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TimeQuest User Guide 
 
Wiki Release 1.1   December 9th 2010      By: Ryan Scoville 
 
Introduction: 
 I have spent a good amount of time over the last few years helping designers with 
TimeQuest, and found myself writing emails and small documents explaining similar concepts 
over and over again.  This includes answering questions on www.alteraforum.com under the user 
name rysc.  This document is an effort to consolidate most of what I’ve learned about TimeQuest 
into a single source.  It is a work in progress, and currently has significant sections missing.  I 
hope to be updating this regularly, but am finding the more I enter, the more gaps there are.  
Right now the core information is there and has more than enough for most users.  Looking at 
the page count, some might say there is too much information.   
 
Recommendations: 
 1)  Use the Bookmarks when viewing this document, to show the major points and allow 
for easy navigation.  Examples seem to constantly require an explanation from another section.  I 
added hyperlinks throughout the document, but I believe the Table of Contents/Bookmarks will 
help users navigate the content. 
 2)  Read the first section, Getting Started.  I tried to pack as much useful information that 
most designers need.  Even if you have a good grasp on TimeQuest, it’s probably worth a quick 
run through. 
 3)  Read as much of this document as you can.  Hopefully this helps the user get "the big 
picture" of static timing analysis, rather than only a small sub-section.  User's that immediately 
jump to an example that is similar to their own often miss the many facets of static timing 
analysis, and are more likely to become frustrated or, worse yet, make mistakes. 
 4)  Use TimeQuest.  I've seen many users do the opposite of the last recommendation, 
where they pour over documentation, trying to understand every nuance of every sentence and 
screenshot before opening the tool.  As much as I would like users to read everything, it's just as 
important to start adding SDC constraints to your design, running TimeQuest, and analyzing 
what happens.  By the end of the Getting Started section, the user should have most of their core 
timing constraints entered, possibly some I/O constraints, and a good handle on timing analysis.  
 
Contact: 
 TimeQuest support is not my primary responsibility, and so I will not be able to directly 
assist users.  That being said, if there is anything ambiguous, incorrect, or missing, please contact 
me via www.alteraforum.com, sending an email to user Rysc.  I also monitor the forum a good 
amount and will try to answer questions there, as I much prefer helping with issues on the forum 
rather than direct email, since it can hopefully help multiple users.  If you post something and I 
don’t respond, feel free to send me an email through the forum.  That being said, if I am unable 
to respond, please don’t be offended. 
 
© 2010 Altera Corporation. The material in this wiki page or document is provided AS-IS and is 
not supported by Altera Corporation. Use the material in this document at your own risk; it might 
be, for example, objectionable, misleading or inaccurate. 

http://www.alteraforum.com/�
http://www.alteraforum.com/�
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Section 1: Getting Started 
 This first section is meant to get a user up and running as quickly as possible.  It touches 
on multiple topics that are detailed later, and is meant for application and a quick understanding.  
That being said, I think all users should look through this section and make sure they understand 
it. 
 The last portion of Getting Started covers analyzing results, which is an integral part of 
entering constraints.  One can't enter core timing or I/O constraints without being able to read the 
analysis reports, so it is recommended to read that section in conjunction with the information at 
the beginning.   

Quartus Setup 
 Within Quartus, there are a number of quick steps for setting up your design with 
TimeQuest.  These are accessed through the pull-down menu Assignments -> Settings: 
 

 
1)  Along the left panel, select Timing Analysis Settings and select the "Use TimeQuest…" radio 
button.  The Classic Timing Analyzer is the old timing analysis engine, which is not 
recommended for any new designs or architectures, and will eventually become obsolete.   
 
2)  Select TimeQuest Timing Analyzer in the left panel.  The screenshot should look like below, 
whereby the user can add a new SDC file.  SDC stands for Synopsys Design Constraint, which is 
the format TimeQuest uses, along with many other tools.  If no .sdc file exists, we will create it 
in the next section.  Note that SDC files are analyzed in the order listed, top to bottom. 
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3)  The following options are discussed more in the section on Quartus II and Timing 
Constraints.  
 
Check the following, which should be on by default: 
 - Enable multicorner timing analysis - This will analyze all the timing models of your 
FPGA against your constraints.  This is required for final timing sign-off.  Unchecked, only the 
slow timing model will be analyzed. 
 - Enable common clock path pessimism removal - Prevents timing analysis from over-
calculating the effects of On-Die Variation.  This makes timing better, and there really is no 
reason for this to be disabled. 
 
