timing Analyzer often
don’t understand these assumptions, they don’t really understand their original constraints and
hence don’t understand how to convert them. Again, learning TimeQuest and taking a more
rigorous approach to static timing analysis is the recommended course of action.

Read SDC File... - This allows the user to select an .sdc file for TimeQuest to read in.
This does not get used much because the user’s .sdc files have usually been added to the project
and are automatically read in by the Task menu’s Read SDC File. This is covered in the next
section. If the user wants explicit control to read in SDC files, this is how to do it.

Write SDC File... - This command is useful to see all the applied constraints in a text
file. For example, the .sdc files created by Altera’s DDR IP are long, parameterized, and hence
very difficult to read. This command will write out a file showing all the constraints applied to a
design. It’s often too simplistic, in my opinion, but it’s a nice feature. The one thing | do not
recommend is to write out an .sdc that overwrites your own .sdc. This command should only be
used to write to a test file, and if there are any constraints the user wants out of it, they should
copy and paste them into their own .sdc file.

Reset Design - This command takes TimeQuest back to the point where a timing netlist
has been created but before any .sdc files have been read in. It’s very useful for the iterative
method of creating constraints, whereby the user edits their .sdc file, resets the design, and then
reads in the modified .sdc file. That being said, I usually access it from bottom of the Task menu
on the left rather than the Constraints pull-down menu.
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Getting Started - Timing Netlists and SDCs

There are three things TimeQuest must do before any analysis can be done:

W'

W'
W'
W'
W'
W'

& Open Project...

{5 Metlist Setup

------ # Create Timing Netlist
------ # Read SDC File

------ # Update Timing Metlist
5] Reports

=iy Slack

LB Report Minimum Pulse Width Summanry
=<3 Datashest

Tl

.. B Report Datashest

43 Device Specific

..... BH Report TCCS

----- BH Report RSKM

----- BH Report DDR

----- BH Report Metastahility
=45 Diagnostic

..... % Report Clocks

----- BH Report Clock Transfers

----- BH Report Unconstrained Paths
----- BH Report SOC

----- BH Report lgnored Constraints
----- BH Check Timing

..... % Report Partitions

43 Custom Reports

..... :| Repart Timing...

----- ] Report Mirimum Pulse Width...
----- | Report False Path. .

----- | Repart Path. ..

----- | Report Exceptions...

----- | Report Bottlenecks. .

----- | Report MNet Timing...

----- [ | Create Slack Histogram...
=45 Macros

----- B Report All Summaries|

----- B Report Top Failing Paths
----- BH Report Al 10 Timings

----- EH Report Al Core Timings

..... % Create Al Clock Histograms
:' Write SDC File._.

B Reset Design

] Set Operating Conditions..

Create Timing Netlist
Read SDC
Update Timing Netlist

They show up in the Tasks menu and will have
a checkmark when completed. Note that the user does
not have to double-click them individually. If they
double-click on any report in the Tasks window, such
as Report Setup Summary, then these 3 commands will
automatically run. That means they will:

- Create a timing netlist based on the slow
timing model.

- Read in all the .sdc files that have been added
to the Quartus project, listed under Assignments ->
Settings -> Add Files or TimeQuest Timing Analyzer,
as well as any SDC commands embedded in the design
files.

- Update the timing netlist, which is really just
applying the timing constraints to the netlist so it can
now be analyzed.

That’s the default behavior for these three steps,
but looking at them in more detail:

1) Create Timing Netlist. There are up to three
timing models for an FPGA, which are explained here.
When TimeQuest runs during a compilation, it will
analyze the user’s design against all available timing
models, but when analyzing a design in the TimeQuest
GUI, the user can only analyze one timing model at a
time. Most setup and recovery failures are in the slow
timing model, hold failures are in the fast timing model,
and there is an occasional failure in just the slow 0°
timing model.

The default is the slow timing model, since most
failures occur in this model, but the user can go to the
Netlist pull-down menu in TimeQuest and choose
another timing model. They can also create a timing
netlist for another speed grade, or they can create a
Post-Map Netlist, which is based on the synthesis of the
design but without any placement. (I would not use a
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Post-Map Netlist for any serious timing analysis, but find this useful to edit an .sdc file and make
sure it is doing what | want before running a full compile).

2) The next step is to read in the .sdc files, as well as any SDC constraints embedded in
the HDL. The user can manually read in .sdc files from the pull-down menu Constraints -> Read
SDC. To read in .sdc commands embedded in the HDL, type “read_sdc -hdlI”.

3) Finally the design must be updated. This is just applying all the SDC constraints to
the physical database so that analysis can be done.

Notes:

- To start over, the user can go to the pull-down menu Netlist Delete Timing Netlist.

- To switch to a different netlist, the user can go to Netlist -> Set Operating Conditions,
or access this command from the bottom of the Tasks menu.

- Finally, the task Reset Design is a great way to iteratively modify the .sdc commands
and then re-analyze. This iterative method was described in the Getting Started section.

Major Reports

After compiling a design, the one command in TimeQuest I always run first is the macro
Report All Summaries. This automatically runs the first three steps just shown as well as the five
major reports:

Report Setup Summary
Report Hold Summary
Report Recovery Summary
Report Removal Summary
Report Minimum Pulse Width

Report Max Skew Summary
(It also runs Report Clocks).

The first four summary reports show each domain in the design, their slack and Total
Negative Slack. Here is an example Setup Summary:
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Clock Slack | End Point THS
1 =_system_plllattpll_componentlauto_generatedipll 1icl[ 1] [REUTAEEY
|2 |be_clke_ext 1354 |0.000
13 |nfa 1480 (0000
4_the_adu:gllahpll_n:u:umpnnent auto_generatedipllichk][2] 2567 |0.000
15 [adc_clk_100_ext 2609 |0.000
E_the_s'_.rstemjll altpll_componentlauto_generatedipl1iclc[0]|4.060 [0.000
I 4060 |0.000
E_the_adc:;nllahpll_n:n:nmpanem auto_generatediplllichk]1]  |4.233 |0.000
19 |sys_clk 967 |0.000
Ethe_adu:gllaﬂpll_-:u:umpu:unent auto_generatedipllicl[0] |8.860 |0.000
lthe_s'_.'stemjll altpll_componentlauto_generatedipll1iclic[2] | 5.303 | 0.000
12 adec_clk 10.938 |0.000

As you can see, 12 clock domains are analyzed, where the worst slack is 0.770ns. All
paths are grouped by their latch clock, so if a path has a different source and destination clock,
it’s the destination clock that it will be reported under for Summary reports. The End Point TNS
is Total Negative Slack, which is the sum of negative slacks for each endpoint(if there are
multiple failing paths to an endpoint, only the worst slack will be used). By itself I don’t find
TNS very useful, but when comparing to previous compiles of the same design is there some
benefit. For example, Slack is always based on the single worst-case path in that domain, so if
the user modifies code that is not the worst case path, the TNS may go up or down, signifying
other paths got better or worse. To be honest, | don’t find TNS all that beneficial though.

So why do I consider the Setup, Hold, Recovery and Removal Summaries the “Major
Reports”? It’s because they encapsulate every path in every domain that TimeQuest is analyzing
and the fitter is trying to close timing on. 1’ve seen too often where a user only looks at the
Fmax Summary, which only covers paths within a domain. Or they might only run the Setup
Summary, but have Recovery Paths that are failing and that the fitter is optimizing for at the
expense of setup. These reports are really “the big picture”, and hence it’s important that users
start at this high-level approach that shows them everything, and then work their way down with
the command report_timing, which will be analyzed shortly.

The Minimum Pulse Width Summary analyzes structures that are capped at certain delays
or frequencies. A good example is that a user might have a domain consisting of a single register
feeding another register. If the data delay and clock skew were 1ns, then the summary setup
report would state that the clock could run at 1GHz. The problem is device clock trees are
capped at lower frequencies, as described in each device’s handbook. So if the user tried to
constrain this clock to 1GHz, it might pass the setup analysis but would fail the minimum pulse
width check. Besides clock trees, other examples of structures that are capped are memory
blocks, DSP blocks and I/O ports. All of these will show up in the Minimum Pulse Width check
if the user tries to run them faster than they can handle. Note that the fitter generally can’t do
anything to improve Minimum Pulse Width checks, as it is a hard limit on a single portion of the
device. Generally the user needs to either select a faster speed grade when possible, or lower the
clock rate. The rate at which structures are capped should be in the device handbook.

The final report is Report Maximum Skew Summary. Unlike the other major reports, this
one won’t actually run in most designs because it only analyzes paths that have been constrained
by set_max_skew. Since the majority of designs do not use this constraint, the majority of
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designs will not have this reported. But any design that does have set_max_delay constraints,
this is the final summary to state if they made timing or not. If the user wants more detail than
the summary report, they can run:

report_max_skew -detail full_path -panel_name "Detailed Max Skew"

Device Specific Reports

These reports are device specific and design specific. If your design does not use True
LVDS blocks or Altera’s DDR PHY (altmemphy or UniPHY), then they are not generally not
relevant. If you are unsure if they apply to your design, simply double-click and see what
happens. If they apply to your design, you will get a report. They will also be run in TimeQuest
during a full compile, and any failures would show up there.

Report TCCS

This command reports Transmitter Channel-to-Channel Skew, which is only relevant on
designs using True LVDS Transmitters. These are created with the altlvds megafunction, and
must use the dedicated L\VVDS silicon. A full explanation of TCCS is given in each device’s
specific handbook, so please refer to that for timing diagrams. Here is an example TCCS report:

LVDS Transmitter Constant TCCS

‘1 0.100

There is not much to this report. It doesn’t say what 1/O it is referring to, although this
should be known by the user based on what outputs use True LVDS. The value is independent
of timing model(a single value covers all models), and generally independent of device, package
and speed grade within a family. This value can also be pulled from the datasheet.

The user does not need to enter any timing constraints on their True LVDS outputs, and if
they do, those constraints will be ignored. This report does not have any pass/fail mechanism, it
just states a value. Because of this, the user wants to make sure they get their clock/data
relationship correct when setting up the altlvds block. For example, the TCCS value is the same
whether clock and data are sent edge-aligned or center-aligned, yet obviously a receiver can only
handle one of those relationships. | have never seen this be a problem, but think it’s worth

clarifying.