Optional: 
 - Report worst-case paths during compilation.  This option will show a summary of the 
worst paths in your Quartus report.  We will be analyzing these paths in more detail in the 
TimeQuest tool.  Some users like to see this summary up-front, but it also bloats the 
<project>.sta.rpt with all of these paths. 
 - Tcl script file for custom reports.  We will use this later, adding custom reports for the 
user to run a custom analysis.  For example, if the user is only working on a portion of the full 
FPGA, they may want additional timing reports that cover that hierarchy. 

 
4)  Simple, comprehensive static 
timing analysis summaries will be 
written to the Quartus II report 
during compilation.  These reports 
cover the full analysis of everything 
constrained in the design.  On a fully 
constrained design, these reports are 
enough to show if a design passes 
timing or not.  The screenshot on the 
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left shows the setup slack to every clock domain in the design, and hence every setup analysis in 
the design is passing timing. 
 
 
5)  For more detailed analysis, the user must launch TimeQuest.  Either go to the pull-down 
menu Tools -> TimeQuest Timing Analyzer, or click on the stopwatch icon in the Quartus II 
toolbar: 

 

Core Timing 
 After compiling a project and launching TimeQuest, the user can now enter timing 
constraints.  If no SDC file has been created, go to File -> New and create a new .sdc file.  It can 
be saved with the same name as the project, and generally should be stored in the project 
directory. 
 
Constraining the Core with Four Commands 
 
Every beginning .sdc file should start with four components: 
 
 - create_clock  
 - derive_pll_clocks 
 - derive_clock_uncertainty 
 - set_clock_groups 
 
 The first three are almost trivial, and can get a user up and analyzing most of their design 
in a matter of minutes.  As we go through these commands, be sure to look at The Iterative 
Method, which shows how to quickly modify .sdc files, re-run analysis, and keep iterating 
through more changes.  Also, details about these commands can be found directly in TimeQuest 
by typing -long_help, such as: 
 
 create_clock -long_help 
 derive_pll_clocks -long_help 
 derive_clock_uncertainty -long_help 
 set_clock_groups -long_help 

 create_clock 
  
 When starting a new SDC file, the first thing to do is constrain the clocks coming into the 
FPGA with create_clock.  The basic syntax looks like so: 
 
 create_clock -name sys_clk -period 8.0 [get_ports fpga_clk] 
 
 Notes: 
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 - The above command creates a clock called sys_clk with an 8ns period and applies it to 
the port in the user’s design called fpga_clk. 
 - Tcl and SDC are case-sensitive, so make sure fpga_clk matches the case used in your 
design.     
 - The clock will have a rising edge at time 0ns, and defaults to a 50% duty cycle, hence a 
falling edge at time 4ns.  If the user wants a different duty cycle or to represent an offset, please 
use the -waveform option.  This is very seldom necessary. 
 - Users often create a clock with the same name as the port it is applied to.  This is 
perfectly legal.  In the example above, this would be accomplished by: 
 
 create_clock -name fpga_clk -period 8.0 [get_ports fpga_clk] 
 
 There are now two unique things called fpga_clk, a port in the user’s design and a clock 
that emanates from that port.   
 - In Tcl syntax, square brackets will execute the command inside them, so [get_ports 
fpga_clk] will execute a command that finds all ports in the design that match fpga_clk and 
return them.  This is discussed more in the Tcl syntax section.  Although commonly used, many 
designers simply enter the port name like so: 
 
   create_clock -name sys_clk -period 8.0 fpga_clk 
 
 - Repeat this step for all known clocks coming into the design.  (If the user is unsure, just 
enter all the known clocks.  Later on we will show how Report Unconstrained Paths can identify 
any unconstrained clocks). 
 
 Hint:  Rather than typing constraints, users can enter constraints through the GUI.  After 
launching TimeQuest, open the .sdc file from TimeQuest or Quartus II, place the cursor where 
the new constraint will go, and go to Edit -> Insert Constraint, and choose the constraint.   
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 Also, DO NOT enter constraints from the TimeQuest GUI's Constraints pull-down menu: 

   
Although it looks similar, these constraints will be applied directly to the timing database 

and not put into the .sdc file.  Advanced users may find reasons to do this, but beginners should 
stay away from these and instead open the .sdc file and access them from Edit -> Insert 
Constraint. 
 

 derive_pll_clocks 
 
Add the following command into your .sdc: 
 
 derive_pll_clocks 
 
That’s it.  Just type in that command. 
 