Report RSKM

The command reports Receiver Skew Margin, and is relevant on designs using True
LVDS Receivers without Dynamic Phase Alignment (static timing analysis is not run on DPA,
since that changes timing dynamically). A full definition with timing diagrams of RSKM, RCCS
and the Sampling Window is given in each family’s handbook. Here is a sample report:
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RSKM |LVDS Perod | Sampling Window |RCCS | Data Port | LVDS Channel Reqister

180475 |1.250 0.300 0.000 |din[3] ...erinstiattlvds pcALTLVDS RX componentimy receiver lvds noauto generastedine 3~POS CAFP OF
ED.#?E 1.250 0.300 0.000 |[din[Z] ..erinstathvyds_npcALTLYVDS _RX_componentimy_receiver_lvds_ncauto_generatedine_2~FOS_CAP_DF
i 0475 (1.250 0.300 0.000 |din[1] ..erinstiatthvds_ncALTLVDS _R¥_componentimy_receiver_lvds_ncauto_generatedine_1~FPOS_CAP_DF
410475 1250 0.300 0.000 |din[0] ..erinstiatthvds_ncALTLYDS_R¥_componentimy_receiver_lvds_ncauto genemtedm_D‘POS_Cﬁ.F‘_DE

The report identifies which input ports it is analyzing, and makes use of input timing
constraints, although in a minimal manner. If the user applies set_input_delay -max and
set_input_delay -min constraints on the inputs, the values are used to determine RCCS. It takes
the difference of the -max and -min values and applies that as the RCCS. The above report did
not have any input constraints, so the RCCS is 0. After adding:

set_input_delay -clock sys_clk -max 0.100 [get_ports din*]
set_input_delay -clock sys_clk -min -0.050 [get_ports din*]

The report now looks like so:

RSKM | LYDS5 Perod ‘Sampling Window |RCCS |Data Port | LVDS Channel Register
1E0.400 |1.250 0.300 0.150 |din[3] ..erinstlatthvds ncALTLYDS RX componentimy receiver Ivds noaute generatedine 3~POS C:’-‘-I
E 0400 |1.250 0.300 0150 |din[Z] ..erinstlathvds_pcALTLVDS _RX_componentimy_receiver_lvds_ncauto_generateding_Z~POS5_CA
i 0400 |1.250 0.300 0.150 |din[1] ..erinstlatthvds_npcALTLVDS _RX_componentimy_receiver_lvds_ncauto_generatedine_1~POS_CA
i 0400 |1.250 0.300 0150  |din]0] ..erinstlathvds_pcALTLVDS _RX_componentimy_receiver_vds_ncauto_generateding_0~POS_CA

As can be seen, the RCCS went up by 150ps, which is the difference between the -max
and -min values | applied. Note that the independent -max and -min values do not matter, as this
report only looks at the difference between them. If | had entered a -max 10.150 and -min
10.000, the difference would still be 150ps and | would have identical analysis. As such, this
report does not analyze how well the clock is centered in the data eye and assumes the user has
taken care of that when creating the altlvds receiver.

Personally, I do not see most users entering constraints, and just looking at the raw
RSKM value and determining on their own if that is good enough. Since this value is a constant,
this method works fine.

Report DDR

This command runs a timing analysis for designs using Altera’s DDRx PHY, specifically
the ALTMEMPHY or UniPHY. This analysis makes use of .tcl and .sdc files written out by the
cores during generation, and should exist in the user’s project directory. This is all explained in
detail in the DDR IP documentation.

Report Metastability

I have to admit, | have not had a user concerned about metastability, and hence do not
have real experience with these reports. |1 am not sure why this hasn’t gained in popularity. My
guess is that user’s have gotten by this long without a good metastability analyzer, and hence feel
it’s probably not important. That’s a shame because one nice feature of metastability problems is
that, once identified, they are usually very easy to fix, by adding a little more timing margin on
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the synchronization path, or adding another synchronization register. The difficulty with
metastability has always been in identifying where it might be a problem in a real design.
TimeQuest has the capabilities to do that analysis, giving Mean Time Between Failure(MTBF)
values on individual synchronizers and across the entire design.

Note that MTBF analysis is not something you just turn on. The user must assist
TimeQuest to make sure it analyzes the correct synchronizing registers, and if they want, tell
TimeQuest the toggle rate of the data. (A reset signal may only toggle once a day, and hence is
orders of magnitude less likely to suffer an MTBF failure than a data signal that is constantly
changing). This is all detailed in the Quartus Il handbook. Just search on www.altera.com for
metastability, and select the Quartus Il handbook link to Managing Metastability.

report_timing - If you only know one command...

I break this command out into its own section because 99% of my design analysis is done
with this command. It really is the work-horse of TimeQuest and should be understood by every
user. For starters, | recommend typing the following in TimeQuest:

report_timing -long_help

The report_timing dialogue box can be accessed from Report Timing.. in the Tasks menu
on the left, or the pull-down menu Reports -> Custom Reports -> Report Timing. Both of these
methods will pull it up “empty”, whereby the user has to fill in what criteria they want to
analyze. More often than not, report_timing is accessed by right-clicking on an existing report
and selecting Report Timing. This uses report_timing as a diving tool, whereby they look at
what domains are failing in the Summary reports and dive down with report_timing to get more
detailed information.

This command is so important it is covered in the Getting Started section. Here are some
more detailed notes on the command:

TQ_Analysis.tcl

When analyzing a project, | create a new Tcl file in my project directory called
TQ_analysis.tcl. When analyzing paths | may want to analyze again, | copy my report_timing
command out of the TimeQuest console and into TQ_analysis.tcl. This way | can access those
commands in the future without having to go through the report_timing dialogue box. The most
common case is for I/O interfaces. | might do something like:

report_timing -setup -npaths 100 -detail full_path -to [get_ports txout*] -panel_name *s:
* -> txout™

report_timing -setup -npaths 100 -detail full_path -to [get_ports txout*] -panel_name “*h:
* -> txout™

This two commands analyze setup and hold to the output bus tx_out*. For inputs, I
would use the -from option instead. Often an even better filter for 1/0 is to use -from_clock or -
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to_clock. Since most I/O interfaces have a virtual clock created just for them, filtering on that
clock automatically filters onto every 1/0 port associated with that clock.

Once TQ _analysis.tcl has been saved in the project directory, it can be accessed in
TimeQuest from the Scripts pull-down menu. This allows easy access to analyze these specific
paths anytime in the future without having to re-create the filters.

When creating a TQ_analysis.tcl file, it is especially important to pay attention to the -
panel_name. This option specifies the name used for that report in Reports section. It often
defaults to the generic name “Timing Report”, and the user should be careful to change this to
something more descriptive or else multiple calls of report_timing will just over-write existing
reports with the same name. As a suggestion, | often start with what analysis is being done,
using s: h: rec: rem: to represent setup, hold, recovery or removal. Next | use some shorthand to
specify the path:

-panel_name “s: * -> *KeyRAM*”

This tells me the report does setup analysis on all paths with *KeyRAM?* as the
destination. This is my own syntax, and the designer should do whatever makes the most sense
to them. One thing that most users don’t know is that adding two pipe characters into their panel
name will add hierarchy to their reports. So if | have a bidirectional bus called pci address, there
are 4 things to analyze, setup and hold going off chip and setup and hold coming into the chip.
Taking these four analysese:

report_timing -setup -npaths 100 -detail full_path -to [get_ports {pci_address[*]}] -
panel_name “PCI Address||s: * -> pci address™

report_timing -hold -npaths 100 -detail full_path -to [get_ports {pci_address[*]}] -
panel_name “PCI Address||h: * -> pci address™

report_timing -setup -npaths 100 -detail full_path -from [get_ports {pci_address[*]}] -
panel_name “PCI Address||s: pci address -> *”

report_timing -hold -npaths 100 -detail full_path -from [get_ports {pci_address[*]}] -
panel_name “PCIl Address||h: pci address -> *”’

Running these commands after Report All

Summaries creates a Report table as shown on the Report 5

I’igh'[. =5 -|_II'I'|EQ.LIES.1:-|_II'I'IiI'|g Analyzer Summary
As can be seen, PCI Address is a folder that % gﬁrir::':':.sstemp,_

can be opened and closed, containing the four sub- E® summary (Hold)

reports within it. 1f your TQ_analysis.tcl script Summary (Recovery)

contains a lot of report_timing commands, this is a Summary (Removal)

good way to help organize the results. B8l summary (Minimum Pulse Width)

% Clocks Summary
B)n g * - adc_dout_100
B)n h: * - adc_dout_100
= {3 PCI Address
s: * -= pd address
BF h: * - pdi address
BF si poi address -» =
h: pci address -= =
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-false_path

The -false_path flag filters report_timing to only show paths that have been cut. These
false paths are created in the .sdc files by either set_false_path or set_clock_groups commands.
This flag is an extremely useful tool to look for paths that have either been incorrectly cut or
signals that go between asynchronous domains without correctly being synchronized. This
methodology is discussed in more detail in the Miscellaneous section Strategies for False Paths.

If the user forgets to constrain a clock, this option won’t report paths to that clock. It
only reports paths that have clock constraints and are then cut. To find clocks that aren’t
constrained to begin with, use Report Unconstrained Paths.

Path Filters

First off, I would suggest avoiding the -through option. This is not because it doesn’t
work, but the -through implies combinatorial logic, and combinatorial logic naming is always
subject to the vagaries of synthesis. Endpoints are generally registers and 1/0 ports, which are
much more reliable for matching the name in the original RTL. I’'m not saying the -through filter
should never be used, just that it should be avoided if the same thing can be accomplished with -
from/-to.

The endpoint filters have many options. There are a slew of -fall_* and -rise_* options
that | never use. These will limit your paths to only rising or falling edge transfers. The more
generic -from/-to and -from_clock/-to_clock cover both rising and falling edges, which is usually
fine. Users can filter on both clocks and endpoints, and only paths that meet both criteria will be
reported. If an endpoint or clock is not specified, then all clocks or endpoints are allowed. So
something generic like the following, which has no endpoint or clock filters, will list the worst
500 failing paths in the design, regardless of clock or endpoint:

report_timing -setup -detail full_path -npaths 500 -pairs_only -panel_name ““s: 500 worst
paths™

Note that | used the option -pairs_only. This option will limit the report to only 1 path
between a pair of endpoints. Paths with large blocks of combinatorial logic can have many
different routes between the endpoints, where the user really only cares about the worst case one.
This may reduce the size of a timing report to something more readable. Note that -pairs_only is
filtered during the display, so if 500 paths are found in the example above, -pairs_only most
likely filter that to a smaller number.

Another good filter is -nworst #. | often run with -nworst 1. This will only show one
path per destination and can reduce the number of failing paths reported by an order of
magnitude. This often provides a much easier to read snapshot of the failing paths in a design.
Be careful though, as it limits the information shown. For example, -nworst 1 might show only
one path feeding a register, and that path might look like its placement was bad. Without the
option -nworst, report_timing might show hundreds of sources feeding that register, which
would explain why the critical path is forced to be spread out.
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Datasheet Reports

Report Fmax

I am not a fan of this report. Fmax is only reported within a clock domain, and is
therefore based solely on paths where the launch and latch clock are the same. Although the
majority of paths meet this criterion, it is still a limited view of timing closure and a limited view
of what the fitter is working on. Any paths between clock domains that are being analyzed and
worked on by the fitter will be ignored by these reports.

My biggest complaint with report Fmax is that many customers rely on it rather than
Setup Summary. When a design’s critical paths are within a domain, then the Fmax and Setup
reports will match. If the critical paths are between clock domains, those paths will show up in
Setup Summary but not in the Fmax report. The only way to verify this is to run Report Setup
Summary. Also, the Fmax report does not give detailed information on what paths it is using for
analysis let alone what those paths look like. My feeling is that the sooner a user understands
their setup reports, the better off they’ll be and the sooner they’ll realize they don’t need the
Fmax reports at all.

Report Fmax can be useful as long as the user understands it is only analyzing a subset of
paths in the design. Many people prefer to talk about clocks in term of Fmax rather than slack,
and this allows a quick reference point. That being said, it is generally not difficult to convert
setup slack into Fmax.

Report Datasheet

Report datasheet will report the timing on your 1/O ports in a device-centric manner, i.e.
it reports Setup and Hold times on your input ports, Clock to Output and Min Clock to Output
Times on your output ports, and Propagation Delays and Minimum Propagation Delays for input
to output port connections with no registers in between. These reports have been requested so
that users can describe their FPGA’s timing with a fixed number, much like a device datasheet.
This is a useful request, but has some flaws.

First, these reports are based on a specific place-and-route. If an output pin has a
requirement that it get its data out in 6ns, and on a particular compile it is done in 5ns, Report
Datasheet will say the Clock to Output is 5ns. That may be correct, but if the design is re-fit, it’s
possible the Clock to Output could get worse, up to 6ns, and there would not be any warnings or
errors. From that perspective, | believe it makes more sense that the FPGA’s 1/O timing should
be looked at based on its requirements, rather than the results of a single place-and-route.

Of course, 1/0 requirements are not made in a device-centric manner, which makes this
more difficult. In reality, once a user understands the basics of 1/O, it hopefully becomes clear
how their requirements relate to these values. A more thorough discussion on device-centric
versus system-centric timing can be found here. As can be seen, values like Tsu, Th and Tco
make sense in many 1/O cases, but there are a number of situations where they can’t do complete
analysis(such as source-synchronous interfaces) and a number of timing effects that they can’t
properly handle(like PLL phase-shifts and clock inversions).

The other issue | have with Report Datasheet is similar to my problem with Report Fmax,
in that users rely on it to determine if their device met I/O timing. There are two major problems
with this. First, Report Datasheet does not look at the user’s requirements and therefore has no
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pass/fail mechanism. Relying on this report for 1/0 timing would require the user to look at the
numbers after EVERY compile and determine if they were good enough. Just as importantly,
these reports do not give detailed path analysis. If the Clock to Output time on a port was 10ns
but the user needed 8ns, there are no path details to tell them why their Clock to Output delay is
so long. The user must go to their setup and hold reports to get these delays, and they will only
get them if they constrain their 1/0.

Much like Report Fmax, Report Datasheet does have its uses. Minimally they provide a
quick glimpse of 1/0 timing. For slow interfaces, users often won’t constrain them, and they
may just occasionally look at these reports to make sure their values aren’t significantly off from
what they expect. It is important to note how this report deals with two major issues, clock
inversion and PLL phase-shifts:

Clock inversion - The example I like to use with this is to think of a simple Clock to
Ouput, where a clock comes into the FPGA and clocks data through an output register to the
output port. Let’s say the clock period is 20ns and after place-and-route, the Clock to Output is
7ns. Very straightforward. Now let’s say everything is the same except the designer changes the
output register so it is clocked on the falling edge. The data will now come out shifted by a half-
period, 10ns, from when it was coming out before. Should the Clock to Output time be -3ns,
17ns, or 7ns? None of these actually seem right?

The answer is 7ns. So if two signals output ports were clocked on opposite edges of the
clock, their data would come out at very different times, but their Clock to Output values would
be the same. Luckily, the Datasheet has a column called Clock Edge. The following screenshot
is from a design with an output bus called tx_out[7:0], where the upper four bits are clocked on
the falling edge and the lower four bits on the rising edge. As can be seen, they have similar
Clock to Output Times, but the lower bits are labeled with Rise while the upper bits are labeled
with Fall:

15 | = tx datal®] t dk 6,280 0.265 Rize te dk
15 tx datal0] o clk 5.213 5,135 Rise tx clk
17 te datal1] e dk 6.112 0.077 Rize e dk
13 tx datalZ] t dk 6. 236 6.265 Rise tr dk
19 tx data[3] e dk G5.247 5.235 Rize te dk
20 tx par t dk 6,285 6.273 Rise tw clk
21 | = tx datal[*] o dk 5.376 J.371 Fall e dk
22 te data[4] te dk 5.376 5.371 Fall tx dk
23 tx data[5] t dk 5.373 5.368 Fall te dk
24 tw datala] o clk 3.375 3.354 Fall tx clk
25 tx data[7] te dk 5.320 5,299 Fall tx dk

This column is easy to ignore, which is why it’s worth pointing out.

PLL Phase-shifts - The second issue with device-centric timing concerns PLL phase-
shifts. Let’s start with the same example as above, whereby a clock with a 20ns period clocks
data out and it takes 7ns. Let’s say that it’s going through a PLL now, so the Clock to Output
time is still 4ns. (A PLL normally compensates for the clock tree delay and makes the Clock to
Output timing better). Now let’s start phase-shifting the PLL.

Let’s start with a small phase-shift, say +/-500ps shift, and the Clock to Output times
become 3.5ns or 4.5ns, respectively. This generally makes sense. Large shifts tend to be where
things get confusing. If the user phase-shifts the clock +180 degrees of -180 degrees, the data
will come out at the exact same time, but the +180 degree shift will give a Clock to Output time
of 14ns and the -180 degree phase-shift will give a Clock to Output time of -6ns. Having a
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negative Clock to Output does not generally make sense. In essence, it treats the phase-shift like
a delay element on the clock path.

This is not like normal setup and hold analysis, where any user inserted phase-shift is not
a delay, but actually effects the setup and hold relationships. In normal setup and hold analaysis,
clocks are periodic functions, where a +180 degree phase-shift will be analyzed the same way as
a -180 degree phase-shift. All in all, the way the Datasheet Report handles phase-shifts is how
many users think, but it’s important to understand the differences between its report and the real
analysis being done for setup and hold.

Diagnostic

report_clocks

This command is the only diagnostic report that runs as part of Report All Summaries.
This report nicely tells what the clocks look like after everything has been read in, including .sdc
files, and hence what TimeQuest is using for analysis. This “view” can be much more
straightforward of what’s going on, rather than digging through RTL for clock names, or into
.sdc files from IP vendors to see what clocks are created. It also clearly states the clock name,
which can be cut and paste from for use in .sdc constraints or timing reports.

report_clock_transfers

I’m a big fan of this command. It gives an excellent report of how many paths exist
between every pair of clocks, false paths included. If there are no physical connections between
two clocks, they won’t show up. Here’s the report from a sample design:

From Clock To Clock FR Paths RF Paths FF Paths
1 iade dk! adc ok 3 a 0o
2 sys ck adc ck falsepath © @
3 | the adc plllaltpll componentjauto generated |pll1]ckl1] adc ck 100 ext 1 o o
4 |adc dk sys ck falsepath @ @
5 |sysdk sys dk 3 o o
6 the adc pljaltpll componentlauto generated|pll1|clk[0] the adc plljaltpll componentjauto generated |pll 1]dk]0] 1 1 1
7 | the adc plljaltpll componentjauto generated |pll1]ckl 1] the adc plllaltpll component|aute generated |pll 1jdkl 1] 5 1 1
8  the system plllaltpll component|auto generated|pll1]cklo] the adc plllaltpll component|auto generated |pll 1]dkl 1] false path [
9 |the system plljaltpll component|auto generated|pll1lckl1] the adc plljaltpll componentlaute generatedlpll1]dkl1] false path [
10 |the system plijaltpll componentlauto generatedipli1ldk[2] | the adc pllaltpll componentlauto generated |oll1idkl1] falsepath @ o
11 |the adc plllaltpll componentlauto generated|pll 1|ckl2] the adc plllaltpll component|auto generated |pll 1jckl2] 1 1 1
12 |the system plljaltpll component|auto generated|pll1]ckl0] the system plljaltpll componentlauto generated|pll1clk0] 5 1 1
13 |the system plljaltpll component|auto generated|pll1]dk(1] the system plljaltpll component]auto generated |pll1]dk[d] 1 o 0o
14 |the adc plllalpl componentlauto generated|pll1idkl1] the system plljaltoll component|auto generatedpll1jckf1]  falepath @@
15 |the system plllaltpll component|auto generated|pll 1]ckl0] the system plljaltpll componentlauto generated|pll1|clkl 1] 1 [
16 | the system plljaltpll componentlauto generatediplli]dkl1] the system plljaltpll componentlauto generatedipll]dk[1] 3 1 1
17 the system plllalipll componentlauto generated|plllick(2] | the system plllaltoll componentlauto generated|pll1|dkl2] 3 1 1
18 tx dk te clk 9 1 5
19t ck tx ok ext 5 4 o
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This report gets generated for setup, hold, recovery and removal. 1 find Setup Transfers
to be the most interesting. Note that RR Paths refer to paths where both registers are clocked on
the rising edge. RF, FR and FF refer to different combinations of rise/fall clock transfers.