 Notes: 
 - Each output of a PLL should be constrained with create_generated_clock.   
 - When PLLs are created, the user enters how each PLL output is configured.  Because of 
this, TimeQuest can auto-constraint them, which is what derive_pll_clocks is doing. 
 - This command does other useful things too.  It constrains transceiver clocks.  It adds 
multicycles between LVDS SERDES and user logic.   
 - To see all the low-level commands executed by derive_pll_clocks, the TimeQuest 
messages will explicitly show them as Info messages under Derive PLL Clocks: 
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 - New designers often have the urge to not add derive_pll_clocks, and instead cut-and-
paste each create_generated_clock assignment directly to the .sdc file.  Technically there is 
nothing wrong with this, since the two are identical.  The problem is that anytime a user modifies 
a PLL, they must remember to change the .sdc.  Examples include modifying an existing output 
clock, adding a new PLL output, or making a change to the PLL's hierarchy.  I have seen too 
many designers forget to modify their .sdc and spend time debugging something that 
derive_pll_clocks would have fixed automatically.  My recommendation is to stick with 
derive_pll_clocks. 
  

 derive_clock_uncertainty 
 
Add the following command to your .sdc: 
 
 derive_clock_uncertainty 
 
Just type it in.   
 
 Notes: 
 - This should be in all SDC files for designs at 65nm and newer.   
 - It does not hurt to be in the .sdc file of older architectures, it just won’t do anything. 
 - This command alculates clock to clock uncertainties within the FPGA, due to 
characteristics like PLL jitter, clock tree jitter, etc. 
 - A warning occurs if the user does not have this command in their .sdc. 
 
 Those are the first three steps, which can usually be done very quickly.  For a sample 
design with two clocks coming into it, their .sdc might look like so: 
 

 
  

 set_clock_groups 
 
 With the constraints above, most if not all of the clocks in the design are now 
constrained.  In TimeQuest, all clocks are related by default and it is up to the user to un-relate 
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clocks.  So, for example, if there are paths between an 8ns clock and 10ns clock, even if the 
clocks are completely asynchronous, TimeQuest will see a 2ns setup relationship between these 
clocks and try to meet it.  This is the conservative approach, in that TimeQuest analyzes 
everything known, rather than other tools which assume all clocks are unrelated and require the 
user to relate them.  It is up to the user to tell TimeQuest which clocks are not related.  The SDC 
language has a powerful constraint for doing this called set_clock_groups.  The syntax, which 
may look complex at first is: 
 