Finally, domains with false_path indicate that timing was cut between these clocks, either
with a set_false_path between the clocks or in a set_clock_groups assignment. If the clock
transfer is not cut at the clock level but some individual paths are cut, the number of paths
between those clocks will be reported and the false paths will be included in that number. (E.g if
there are 10 paths between two clocks, and 5 of them are cut with a set_false_path, this report
will still state 10 paths exist.)

The user can right-click on any row and either do a Report Timing..., or Report False
Path. These two commands will explicitly show the paths between those domains, with the
number of paths and detail level specified by the user. Remember that Report False Path, which
IS just report_timing with the -false_path flag added to it, will only report paths that have been
cut, either at the path level or at the clock level, so Report Timing and Report False Path will
create a mutually exclusive list of all paths between those clocks made up of real paths and false
paths.

Major domains that clock a lot of logic will have a LOT of paths listed, which is expected
and not that useful of a number. Instead, it’s the domains that have a small number of transfers,
usually less than 100, that I find interesting. The first thing to ask is if the domains are related.
If they are it’s not a big deal, it just means a small number of paths send synchronous data. But
if the clocks are asynchronous to each other and paths exist, is that expected? Quite often it is,
and the paths will be inside an asynchronous FIFO, or perhaps a clock adaptor bridge inside
SOPC Builder. But if the transfers are not expected, the user should investigate those paths and
see if a mistake was made. Debugging incorrect transfers between asynchronous clocks is
difficult in simulation, and extremely difficult in hardware, so being able to identify them in
other ways can be useful. This is discussed more in the miscellaneous section on strategies for
false paths.

There’s a quick trick for getting rid of the “false path” description in this report. 1 will
open my .sdc file and comment out the set_clock _group assignments, as well as any
set_false_path assignments that are between clocks. | will reset_design, and then double-click
Report Clock Transfers. This will read in the edited .sdc files that do not have any domains cut,
and will report the number of paths between every domain. It may be helpful to take a
screenshot of the original report or put it in a text file to compare which domains are really cut
with this new report that shows how many paths exist between all domains.

Report Unconstrained Paths - report_ucp

This is an extremely important report, as it identifies unconstrained paths in the design.
The most useful items it reports are unconstrained clocks and unconstrained 1/0.

Unconstrained clocks start at the most basic, which is an input port that is used as a clock
and does not have a clock constraint. After that are generated clocks, such as PLL outputs and
transceiver outputs, which are usually covered by derive_pll_clocks, but would be missed if
you’re not using that command. Finally, ripple clocks, which occur when a register’s output
drives the .clk port of another register, need a create_generated_clock assignment or else they
will show up as an unconstrained clock in this report. The one thing that will not show up is a
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gated clock, i.e. when clocks go through purely combinatorial logic such as a mux. In these
cases, the base clocks just pass through the structure, and hence it is not unconstrained, but could
be constrained with a create_generated_clock at the mux output if the user wishes. See the
section on clock muxes for more detail.

The unconstrained clock report is useful first off for any clocks the user forgot to
constrain. If some clocks are unconstrained, they will be optimized for area during synthesis and
the fitter will not try optimize paths within this domain. The user may say that’s all right, as the
domain may be very slow, but remember that hold violations can occur on the slowest of clock
domains, i.e. 1Hz clocks can still fail a hold violation and still fail in hardware. More
importantly, transfers between this domain and other domains will not be analyzed, which is
another source for failure.

The second big use for unconstrained clocks is when a clock shows up that the user
thought they constrained. The most likely scenario is from an error in the SDC file where their
assignment did not take. The user should re-examine their assignment, as well as go back to the
TimeQuest messages to see if a warning was issued when the assignment was processed.

Besides clocks, 1/0 ports are the next major portion of this report. Minimally, most users
know they have not constrained all of their 1/0O, and hence this is a quick list of which 1/O they
missed. A constrained 1/O port has one of the following constraints on it, set_input_delay,
set_output_delay, set_max_delay, set_min_delay, or set_false_path. Note that output ports
which send out a clock usually have a create_generated clock assignment on them, but nothing
else. These outputs show up in the unconstrained path report, although the comment section
nicely states that it does have a clock assignment. | generally leave output ports sending clocks
as unconstrained, although this will annoy some users, and some designs have requirements that
all 1/0 are constrained. Adding a loose timing constraint would work around this:

set_max_delay 200.0 -to [get_ports clkout]
set_min_delay -200.0 -to [get_ports clkout]

The clock output won’t be anywhere near those values, but these assignments will stop
the port from showing up as unconstrained.

report_sdc

If your .sdc is straightforward, then this report won’t do much more than report out what
you put in. | find this most useful for complex constraints. For example, if the user’s constraints
are made of variables, it’s sometimes helpful to see the constraint at its most basic level. For
example, with an .sdc like so(l made up the values):

# CPU Specs:
set cpu_tco_max 6.123
set cpu_tco_min 3.434

# Board delays:

set cpu2fpga_max 0.877
set cpu2fgpa_min 0.488
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set clk2cpu_max 1.455
set clk2cpu_min 1.011

set clk2fpga_max 1.505
set clk2fpga_min 1.074

# Equations for CPU to FPGA:
set iMax_cpu [expr $clk2cpu_max + $cpu_tco_max + $cpu2fpga_max - $clk2fpga_min]
set imin_cpu [expr $clk2cpu_min + $cpu_tco_min + $cpu2fpga_min - $clk2fpga_max]

# FPGA’s inputs from CPU:
set_input_delay -max -clock cpu_clk_ext $iMax_cpu [get_portsi_cpu_*]
set_input_delay -min -clock cpu_clk_ext $imin_cpu [get_ports i_cpu_*]

That makes for a nicely descriptive SDC file, with the benefit of auto-calculating new
requirements if the user changes the board delays or parameters of the external device. The only
problem is that the final value isn’t apparent without doing the math by hand. The user could
add something like the following to their .sdc to echo the calculated value to the messages:

puts “iMax_cp => $iMax_cpu \n imin_cpu => $imin_cpu”

The problem is that you still have to find it in the messages. Running report_sdc allows
the user to quickly find:

Set Input Delay

SDC Commanid Add Delay Source Latency Induded | Clodk Fall Flags Clock Mame Reference Pin  Delay Parts Comments
1 izet input delay’ -add delay -max [aet clocks cpu dk ext] 7.381 [get portsi cpu addr[o0]]
2 set input delay -add delay -min [aet clocks cpu dk ext] 3.428 [get portsi cpu addr[0]]
3 set input delay -add delay -max [get cocks cpu dk ext] 7.381 [get portsi cpu addr[1]]
4 set input delay -add delay -min [get clocks cpu dk ext] 3.428 [get portsi cpu addr[1]]
5 set input delay -add delay -max [get clocks cpu dk ext] 7.381 [get portsi cpu addr[2]]
6 set input delay -add delay -min [get docks cou dk ext] 3.428 loet portsi cpu addr[2]]
7 |set input delay -add delay -max [aet dodks cou dk ext] 7.381 [get portsi cpu addr[3]]
8 set input delay -add delay -min [get docks cou dk ext] 3.428 loet portsi cpu addr[31]
9  set input delay -add delay -max [aet dodks cou dk ext] 7.3381 [get portsi cpu addr[4]]
10 |set input delay -add delay -min [get clocks cou dk ext] 3.428 [get portsi cpu addr[4]]
11 | set input delay -add delay -Max [aet docks cou dk ext] 7.331 [get portsi cpu addr[5]]
12 |set input delay -add delay -mirn [get clocks cou dk ext] 3.428 [get portsi cpu addr[5]]

Of course, the user could also run basic timing analysis on the path:

report_timing -setup -detail full_path -from [get_ports i_cpu*] -panel_name “‘s: i_cpu*”’
report_timing -hold -detail full_path -from [get_ports i_cpu*] -panel_name “s: i_cpu*”’

This will analyze the paths based on the constraints, and as discussed in correlating
constraints to timing reports, the iExt delays would be 7.381ns in the setup report and 3.428ns in
the hold report.

The report_sdc command is also useful if looking at constraints from an SDC created
elsewhere, such as Altera’s DDR2/3 IP cores. The user won’t hand-edit machine-generated SDC
files, but can use report_sdc to see what constraints were added.
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Report Ignored Constraints - “report_sdc -ignored”

Ignored constraints will always produce a warning in TimeQuest’s messages, which is
useful, but often ignored by the user. 1 find this panel very useful to manage ignored constraints
and try to get them down to as few as possible.

Note that ignored constraints are not always a problem. | have seen designs with various
parameters that add/remove large sections of code depending on the build configuration. That
code might have a lot of assignments, say multicycles and false paths, which are ignored when
that block of code is not in the design. But unless the reason is well understood and accepted,
ignored constraints should be cleaned up by the user. | also think they should be taken care of
early on, rather than as a final design clean-up. The reason is that an ignored constraint often
causes other problems that are difficult to debug.

A common example is when a user’s set_clock_groups command has errors and is
ignored, whereby all their asynchronous clocks become related, analyzed, and fail timing. The
designer spends time analyzing a bunch of failing paths with impossible requirements, finally
realizing they should not have been analyzed in the first place, and then going back to the
TimeQuest messages to find why a constraint was ignored. If the user checked this report first,
the problem would have been found much more quickly.

A more serious situation is when a user has multicycles or false paths within a domain
that are ignored. The fitter might actually be able to close timing on those paths, so they don’t
show up as failures, but because they compete with real paths, those real paths suddenly get less-
than-ideal placement. Without looking at the Ignored Constraints report, the user may never
know of this problem and spend days/weeks trying to optimize timing through other methods,
always assuming their exceptions were working.

And be aware that exceptions which are working might stop working midway through a
project. One of the most common issues is when a hierarchy path changes, and hence the node
names to everything beneath it have changed. If the assignments use full path names, they will
no longer take. The hierarchy may change due another designer making a modification. It might
be due to a different naming convention for generate statements. It may be due to regeneration
of IP. All of these might occur without the user thinking to check if their .sdc constraints are still
valid.