set_clock_groups -asynchronous -group {} -group {} -group {} 
 
 Notes: 
 - Each -group is a list of clocks that are related to each other 
 - There is no limit to the number of group options, i.e. -group {}. If a design needs fifty 
groups, that's fine.  If entering the constraint through Edit -> Insert Constraint, it only has space 
for two groups, but this is only a limitation of that GUI.  Feel free to manually add more into the 
.sdc file. 
 - User's look at the command and often think it is grouping clocks, but again, TimeQuest 
assumes all clocks are related, and so they're already in one big group.  This command is really 
cutting timing between clocks in different groups within a set_clock_groups command. 
 - Any clock not listed in the assignment keeps the default of being related to all clocks, so 
if you forget a clock, it will conservatively be analyzed to all other domains it connects to. 
 - A clock cannot be within multiple -groups in a single assignment 
 - A user can have multiple set_clock_groups assignments 
 - This command is usually unreadable on a single line.  Instead, make use of the Tcl 
escape character "\".  By putting a space after your last character and then "\", the end-of-line 
character is escaped.  (And be careful not to have any whitespace after the escape character, or 
else it will escape the whitespace, not the end-of-line character).  The syntax for this will be 
shown shortly. 
 - For designs with complex clocking, writing this constraint can be an iterative process.  
For example, a design with two DDR3 cores and high-speed transceivers could easily have thirty 
or more clocks.  In those cases, I just add the clocks I’ve created.  Since clocks not in the 
command are still related to every clock, I am conservatively grouping what I know.  If there are 
still failing paths in the design between unrelated clock domains, I start adding in the new clock 
domains as necessary.  In this case, a large number of the clocks won't actually be in the 
set_clock_groups command, since they are either cut in the IP's .sdc file(like the ones generated 
by the DDR3 cores), or they only connect to clock domains they are related to. 
 - I generally leave virtual clocks created for I/O analysis out of this constraint.  The only 
clocks they connect to are generally real paths, so there is no need to cut their analysis to other 
clocks. 
 - The option after set_clock_groups is either -asynchronous or -exclusive.  The -
asynchronous flag means the clocks are both toggling, but not in a way that can synchronously 
pass data.  The -exclusive flag means the clocks do not toggle at the same time, and hence 
mutually exclusive.  A good example of this might be a clock mux that has two generated clock 
assignments on its output.  Since only one can toggle at a time, these clocks are -exclusive.  
TimeQuest will analyze your design identically for either flag.  This option is really used for 
ASICs, that will analyze SI issues like cross-talk between clocks that are -asynchronous, but not 
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analyze cross-talk between clocks that are -exclusive.  If going to Hardcopy, which uses ASIC 
analysis tools on the back-end, it is recommended to get this right.  For FPGAs it really does not 
matter.  The more conservative value is -asynchronous, since this states the clocks can interfere 
with each other, and what I use by default. 
 - Another way to cut timing between clocks is to use set_false_path.  To cut timing 
between sys_clk and dsp_clk, a user might enter: 
 
 set_false_path -from [get_clocks sys_clk] -to [get_clocks dsp_clk] 
 set_false_path -from [get_clocks dsp_clk] -to [sys_clk] 
 
 This works fine when there are only a few clocks, but quickly grows to a huge number of 
assignments that are completely unreadable.  In a simple design with three PLLs that have 
multiple outputs, the set_clock_groups command can clearly show which clocks are related in 
less than ten lines, while set_false_path may be over 50 lines and be very non-intuitive on what 
is being cut. 

 Quick tip for writing set_clock_groups constraint 
 
 1) Since derive_pll_clocks is creating many of the clock assignments, the user may not 
know all of the clock names.  A quick way to make this constraint is to create an .sdc with steps 
1-3 above, i.e. 1) add create_clock on each incoming clock, 2) add derive_pll_clocks and 3) add 
derive_clock_uncertainty to your .sdc. 
 2) Double-click in the left Task panel of TimeQuest on Report Clocks.  This will read in 
your existing SDC and apply it to your design, then report all the clocks.  From that report, I 
highlight all of the names in the first column that I know, right-click copy, as shown below: 

 
 You have just copied all the clocks in your design in the exact format TimeQuest 
recognizes them.  Paste them into your .sdc file. 
 3)  Now that you have a columnar list with every clock in the design, format that list into 
the set_clock_groups command.  For example, I may start with the following empty example: 
 
set_clock_groups -asyncrhonous -group { \ 
} \ 
-group { \ 
} \ 
-group { \ 
} \ 
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-group { \ 
} 
 
 And then paste clocks into groups to define how they’re related, adding or removing 
groups as necessary. 
 4)  Finally, format the list of clocks to make it readable.   Here is a screenshot of an .sdc: 

 
 Note that the last group has a PLL output system_pll|..|clk[2] while I put the input clock 
and other PLL outputs into a different group.  That is because I made this clock a frequency that 
can't be related to the other clocks, and must be treated asynchronously to them.  Usually most 
outputs of a PLL are related and hence in the same group, but it's not a requirement, and up to 
the user's design. 
 