Recommendation: When possible, strive to get your design’s Ignored Constraints report
as close to having no ignored constraints as possible. The benefit is that if anything changes,
new Ignored Constraints should be easily identifiable, and the user can fix the problem up front
rather than debugging the secondary effects of an ignored constraint.

check_timing

This report was created by the TimeQuest group to look for common mistakes they see.
Some of them are covered in other reports, such as unconstrained clocks or 1/0s, and some give
warnings in the messages, such as the PLL cross-check. These checks are not saying something
is wrong, and if the user knows what they are doing there are many conditions where they would
purposely design something that is flagged by check_timing. These checks are mostly stating
that the design is doing something uncommon, and so the user might want to verify what they are
doing is correct.
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These checks are not documented very well. When they flag a possible issue, they give a
quick description of the problem which is often clear enough, but in a few scenarios can leave
the user scratching their head. 1I’ll try to address as many as | can:

Virtual_clock - This flag occurs when no virtual clocks are found, which is generally a
bad thing, since they are the basis of I/O constraints and really the first step for creating
set_input_delay and set_output_delay constraints, as described in the Getting Started section.

This flag also occurs when a virtual clock is created, but not used in any constraints.
Naturally if it’s never used, there isn’t any point in creating it, and so something may be wrong.

No Input Delay/No Output Delay - This check is not saying that the 1/O are
unconstrained, just that they don’t have a set_input_delay or set_output_delay assignment on
them. If they have a set_false_path assignment, then I consider that more than enough since
you’re explicitly saying the 1/0 should not be constrained. If the design has only set_max_delay
and set_min_delay constraints, then it is not the official methodology for constraining 1/0, but
fine for users who understand what they’re doing. A section on using these constraints for 1/O is
found here, while a section comparing the two methods is covered here.

I have found this check get flagged on True LVDS 1/O, which generally do not need
these constraints, as they get analyzed by Report TCCS and Report RSKM, or in the case of
DPA Receivers, don’t get reported at all. This is a case where the check needs to be analyzed by
the user. Yes, True LVDS ports might not have input/output delay constraints, but they are also
not needed.

Generated_1O_delay - This check occurs when the user has a set_input_delay or
set_output_delay assignment whose -clock option uses a clock internal to the FPGA. The
common scenario is when a new user enters the clock that drives the register inside the FPGA,
such as the PLL that drives the input register:

set_input_delay -clock the_adc_pll|altpll_component|auto_generated|pll1|clk[0] -max 4.0\
[get_ports din*]

As highlighted in red, the user is specifying an internal PLL clock for their
set_input_delay constraint. New users often make this mistake and it is always wrong, since the
analysis to the external register will use part of the FPGA’s clock tree up to the PLL output, but
that’s it. Please look at the 1/O timing section in getting started to understand.

Note that the name is a little misleading, since there is one common case where generated
clocks work for 1/0O constraints. If the user has a create_generated_clock assignment on an
output port to designate a clock being sent off chip, it is perfectly fine to use that clock for the
-clock option of set_input_delay and set_output_delay constraints. This will not be flagged by
check timing either. It is only when a set_input_delay or set_output_delay’s -clock option uses a
generated clock from inside the FPGA, such as a PLL output or ripple clock, will this get
checked.
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Partial Input/Output/MinMax Delay - These constraints usually come in pairs. For
example, if the user does the following constraint, they have only applied the max delay
analysis(i.e. setup analysis):

set_input_delay -max -clock cpu_clk_ext 6.0 [get_ports cpu_data*]

To be complete, the user should have a matching set_input_delay -min constraint to make
sure the path is not too fast, which will be checked during hold analysis. This check occurs when
a user has constrained a path, but only half of it.

Like many of the other checks, something getting flagged does not mean it is wrong. A
user may override the default setup relationship on a path with set_max_delay, but keep the
default hold analysis. This path would be flagged as only having a Partial Min-Max Delay
constraint, which is true, but the user is all right with that since the min analysis done by the
default hold relationship is what they want.

Partial Multicycle - This check occurs when a path has either a multicycle setup or hold,
but not the other. If the user is trying to open the window, then this check is very useful, as the
path will have a positive hold requirement and the design may become unroutable as it adds
delay to meet that requirement, where the necessary multicycle -hold would fix the problem. If
they are trying to shift the window, then the default hold relationship is all right and this check
can be ignored. To get rid of the check, the user could add a matching multicycle hold that
mimics the default hold:

set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2
set_multicycle_path -hold -from [get_clocks clk_a] -to [get_clocks clk_b] O

The first constraint shifts the window. The second constraint is unnecessary since it
mimics the default hold relationship, but it would prevent this timing check from being flagged.

PLL Cross Check - PLL’s are configured based on how they are instantiated in the
design, not what the timing constraints say. So if the user creates a PLL that has a 10ns input
and creates a 5ns output, then physically the PLL will be configured for that. But if the user
applies a timing constraint stating the input is 8ns, and derive_pll_clocks says the output is 4ns,
there will be a PLL Cross Check flag. There will also be a warning in the messages.

The ability to have different settings is useful for a user who may want to run timing
analysis at different rates without re-generating the PLL and creating a new image. In the
example above, they may be curious if they can meet an 8ns input if they move up a speed grade,
so they would create_timing_netlist for the faster speed grade and modify the SDC for the faster
requirement, and just run TimeQuest to see the results. But if they are actually going to
production, they need to regenerate the PLL with the new settings to ensure the correct
bandwidth, VCO, and other internal settings are chosen for optimal performance.

Input Delay assigned to Clock - Clocks coming into the FPGA generally have a

create_clock assignment, but do not have any set_input_delay assignments, which are for data
inputs. This check alerts they user they have put a set_input_delay constraint on a clock, which
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is probably not what they want. Usually this stems from using too broad of a wildcard for the
port name and mistakenly matching the clock port.

report_partitions

This command cycles through all the partitions and does timing analysis within a
partition and between partitions. It very nicely gives the user a sense of which partitions have
the most difficulty, and if there are any inter-partition problems.

Custom Reports

Report Timing
This is the most important command for analyzing designs, and was covered at the
beginning of this section.

Report Minimum Pulse Width

This command is the analysis tool for diving into minimum pulse width failures. These
were described earlier in this section.

Report False Path
This is report_timing with the flag -false_path added. It is described here.

Report Path/Report Net

Report_path does timing analysis on a path(between registers or 1/O ports). The clock
delays to those endpoints are ignored, and there is no requirement. Likewise report_net will
report the delay of individual nets, independent of any requirements. | have never found a good
use for these, and more often than not find users going to these reports because they don’t
understand setup and hold reports, and want to try to do an analysis on their own. Minimally,
these reports are missing vital information. Clock skew is generally always important, and they
do not model On-Die Variation because they do not know if you want the slow or fast sub-
models. Generally I have not found anything these reports can do that report_timing could not
do better.

I would suggest the TimeQuest beginner concentrate on report_timing, since that shows
the entire analysis that will drive the fitter and determine if the design passes timing. One
possible benefit is that these commands will run on paths without any timing constraints, while
report_timing requires constraints. | would argue that if the user is interested in the timing of a
path, it probably needs a requirement.
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Report Exceptions

The Report Exceptions analysis goes through all the exceptions in a user’s .sdc files, such
as set_false_path, set_multicycle_path and set_max/min_delay, and reports the status of that
constraint. It determines if it matched any paths, if it was partially or completely overridden by
another exception, and can report timing on paths covered by that exception. | would suggest
running ““report_exceptions -long_help” to read the description, as well as running it, since
that’s the best way to understand what it’s doing.

All-in-all it’s a very cool report, especially for a design with lots of exceptions that are
hard to keep track of. The downside is that it takes a long time to run on a design with a lot of
exceptions, since each exception translates to a call of report_timing. It also has a report on
every single exception, which can be a lot of information. Because of long run times and long
reports to wade through, report_exceptions can be unwieldy for general purpose analysis, but can
be very useful for the occasional clean-up analysis, or to be run on a specific portion of the
design.

As a data point, | ran this on an EP4SGX230 design, 80% full that did not have any user
created exceptions. It took about 45 minutes to complete, and found almost 300 exceptions from
the IP being used(QDR II, Altlvds, Asynchronous FIFOs). So in this case, it’s an increase of 45
minutes and the report isn’t overly helpful since all the exceptions are packaged in the IP, and
hence not overly debuggable. For example, a lot of exceptions from the QDRII core come up as
partially overridden or invalid, but since the user did not write the core, they have to assume they
are correct. If a user has a hierarchy with a lot of user generated exceptions, it might be
worthwhile to use the -to option to filter on that hierarchy.

Report Skew and Report Max Skew

These constraints report skew. Note that report_skew is a back-end tool for analyzing
skew, in that the user specifies the endpoints they want to analyze. It is not a constraint but a
back-end reporting tool. This is most useful for setting up an analysis, and then converting that
analysis to a set_max_skew constraint in the .sdc file. Once that is done, report_max_skew will
report the skew on all set_max_skew constraints. Skew constraints are discussed in more detail
in the set_max_skew constraint section.

Report Bottlenecks

Run ““report_bottleneck -long_help” in TimeQuest to get more information. | believe
this command is similar to one in primetime, and used by ASIC designers to analyze timing
problems. The premise is that just looking at long lists of paths based on their endpoints can
leave the designer looking at the wrong things. Bottleneck is analysis of combinatorial nodes
that have many critical paths going through them(with critical being defined by the -metric
option).

This can be useful when the endpoints might not look like a pattern, such as various
control signals going through a cloud of logic and fanning out to multiple hierarchies, and so
looking at critical paths based on endpoints may show many paths that seem unrelated, where
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report_bottleneck would identify the bottleneck. Even when the endpoints are common, if they
go through multiple hierarchies, the bottleneck may not be apparent.

Technically, this all sounds very good. In practice, | have not had this report help me in
identifying something I couldn’t determine from report_timing. Just as importantly, having
identified a critical combinatorial node, it can be difficult to relate that back to the RTL, and
even more difficult to determine an actionable fix for the problem.

The report_bottleneck command might be a useful tool for analyzing a design, but in
general is probably not the first place to look.

Create Slack Histogram

This command gives a histogram of all paths within a domain and what their slack is. It’s
a nice way to show thousands or paths quickly:

Slack Histogram {main_pll_instjaltpll_componentjauto_generated|pll1|cIk[S])
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First note that the vertical axis is based on Edges, not paths. An edge is a timing point in
the design, generally a combinatorial or register output. It makes for a good metric instead of
paths, since a single long-hop could create thousands of failing paths, yet it’s really only one bad
node placement.