 That's it.  For many designs, that is all that's necessary to constrain the core.  Some 
common core constraints that will not be covered in this quick start section that user's do are: 
 - Add multicycles between registers which can be analyzed at a slower rate than the 
default analysis, i.e. opening the window.  For example, a 10ns clock period will have a 10ns 
setup relationship.  If the data changes at a slower rate, or perhaps the registers toggle at a slower 
rate due to a clock enable, than the user wants to apply a multicycle that opens the the window 
that the data passes through.  This will be a multiple of the clock period, making the setup 
relationship 20ns, 40ns, etc., while keeping the hold relationship at 0ns.  These types of 
multicycles are generally applied to paths. 
 - The second common form of multicycle is when the user wants to shift the window.  
This generally occurs when the user does a small phase-shift on a clock.  For example, if the user 
has a 10ns clock coming out of a PLL, and second clock coming out that is also 10ns but with a 
0.5ns phase-shift, the default setup relationship from the main clock to the phase-shifted clock is 
0.5ns and the hold relationship is -9.5ns.  It is almost impossible to meet a 0.5ns setup 
relationship, and most likely the user wants data to transfer in the next window.  By adding a 
multicycle from the main clock to the phase-shifted clock, the setup relationship becomes 10.5ns 
and the hold relationship becomes 0.5ns.  This multicycle is generally applied between clocks 
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and is something the user should think about as soon as they do a small phase-shift on a clock.  
This multicycle is called shifting the window.  
 If any of this discussion on default setup and hold relationships is confusing, please read 
the basics of setup and hold, as well as the following section on determining default setup and 
hold relationships. 
 - Add a create_generated_clock to ripple clocks.  Basically anytime a register's output 
drives the .clk port of another register, that is a ripple clock.  Clocks do not propagate through 
registers, so all ripple clocks must have a create_generated_clock constraint applied to them for 
correct analysis.  Unconstrained ripple clocks will show up in TimeQuest's task "Report 
Unconstrained Paths", so they are easily recognized.  In general, ripple clocks should be avoided 
for many reasons, and if possible, a clock enable should be used instead. 
 - Add a create_generated_clock to clock mux outputs.  Without this, all clocks propagate 
through the mux and will be related.  TimeQuest will analysis paths downstream from the mux 
where one clock input feeds the source register and the other clock input feeds the destination, 
and vice-versa.  Although it could be valid, this is usually not what user’s want.  By putting 
create_generated_clock constraints on the mux output, relating them to the clocks coming into 
the mux, the user can correctly group these clocks with other clocks. 
 

I/O Timing 
 (Note: This section does not explicitly cover source-synchronous interfaces, although 
they use the same principles.) 
 There are only two I/O specific .sdc commands, set_input_delay and set_output_delay, 
and they can be difficult to grasp at first.  The most important concept is that these constraints 
describe what is going on outside of the FPGA, and with that information TimeQuest figures out 
what is required inside the FPGA.  I break this down into 5 steps, which is important for the first 
time through, although quickly becomes intuitive: 
 
 Steps for I/O Timing: 
 1)  Add create_clock to create a virtual clock for the I/O interface 
 2)  Add set_input_delay or set_output_delay to the I/O port/s.  Add it twice, once using 
the option -min and once using -max, and have 0.0 be the value in both cases.  (This will be 
modified in step 5) 
 3)  Determine the default setup and hold relationships between the FPGA clock and the 
virtual clock 
 4)  Add multicycles if these default relationships are not correct 
 5)  Modify the -max and -min delay values to account for external delays 
 
 I want to point out that the values used for the set_input_delay and set_output_delay are 
entered last, which is the opposite of what most new users do.   Going through the first steps will 
make it apparent why.   Also note that bidirectional I/O are really analyzed as inputs and outputs, 
so they usually have both set_input_delay and set_output_delay assignments. 
 

  Step 1) Use create_clock to add a virtual clock for the I/O interface 
 



15 
 

 This is always the first step, which is certainly not intuitive.  If the FPGA communicates 
with a PCI device that runs at 66MHz and a DAC running at 200MHz then the user might add 
the following to their SDC file: 
 
 create_clock -period 15.151 -name pci_clk_ext 
 create_clock -period 5.0 -name dac_clk_ext 
 
 Note that I did not apply these clocks to anything in the FPGA, which is what makes 
them virtual clocks; they exist outside of the FPGA.  How this will be used becomes apparent in 
the next few steps, but this step is usually easy since it reflects what's occurring in hardware. 
 

Step 2)  Add set_input_delay or set_output_delay on the I/O port/s  
Add it twice, once using -min and once using -max.  Use the value 0.0 for both 
delays, and the virtual clock for the clock. 
 