I find this report somewhat interesting, but not very useful in determining next steps for
timing closure or design optimization. | tend to think this makes for a better marketing slide than
for a true analysis tool. One other thing to note is that the fitter concentrates on the worst case
paths in a design. Let’s take the slack histogram above and say the domain had a 1ns tighter
requirement, so everything with a slack less than 1ns would be in red. This would mean tens of
thousands of thousands of edges would be failing. But note that the fitter will really spend most
of its time optimizing the most critical paths in a domain, since they determine its slack and how
fast it can run, while other edges might get better timing if the fitter spent more time on them.
By fixing the most critical paths in a design(a code change, a timing exception, etc.), the user
might find less critical paths get fixed too.
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Macros

Macros are essentially custom scripts that make use of existing commands. They are not
direct commands, but instead special calls. For example, double-clicking Report All
Summaries will actually run the following command within TimeQuest:

gsta_utility::generate_all_summary_tables
Note that this can be run by the user and can be put into the user’s own Tcl analysis files.

Report All Summaries

I recommend all new users run this macro, and discuss it in more detail at the beginning
of this section.

Report Top Failing Paths

A quick way to get the failing paths in all domains. The major downside to this report is
that it defaults to just summary details. To get the full path details and analysis, the user must
right-click on them and select Report Timing. | find it easier to run Report All Summaries and
then right-click Report Timing on the domain of interest, whereby | can set the -detail level to
something more robust like path_only or full_path, and thereby get low-level details on each
failing path. Still, this macro delivers a nice snapshot of failing paths in the design.

Report All I/O Timings

1/0 constraints describe a register outside of the FPGA, so the 1/0O analysis are just
register-to-register paths just like internal paths. As such, they are reported with all the internal
paths, which can be annoying for the user who wants the 1/O broken out separately. This macro
nicely does that, but has the downside of only giving a summary report, whereby the user still
has to right-click Report Timing on a given path to get more details.

This command will not report 1/O that are not constrained.

Note that there is nothing overly special about this macro, and the user could do their
own Tcl script to achieve similar results, allowing them to modify settings such as the number of
paths, the detail level, or write out to a text file. For example, the following does the same but all
reports have -detail full_path.

report_timing -setup -npaths 1000 -detail full_path -from [get_ports *] \
-panel_name “Report I/O Timing||Inputs to Registers (Setup)”
report_timing -hold -npaths 1000 -detail full_path -from [get_ports *] \
-panel_name “Report I/O Timing||Inputs to Registers (Hold)”
report_timing -recovery -npaths 1000 -detail full_path -from [get_ports *] \
-panel_name “Report I/O Timing||Inputs to Registers (Recovery)”
report_timing -removal -npaths 1000 -detail full_path -from [get_ports *] \
-panel_name “Report I/O Timing||Inputs to Registers (Removal)”
report_timing -setup -npaths 1000 -detail full_path -to [get_ports *] \
-panel_name “Report I/O Timing||Registers to Outputs (Setup)™
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report_timing -hold -npaths 1000 -detail full_path -to [get_ports *] \
-panel_name “Report I/O Timing||Registers to Outputs (Hold)”

report_timing -setup -npaths 1000 -detail full_path -from [get_ports *] -to [get_ports *] \
-panel_name “Report I/O Timing||Registers to Registers (Setup)”

report_timing -hold -npaths 1000 -detail full_path -from [get_ports *] -to [get_ports *] \
-panel_name “Report I/O Timing||Registers to Registers (Hold)”

Report All Core Timing

Similar to report_timing on a specific domain, except 1/0 paths are excluded. As with
the other macros, this only reports summary detail and the user must right-click Report Timing
on a specific row to get details on that path.

Create All Clock Histograms

This macro is a shortcut to create histograms for every clock domain, rather than using
create_slack histogram to make them one by one. The pros and cons of histograms are
discussed on the individual command.
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Section 5: Timing Models

Why Timing Models are Important

Most critical paths designers deal with are in the core of their FPGA, and usually within
the same clock domain, which is using a global. In such cases, users tend to ignore the clock
delays and just analyze the data path. With such an analysis, all they need to know is how slow
the data path can be(setup analysis) and how fast the data path can be(hold analysis). In such
circumstances, we naturally want the timing models to be as accurate as possible, but if they’re
too pessimistic, that’s all right. Our design may not run as fast, but at least we know our design
will work.

The basic parameters that affect these delays are Process, VVoltage and Temperature,
which will be referenced as PVT throughout. Process accounts for the variation in different
devices coming out of the FAB. They are all tested and binned into speed grades, but still have
variation over that process. Voltage covers the fact that the voltage will vary over time, which
directly causes the device to run faster or slower. A higher voltage makes it run faster. Finally
there is Temperature, whereby a lower temperature makes the devices run faster. Generally,
these three variables are lumped together and considered as two data points, the slow timing
model (what’s the slowest my design will run on the slowest device that met the speed grade, at
the lowest voltage in spec and the highest temperature in spec) and the fast timing model(what’s
the fastest my design will run on the fastest device, highest voltage and lowest temperature). The
general analysis is that, as long as the design passes timing under these two data points, it is
ready to go.

That’s the “simple view” of static timing analysis. Although accurate at a high level,
there are many more issues at play. It might be worth reviewing the Basics of setup, hold,
recovery and removal. The important point to recognize is that timing analysis is not just how
long or short a path it is. Instead, it is the measure of the Data Arrival Path compared to the Data
Required Path:

Data Arvival Path

sfo_f2E dst_rag

dats_dslay

sro_clk_dlv

Launch Edge
Latch Edge dst_clk_dly |7

Daia Required Path

Y

For setup analysis, we want the Launch Edge to get data to the dst_reg before the
Latch Edge. For hold analysis, we want it to get there after the Latch Edge. As a result, we have
two signals racing against each other, and don’t want to measure their extremes by themselves,
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but want to measure them in relation to each other. This is where the difficulties of dealing with
real silicon come into play. Even if the device was at the slow corner(worst process, high
temperature, low voltage), not all paths within the device will actually be at that worst case
delay. For example, our data arrival may be at that slowest point, but our data required path may
actually be running a little faster. This could be due to localized variations in PVT within a
single device, rise/fall variation in the transistors, PLL jitter, and a myriad of other issues that
occur in silicon. If we model the Data Required Path as if it were at the worst case corner, then
we’re being optimistic compared to how real silicon behaves, and might pass static timing
analysis while our device fail in the field. For setup analysis, we really want the slowest Data
Arrival Path compared to the fastest possible Data Required Path that could occur
simultaneously.

This is exacerbated in cases where the data arrival path and data required path have
matching delays, such as inputs, where the data and clock path are often quite similar, or on
source-synchronous outputs, where the user wants the clock and data delays to be aligned as
close as possible:

FPGA ! FPGA
i data_dlv
500 IEE dst_res i sfc_reg dst_rag
iy dats dlv !
! Latch Edge
sl dly !
Latch Edge | ok dl
N >
Input Analysis i Source-Swnchronous Chatput Analvsis

In these cases, the two signals race each other the whole way, and without accounting for
these variations, we get inaccurate results. An excellent example is when users just look at Tcos
for a source-synchronous output. The Tco is a spec for the worst case delay to the output
without relation to anything else. If the user compares the Tco of a clock and data leaving the
FPGA, they might find them to be within tens of picoseconds of each other. This is true, since
that is the worst case possible delay for each path. But when trying to see how different they can
really be in hardware, all sorts of other phenomenon such as on-die Variation, temperature
inversion, rise-fall variation, will make the variance much higher, possibly adding hundreds of
picoseconds.

Luckily TimeQuest has ways to account for all of these. Let’s see how:
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Slow Comer:
Worst process,

Lowest Temperature,

Timing Models

Historically there have always been two timing models for sign-off, a slow corner and a
fast corner. This is shown in the diagram on the left:

Slow Comer:
Worst process,
Lowest Temperature,

Highest Voltage Highest Voltage Different structures
take different paths
Slow Comer 0° between Fastand
Slow Comers
Fast Comer: Fast Comer:
Bestprocess, Best process.

Highest Temperature,
Lowest Voltage

Highest Temperature,
Lowest Voltage

Fast Slow Fast Slow

Delay Delay

With two models, the assumption is that everything tracks between those two models in a
similar manner. For example, if a transistor is at the 50% point between the fast and slow
models, than all transistors in the die are at 50%, all wires, etc. The line between the Fast and
Slow Corners does not have to be straight, it just has to be bounded by the Fast and Slow points,
and all structures in the FPGA must move in unison. The first point is true, in that the points at
the Fast and Slow Corners are the extremes, but not all structures move between these points in
unison. This issue has been exacerbated by a process called temperature inversion, whereby
delays can actually decrease with rising temperatures.

The end result is that a third timing model was added, called the “Slow 0° Corner”. The
graph above on the right shows two different paths between the Slow and Fast, whereby different
structures take different routes between the Fast and Slow Data points. (The graph’s only
purpose is to show different paths are possible. I completely made up the magnitude and shape of
the lines). The important point is that, when comparing two paths, which is what static timing
analysis does, structures may following different paths between the slow and fast corners. The
slow 0° model is meant to capture that analysis. | have seen real designs that pass both the fast
and slow corners, but fail in this middle model.