 The instructions are long, but it's really quite easy.  If constraining an output port called 
DAC_DATA[5], I might put in my .sdc: 
 
set_output_delay -clock dac_clk_ext -max 0.0 [get_ports DAC_DATA[5]] 
set_output_delay -clock dac_clk_ext -min 0.0 [get_ports DAC_DATA[5]] 
 
 As specified, the -clock option was filled with the virtual clock created in step 1), and the 
-max and -min values are 0.0.  That 0.0 is just a placeholder we will modify in step 5. 
 For an input bus where I want all ports to have the same constraint, I might do: 
 
set_input_delay -clock adc_clk_ext -max 0.0 [get_ports ADC_DATA[*]] 
set_input_delay -clock adc_clk_ext -min 0.0 [get_ports ADC_DATA[*]] 
 
 This step is straightforward since it’s just following the instructions without any analysis, 
but it's important to understand what the command does.  Intrinsically they do not really 
“constrain” anything, and instead describe what is going on outside of the FPGA.  Looking at our 
output constraint, let's break down its components: 
 
1. set_output_delay   There is a register being driven by an FPGA output 
2. -clock dac_clk_ext  This register is clocked by our virtual clock dac_clk_ext 
3. -max/-min 0.0  The external delay has a max of 0.0 and min of 0.0 
4. [get_ports DAC_DATA[5] The register is driven by port DAC_DATA[5] 
 
 Let's look at this command in schematic format: 
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 As can be seen, we just described a circuit outside the FPGA.  We also now have a 
register feeding another register.  This is the standard path analysis done on every path inside the 
FPGA.  
 

Step 3)  Determine the default setup and hold relationship between the 
FPGA clock and virtual clock 
 This step requires the user to determine the setup and hold relationship between the clock 
inside the FPGA and the virtual external clock.  This is usually very straightforward, as in most 
cases the launch clock and latch clock have the same period and are edge aligned, and hence 
have a setup relationship equal to the clock period, and a hold relationship of 0ns, as shown in 
the top-left example: 
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 For I/O, the virtual clock will be the launch clock for input constraints, and the latch 
clock for output constraints.  I've shown a few more cases, but won't delve into too much detail 
on how to determine the setup and hold relationship, which is covered in-depth in Timing 
Analysis Basics.   
 Rather than delve into calculating the relationship, I'll show how TimeQuest will show 
the relationship it is using, and hence the user doesn't have to figure it out beforehand.   For 
example, a user might have a 100MHz clock coming into the FPGA, which goes through a PLL 
and drives data out at 100Mbps.  After following the previous steps, the user creates a 10ns 
external clock and applies it to the output ports like so:   
 
 create_clock -period 10.0 -name tx_clk_ext 
 set_output_delay -clock tx_clk_ext -max 0.0 [get_ports {TX_DATA[*] TX_PAR}] 
 set_output_delay -clock tx_clk_ext -min 0.0 [get_ports TX_DATA[*] TX_PAR}] 
 
 In this example, they've created a virtual clock called tx_clk_ext.  They also said the ports 
TX_DATA[*] and TX_PAR drive external registers clocked by tx_clk_ext, and the max and min 
delay to those registers is 0.0ns.  Since the internal clock also has a period of 10.0ns, and neither 
is phase-shifted, then the default setup relationship is 10.0ns and the default hold relationship is 
0.0ns.  If the user is unsure of this, they can read in the .sdc file using the iterative method and 
run report_timing to those ports.  In TimeQuest's pull-down menu: Reports -> Custom Reports -
> Report Timing.  Simply put the virtual clock name, tx_clk_ext, in the To Clock section, and run 
report_timing twice, once for setup and once for hold.  In this example, I got the following two 
reports: 
 

 
 The left panel is the setup analysis, and the Relationship column, shown in red, is 10ns.  
This is expected, as we have a 10ns clock feeding another 10ns clock.  Below the Summary of 
Paths is the detail for the first path.  The 10ns is used such that the launch edge time is 0ns and 
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the latch edge time is 10ns.  Likewise for hold analysis, the relationship is 0ns.  The launch edge 
time is 0ns and the latch edge time is 0ns.   
 So what is this really saying?  When the launch clock comes into the FPGA, travels to the 
source register, which is the output register in this case, then through the output port to the 
external register, it must get there in greater than 0ns(the hold relationship) and less than 
10ns(the setup relationship).  Since our external -max and -min delays are 0ns, i.e. there is no 
external delay, than the delay within the FPGA must be greater than 0ns and less than 10ns.  At 
this point, we have a full constraint that TimeQuest can analyze, but it is probably not the 
analysis we want. 