Analysis of this third model is done by default, but can be found under Quartus II’s pull-
down menu of Assignments -> Settings -> TimeQuest Timing Analyzer -> Enable Multi-Corner
Timing Analysis During Compilation. It can be studied in TimeQuest after Updating the Timing
Netlist by going to the pull-down menu of Netlist -> Set Operating Conditions. The results of all
three timing models can be found in the Compilation Report under TimeQuest:
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@ Compilation Report - TimeQuest ___ E@_:

=53 Compilation Repaort
EhB Legal Motice
EHER Flow Summary
B Flow Settings
%@ Flow Mon-Default Global Settings
B Flow Elapsed Time
EHER Flow OS5 Summary
5B Flow Log
+-Z5 7] Analysis & Synthesis
+-¢&Z5[ 7] Partition Merge
+- 5 Fitter
-5 2A TimeQuest Timing Analyzer
EHER summary
EHER Parallel Compilation
@@ 5DC File List

+|-¢=3[_] Slow 1100mY 85C Model
[+-&ZH_ 1 Slow 1100mY 0C Model
|+ @D Fast 1100mV OC Model

=0ee Multicorner 'I'mlru:l BRalyeE Surmmary
+-¢Zh[ ] Multicorner Datasheet Report Summa
+-¢&Zh[[ 7 Advanced 10 Timing
+-¢Zh[_ 7] Clock Transfers

&h B Report TCCS

& B Report RSKM

&EHEE Unconstrained Paths
i} Messages

+-Z5 7] Assembler

Uncertainty

The clocks described in a user’s .sdc are perfect, where their edges repeat down to the
exact picoseconds. In reality, clocks aren’t perfect for various reasons. A big one is that PLLs
can add jitter. The set_clock_uncertainty constraint allows users to add uncertainty, but the user
doesn’t know what uncertainty is inside the FPGA. Luckily the derive_clock uncertainty
command will determine this uncertainty based on the user’s design. In general, this is the only
constraint necessary to cover clock uncertainty.

Rise/Fall Variation

Transistors have different rise and fall times, which TimeQuest uses in its analysis. Note
that it’s not just rise and fall times, but the cell delays are based on what type of edge comes in
and what kind of edge comes out. This means there are 4 unique delays, RR, FF, RF, and FR,
where the first letter is the edge coming in, and the second letter is the edge going out. Here’s a
screenshot from a timing report where the RF column is highlighted:
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Path #1: Setup slack is -B.003
Path Summar'_.r] Statigtice Data Path lWa‘uefurrn ]

ata A dl Pat

Total Incr F Vpe Fanout Location
0.000 0.000
B 0.000 0.000
:... 0000 0000 §R
4150 4150 R 1 PIN_AV1E8
B 23.309 15.155

4150 0.000 JRR
4 684 0534 JRR ELL
--13211 | 8527 |RR
13626 | 0415 |RR ELL
-1508% | 1483 [RR
-15470 | 0381 JRF ELL
L.1593% | 0463 fJFF
16125 | 0186 JFR ELL
16,27 0150 JRR
..16653 | 0378 |JRF ELL
.18538 | 1885 fFF
--18945 | 0407 JFR ELL
--150%5 | 0150 |RR
--19510 | 0415 JRR ELL
19822 | 0312 |RR
L.19.893 | 0071 JRF ELL
20247 | 0354 JFF
-.20475 | 0228 JFR ELL
...22757 | 2232 |RR
£.23308 | 0552 |JRF ELL

IDIBUF_X37_YD_N63
I0IBUF_X37_YD_N63
MLABCELL_X92_Y44_N36
MLABCELL_X92_ Y44 N36
MLABCELL_X92_Y47_N18
MLABCELL_X92_Y47_N18
MLABCELL_X92_Y47_N3
MLABCELL_X92 Y47 N2
MLABCELL_X92_Y47_ND
MLABCELL_X92_Y47_ND
MLABCELL_X35_Y32_N26
MLABCELL_X35_Y32_N26
MLABCELL_X85_Y32_N36
MLABCELL_X85_Y32_N36
MLABCELL_X88_Y32_N4
MLABCELL_X88_Y32_N4
MLABCELL_X85_Y32_N32
MLABCELL_X85_Y32_N32
DDIOOUTCELL_X38_Y0_N40
DDIOOUTCELL_X98_YO_N40

aflal=w]l=m]=]=]==]=]|= —
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Rise/fall differentiation is pretty straightforward by itself, but becomes much more
complex when analyzing multiple rise/fall elements in a row, in which case unateness comes into

play.

Unateness

Rise/fall variation by itself creates delay values that are inaccurate. For example, let’s
say we had a chain of 3 AND gates followed by 3 OR gates, and wanted to determine the slowest
delay through this structure. (Yes, the FPGA fabric is really made of LUTSs, but for this example
I’m looking at logic as if it were gates). Now let’s say the slowest delay through the AND gate
is RR, i.e. rising in to rising out, and the slowest delay through the OR gate was FF. If we
summed each gate’s worst delay we would get a worst case total delay that is impossible. The
reason is that, if the AND gates have a RR edge propagating through them, there is no way for
the OR gate to get a falling edge coming through them. In reality, this structure only has two
possible delays through it, all falling edges or all rising edges, but no combinations of RF or FR.
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Both an AND gate and OR gate are positive unate. This means a rising edge in will
always create a rising edge out, and a falling edge in will always create a falling edge out. So
only RR and FF models are necessary.

A NOT gate and NAND gate are negative unate, in which a falling edge in creates a
rising edge out, and vice versa.

An XOR gate is non-unate, in which case all combinations are possible.

Potive unate = RR, FF

Example: AND gate, OR gate
Negative unate = RF, FR

Examples: NAND gate, NOR gate, NOT gate
Non-Unate = RR, FF, RF, FR

Examples: XOR gate

The key to properly analyzing unateness is to determine what is possible through a
circuit. Let’s look at another series of gates:

Positive Positive Non- Negative  Positive Positive
Unate Unate Unate Unate Unate Unate

- RR
RR RE FF . RF RR RR
FF . FF “ RF FR | 4 FF » FF
~ FR

I only showed valid delays for each gate. The first AND gate, for example, is positive
unate and can only be RR or FF. From there, the arrows show the only possibly transitions, so
the RR out of the first gate can only drive the RR of the next OR gate and cannot drive the FF.
So if we wanted the slowest possible path, we would need to find the path that gives the longest
delays. Likewise, the same has to be done for the fastest possible path.

For clocks delays, the analysis is restricted by how the register is clocked. If it’s clocked
on the rising edge, then TimeQuest will only analyze paths that result in a rising edge at the
register.

This can be confusing at first, but it’s important to note is that the user does not have to
do anything for this, TimeQuest analyzes unateness behind the scenes and the correct edges are
automatically used during timing analysis. The only reason this is discussed is so the user
understands what is going on under the hood.
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On-Die Variation

On-Die Variation, or ODV, is the principle that all paths within a die do not track with
each other exactly. Note that this is not the same as the different timing models, which are used
to analyze different macro-conditions, specifically process, voltage and temperature. ODV
occurs at a given timing model’s PVT, and measures the amount of variation that can occur at
that macro point. | think of ODV as being a sub-timing model. So when doing timing analysis at
the Slow Corner, there is a fast and slow sub-model. All three corners have these sub-models.
The best way to explain it is to show it:

setup: inst8 -> instd o
Command Info  Summary of Paths ] Command Info  Summary of Paths ]

Slack | From Node Launch Clock | Latch Clock | Relationship |Clock Skew |Data Delay
..._CrossClockshnst8| ... CrossClocksingtd | sys_clk

Launch Clock |Latch Clock |Relationship [Clock Skew |Data Delay

Path #1: Setup slack is 5.967

Path Summary | Statistics Data Path ]Wa\reforrn |

Data Arrival Path
Total Iner RF Type Fanout Location Element Location
1 0.000 0.000 launch edge time 1 0.000 0.000 launch edge time
2| =@ 3219 3219 clock path 2| = 3126 3126 clock path
E L3219 3219 (R clock network delay E L3126 3126 R clock network delay
4| = 4038 0.81% data path 4| = 3838 0.7z data path
? 3319 0.100 uTeo 1 FF_X40_Y47_N23 | cross_domain:NoPLL_CrossClocksinst® ? 3.2296 0.100 uTco 1 FF_X40_Y47_N23 |cross_domain:NoPLL_CrossClocksinst®
6] 3,319 0.000 |FF CELL 1 FF_X40_Y47_N23  |NoPLL_CrossClocksinst8ig B (3,226 0.000 |RR CELL 1 FF_X40_Y47_N23  |NoPLL_CrossClocksinstig
7] - 3.571 0252 |FF IC 1 FF_X40_Y47_N21  |NoPLL_CrossClocksinst3asdata 7] 3462 0236 |RR IC 1 FF_X40_Y47_N21  |NoPLL_CrossClockslinst%asdata
E L4038 0467 |FF CELL 1 FF_XA0_Y47_N21 cross_domain:NoPLL_CrossClockslinstS E i..3.838 0.376 RR CELL 1 FF_¥A0_Y47_N21  |cross_domain:NoPLL_CrossClocksinstS
Data Required Path Data Required Path
Total Incr RF Type Fanout Location Element Total Incr RF Type Fanout Location Element
1 10.000 10.000 latch edge time 1 0.000 0.000 latch edge time
12| = 12157 3.157 clock path z = 3.188 3.188 clock path
3] -13.126 3126 (R clock network delay 13 E----3.Z19 3219 |R clock network delay
4] L-13.157 | 0.031 clock pessimism 14] 3188 | 0.031 clock pessimism
B 10.137 -3.020 clock uncertainty 15| 3208 0.020 clock uncertainty
B 10.005 0132 uTsu 1 FF_X40_Y47_N21  |cross_domain:NoPLL_CrossClocksiinst 6 3.263 0.055 uTh 1 FF_¥40_Y47_N21 |cross_domain:NoPLL_CrossClocksinstS

Above we see report_timing run on the exact same path, the left side showing the -setup
analysis and the right side showing the -hold analysis. Both of these are taken at the slow corner.

Note that most data paths that go through multiple levels of logic have multiple paths
between the same register. When doing a setup analysis the slowest path shows up first, but
when doing a hold analysis the shortest path shows up first. That alone will cause vary different
results. In this particular case, there is only one path through a single LUT, so | am comparing
the exact same path in both the setup and hold analysis.

For setup analysis, we want the slowest possible Data Arrival Path compared to the
fastest possible Data Required Path. For hold analysis, we want the exact opposite. If you look
at lines 7 and 8 of the Data Arrival Path, you find that the incremental delay on the left(setup) is
slower and the delay on the right(hold). This is because TimeQuest uses different sub-timing
models. For setup, the Data Arrival Path uses the Slow Corner, slow sub-timing model. For
hold, the Data Arrival Path uses the Slow Corner, fast sub-timing model. This causes a
difference of 100ps on this short path.

Note though that this is not all due to different sub-models. TimeQuest is also choosing
different rise/fall options, as we have already discussed. The setup analysis chose FF, while the
hold analysis chose RR. That’s because the datapath will have both conditions traveling through
it, and we want the worst possible case to make sure timing can be met.