Step 4)  Add multicycles  
 This step is usually unnecessary.  But if step 3) resulted in a default analysis that is 
incorrect, the user may want to modify the setup and hold relationships with multicycles.  The 
most common cases for this are when the user wants to open the window or shift the window.  
Note that we are not accounting for external delays like the Tsu or Tco of an external device or 
board delays, as that will be done in step 5.  This step is just to make sure the clock relationships 
are correct. 
 An example would be interfacing to a flash device that takes multiple clock cycles to 
perform each operation, than the user may want to open the window.  An example may look like 
so: 
 
 set_multicycle_path -setup -to [get_ports {FLASH_DATA[*]}] 4 
 set_multicycle_path -hold -to [get_ports {FLASH_DATA[*]}] 3 
 
 These two assignments tell TimeQuest that there are 4 clock cycles for the 
FLASH_DATA to get out of the FPGA.  So if the original setup and hold relationships were 
10ns and 0ns, they would now be 40ns and 0ns(assuming the clock period is 10ns). 
 If the clock inside the FPGA has a phase-shift, generally through a PLL, and the external 
clock does not, then the user may want to shift the window.  For example, if the FPGA clock 
feeding an output register were phase-shifted -500ps in order to help meet output timing, the 
default setup relationship would be 500ps.  To shift the window, the user would add: 
 
 set_multicycle_path -setup -to [get_ports {FLASH_DATA[*]}] 2  
 
 or: 
 
 set_multicycle_path -setup -from [get_clocks {pll|clk[0]} -to [get_clocks clk_ext] 2 
 
 The first one modifies the clock relationship on the output path, while the second one 
modifies all relationships between these clocks.  Either one of these will work as long as they 
cover what the user wants covered.  If the clocks have a 10ns period, the multicycle will modify 
the setup relationship from 0.5ns to 9.5ns, and the hold relationship from -9.5ns to 0.5ns. 
 Note that if the FPGA clock were phase-shifted forward a little, then a multicycle would 
most likely not be necessary.  If the default setup relationship were 10ns, and the source clock 
inside the FPGA were phase-shifted 500ps forward, then the default relationship would become 
9.5ns, which is probably what the user wants. 
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 Inputs work the opposite, whereby if the user phase-shifts the latching clock inside the 
FPGA forward a little, then they probably want a multicycle to shift the window, but if they 
phase-shift the clock back, they probably do not.  This is easily seen by drawing the launch and 
latch clock waveforms, as explained in the section on default setup and hold, specifically the 
affect of phase-shifts. 

Step 5) Modify the -max and -min delays to account for external delays. 
 
 Now that we have the correct setup and hold relationship, it is time to modify the -max 
and -min values.  They are currently set to 0, which means there is no external delay to the 
register.  This allows the entire data window to be used by FPGA delays.  In reality, part of the 
data window is used by the external device and board delays, only leaving part of the data 
window for the FPGA.  The -max and -min values account for these external delays.  Let's see 
how they affect the analysis before determining how they account for external delays. 
 With both -max and -min at 0, we are stating that there are no external delays, and 
basically have no affect on the analysis.  As the -max value gets larger, it cuts into our setup 
relationship.  So if the our default setup relationship were 10ns, and the -max output delay were 
4ns, that would mean the FPGA must get it's data out in less than 6ns to meet timing.  Note the 
setup relationship is still 10ns, but the FPGA's delay plus the external delay must be less than 
that.  So the larger -max gets, the more quickly the FPGA needs to get its data out  and the harder 
it is to meet timing.  As the -max value gets larger, the FPGA needs a faster Tco. 
 The -min value is often more confusing because it works in the opposite way, whereby 
the smaller it gets, the harder it is to meet timing.   If the hold relationship is 0ns, and the -min 
value was -1ns, then the only way to meet timing would be for the FPGA to get its data out in 
more than 1ns.  Looking at this through waveforms: 

 
 