On the other hand, the clock delays are only rising edge, since both registers are rising
edge triggered. So looking at line 3 of Data Arrival Path, the network delay is slower for setup
analysis than for hold analysis. This is purely from modeling On-Die Variation. Similarly, on
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the Data Required Path, the clock network delay is faster for setup analysis than for hold
analysis. ODV works in both directions, and so we must always choose the worst case model for
our particular analysis. (The fact that clocks can’t be both slow and fast will be covered in the
next section, Common Clock Path Pessimism.)

Once again, this is all taken care of for the user underneath TimeQuest’s hood, and there
is nothing they need to do. The reason it’s worth knowing is to understand why timing numbers
on the same path may look different under different analysis. It also should help in the user’s
confidence when doing timing analysis.

As already stated, On-Die Variation is a real phenomenon. Without it, the timing models
would be overly optimistic, and the hardware could fail on a design that passes static timing
analysis. But one thing TimeQuest does not do in its models is account for locality. Two output
ports right next to each other will have the same on-die variation in their analysis as two outputs
on opposite sides of the device. In reality, locality does play a factor that is not accounted for.
Without it, the current models are overly pessimistic though, meaning if they pass timing the
hardware will only work better, but it can make timing closure more difficult. (The only place I
have seen it be a problem is on source-synchronous outputs not using the True LVDS blocks,
where ODV can make the timing seem quite bad, and in theory, accounting for locality could
make them better.)

Common Clock Path Pessimism

As just discussed, On-Die Variation makes use of a slow and fast sub-model within each
major timing model. This accounts for slight variations in the die, and is important since we are
timing signals that race against each other. But in many signals, part of the source clock delay
and destination clock delay are identical, i.e. they are fed by the same clock, and until it splits,
there can be no On-Die Variation. Common Clock Path Pessimism removes any on-die variation
for the common part of the clock. Let’s look at a simple schematic:
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FIL

ZIC I’EE

dst_reg

In this example, the clock comes into the FPGA, through a PLL, onto the global clock
tree, and at some point splits in different directions, one path feeding the src_reg and the other
path feeding the dst_reg. Before the split, there is no on-die variation because it’s the same path,
and a single path can’t vary from itself.

Setup and hold analysis will not see it this way. For setup, the entire Data Arrival Path,
which includes the source clock delay of green and red lines, will be analyzed completely in the
slow sub-model, and the Data Required Path, which includes the destination clock delay of the
green and blue lines, will be analyzed with the fast sub-model. This can be shown in the
following screen-shot:
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Setup inst2 -> inst3 Hold: inst2 -= inst3
Command Info  Summary of Paths Command Info  Summary of Paths
Slack | From Mode To Node Launch Clock Slack |[From Mode |To Mode |Launch Clock Latch Clock Relationship
il 4.060 |domain:instSinst? |domaininstSinst3 | .. neratedipll 1icik][0] nD_E."_ inst 14 inst16 ...eneratedipll1iclk[0] | .. eneratedipll 1iclc[0] | 0.000
£ i | L2
Path #1: Setup slack is 4.060
Path Summar'_.rl Statistics Data Path |Wavefnm'| I Path Summar'_.fl Statistics Data Path |Wave‘fcm1 I
Data A al Patl Data Arrival Path
Total Incr RF | Type |F... |Location Total Incr RF |Type |F.. | Location Element
1 5.000 5.000 1 0.000 0.000 launch edge time
2 | & 5501 0.501 2 | =& 0147 0.147 clock path
2 . 5000 | D.0OD 3] e 0.000 | 0.000 source latency
4 1 b 5000 | 0.000 1 |PIN_MN3 E I 0.000 | 0.000 1 |PIN_MN3 ays_clk
5 ke 5000 | 0.000 [RR |IC 1 |IOIBUF_X53_Y22_ L I 0.000 | 0.000 |RR |IC 1 | BUF_¥53 ¥22_N1 sys_clk™input
5| 5,753 %ﬁlﬁ CELL |2 |IDIBUF_X53_Y22_ 5| - 0.748 RR |CELL |2 |..BUF_X53_Y22_N1|sys_clk~inputio
T ke 2.001 . RR |IC 1 |PLL_R2 Tl b 2540 2792 |RR |IC 1 |PLL_R2 the_system_plliattpll_con
B e 1774 | 6227 |RR |COMP |3 |PLL_R2 g e -3.461| 6401 |RR |COMP|3 |PLL_R2 the_system_pllatpll_con
9| ke 1774 | 0000 (RR |CELL |1 ([PLL_R2 L N I -3461| 0000 |RR |CELL |1 |PLL_R2 the_system_plliatpll_con
10 b 3285 | 1481 [FF |IC 1 |CLKCTRL_G 100 b 2044 1417 |RR |IC 1 |CLECTRL_G11 the_system_pliiatpll_con
11 3420 | 0165 (FF |CELL (10 [CLKCTRL G11 11 b -1.500 | 0.144 |RR |CELL |10 |CLKCTRL_G11 the_system_plliatpll_con
12 b 5119 | 1699 [FF |IC 1 FF_A1_Y21_MN21 121 b 0428 1472 |RR |IC 1 |FF_XB2_Y13_MN25  |inst14iclk
13 b 5501 | 0382 [FR |CELL (1 [FF_X1_Y21_NX 13 b 0147 0281 |[RR |CELL |1 |FF_X¥52_Y13_MN25 |inst14
14 6.120 0.615 14 0.337 0.484 data path
(<1 | L £ Il |
Data Required Patl Data ] d Patl
Total Incr  |RF | Type |F... [Location Total Incr |RF |Type |F.. |Location Element
1 10.000 10.000 1 0.000 0.000 latch edge time
2 | B 10332 0332 2 | &3 0095 0.085 clock path
3] - 10.000 | 0.000 I T I, 0.000 | 0.000 source latency
4 [ e 10.000 | 0.000 1 PIN_M3 4| i 0.000 | 0.000 1 |PIN_N2 sys_clk
1 10.000 | 0.000 |RR|IC 1 IOIBUF_X53_Y22 L I 0.000 | 0.000 |RR |IC 1 |IQIBUF_¥53_Y22_N1 |sys_clk~inputh
B - 10.748 mﬂ CELL [2 [omBuFxsavzz| |[e] i- 0.753 R ICELL |2 |IOIBUF_X53_Y22_N1 |sys_ck~inputio
71 b 12340 | 2 R |IC 1 PLL_R2 I 3001 | 2248 |RR |IC 1 |PLL_R2 the_system_plliatpll_cor
L 6535 | 6401 RR |COMP(3  |PLL_R2 g | b -3.226) 6227 \RR |COMP |3 |PLL_RZ the_systemjlllahpll_curl
31 6533 | 0.000 |[RR |CELL 1 PLL_RZ 51 e -3226| 0000 \RR |CELL (1 |PLL_R2 the_systemjlllahpll_corl
o i 7856 | 1417 |RR |IC 1 CLKCTRL_G1 10 b -1.772) 1454 |\RR |IC 1 |CLKCTRL_G11 the_systemjlllahpll_corl
1 i 4.100 | 0.144 |RR |CELL 10 [CLKCTRL_G11 11 b -1.625| 0,147 |RR |CELL (10 |CLKCTRL_G11 the_systemjlllahpll_curl
12 - 9681 | 1.581 |RR |IC 1 FF_X1_Y21_N23 121 b £0.103) 1522 |\RR |IC 1 |FF_¥B52_Y13_MN2Z7 inst 16kclkc
13 - 10.041 | 0.360 [(RR |CELL |1 FF_X1_Y21_N23 131 b 0.196 | 0.299 |RR |CELL |1 |FF_¥52_Y13_MN27 inst16
] - 10332 @ 2| - ﬂ.ﬂﬂ&@ clock pessimism
15 10312 - 15 0.075 " clock uncertainty
_i 10180 -0.132 uTsu |1 FF_¥1_Y21_N23 16 -0.025 0.050 uTh |1 [FF %52 Y13 NZ7 inst16

The left side shows the setup analysis and the right side shows the hold analysis
of the same path with the clock path broken out in more detail using report_timing -detail
full_path. 1 highlighted a single cell delay, the input clock’s 10 buffer, which is in row 6 for all

130



four sections. Multiple lines have On-Die Variation for the common part of the clock tree. Line
14 of the Data Arrival Path there is a 291ps delay called clock pessimism. This represents the
clock pessimism between the two sub-models that is not real, and basically adds back in the
difference. Note that this 291ps is added to the Data Required Path, which makes it easier to
meet setup timing, so common clock path pessimism removal is helping us close timing.

On the right side is the hold analysis, and you can see the numbers are reversed. The
faster sub-model is used for a delay of 748ps on the Data Arrival Path, and the slower sub-model
delay of 753ps is used on the Data Required Path. These differences occur throughout the clock
tree, but line 14 subtracts 291ps of clock pessimism. This helps us meet hold timing. The
bottom line is that common clock path pessimism always helps us meet timing, and hence is a
good thing. Without it, we would be overconstraining this path by 291ps on both setup and hold.

The clock pessimism is a single line item, so it doesn’t break out exactly where in the
previous delays it is accounting for pessimism. This is most apparent in the clock tree, which in
this example is CLKCTRL_G11. This global line has an IC delay of more than 1.4ns.
Somewhere along that clock tree the clock will split, where part of it routes to the source register
and part of it routes to the destination register. Only the part that is common will be accounted
for by common clock path pessimism, but where that split occurs is not shown. (You could add
do report_timing -show_routing to the path to get detailed routing info.)

In the end, there is nothing the user needs to analyze with common clock path pessimism
removal, just make sure it’s on since it helps close timing. It is on by default, and can be found
under Assignments -> Settings -> TimeQuest Timing Analyzer. 1t’s also useful to know why
that line item is there, but there is really nothing the user has to do, as TimeQuest handles all the
calculations.
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Section 6: Quartus Il and Timing Constriants

Section 7: Tcl Syntax for SDC and Analysis
Scripts

Section 8: Common Structures and Circuits

PLLs

Dedicated Output
Clock Switchover

Transceivers
LVDS

Memory Interfaces
Clock Muxes
Ripple Clocks

Clock Enables

Section 9: Examples
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Section 10: Miscellaneous
Strategies for False Paths
Analyzing Paths

Comparing set_input_delay/set_output_delay to Tsu/Th/Tco
and min Tco
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