 The top waveform shows the default relationships, while the second waveform shows 
what happens after accounting for the external delays.  Rather than the FPGA needing to get it's 
data out between 0ns and 10ns, it must now get out between 1ns and 6ns.  Likewise, for internal 
paths, if a user entered similar external delays: 
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 It may seem confusing that the green and purple arrows do not start at the same point.  
What's being shown is that when the external clock launches data, it can take anywhere from -
1ns to +4ns to reach the FPGA.  We use the larger number for the setup analysis, and the smaller 
number for the hold analysis. 
 How these external delays are actually added into the timing reports is shown in the 
upcoming section on correlating constraints to the timing reports. 
 One thing to note is that, as the difference between -max and -min values grows, the more 
difficult it is for the FPGA to meet timing.  In the output example above, the default relationship 
says the data must transfer between 0ns and 10ns.  As the external delay spreads from our 
original placeholder of 0ns for -min and -max, to -1ns and 4ns, the external device now uses 5ns 
of that 10ns window, and so the FPGA only has 5ns to work with.  I wanted to point this out, 
because users often don't see the relationship right away, and it often helps with understanding. 
 So now that we conceptually know how the external delays work, let's account for real 
external delays by looking at the output side first: 
 
External device parameters: 
 Tsu_ext = Tsu of external device 
 Th_ext = Th of external device 
Data delays on board: 
 Max_fpga2ext = Max board delay to external device 
 min_fpga2ext = min board delay to external device 
 
set_output_delay -max = Tsu_ext + Max_fpga2ext  
set_output_delay -min = -Th_ext + Min_fpga2ext  
 
For input constraints, they look like so: 
 
External device parameters: 
 Tco_ext = Tsu of external device 
 minTco_ext = Th of external device 
Data delays on board: 
 Max_ext2fpga = Max board delay from external device to FPGA 
 min_ext2fpga = min board delay from external device to FPGA 
Clock delays on board: 
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 Max_clk2fpga = Max delay from board clock to FPGA 
 min_clk2fpga = min board delay from clock to FPGA 
 Max_clk2ext = Max delay from board clock to external device 
 min_clk2ext = min board delay from clock to external device 
 
set_input_delay -max = Tco_ext + Max_ext2fpg 
set_input_delay -min = minTco_ext + min_ext2fpga  
 
 The user could actually put variables and equations into their .sdc file, which is shown in 
the Tcl Syntax section. 
 Note that these equations did not take into account board level clock skew, and is 
basically assuming the clock to the FPGA and external device are equivalent.  There is a very 
nice .sdc constraint for entering board-level clock delays, which I will show in a second, but 
what I see most users do is roll their board-level clock skews into the -max and -min values.  
(Note that clock skew is positive when the delay to the destination is larger than the delay to the 
source).  Anyway, rolling clock skew into the delays looks like so: 
 
External device parameters: 
 Tsu_ext = Tsu of external device 
 Th_ext = Th of external device 
Data delays on board: 
 Max_fpga2ext = Max board delay to external device 
 min_fpga2ext = min board delay to external device 
Clock delays on board: 
 Max_clk2fpga = Max delay from board clock to FPGA 
 min_clk2ext = min board delay from clock to external device 
 Max_clk2ext = Max delay from board clock to external device 
 min_clk2fpga = min board delay from clock to FPGA 
 
set_output_delay -max = Tsu_ext + Max_fpga2ext - (min_clk2ext - Max_clk2fpga) 
              = Tsu_ext + Max_fpga2ext - (min_clk_skew) 
set_output_delay -min = -Th_ext + min_fpga2ext - (Max_clk2ext - min_clk2fpga) 
             = -Th_ext + min_fpga2ext - (Max_clk_skew) 
 
For input constraints: 
 
External device parameters: 
 Tco_ext = Tco of external device 
 minTco_ext = min Tco of external device 
Data delays on board: 
 Max_ext2fpga = Max board delay from external device to FPGA 
 min_ext2fpga = min board delay from external device to FPGA 
Clock delays on board: 
 Max_clk2fpga = Max delay from board clock to FPGA 
 min_clk2fpga = min board delay from clock to FPGA 
 Max_clk2ext = Max delay from board clock to external device 
 min_clk2ext = min board delay from clock to external device 
 
set_input_delay -max = Tco_ext + Max_ext2fpg - (min_clk2fpga - Max_clk2ext) 
   = Tco_ext + Max_ext2fpg - (min_clk_skew) 
 
set_input_delay -min = minTco_ext + min_ext2fpga - (Max_clk2fpga - min_clk2ext) 
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             = minTco_ext + min_ext2fpga - (Max_clk_skew) 
 
Here's a diagram: 

 
 The on-board clock source is shown twice, once for the input and once for the output, but 
often they are the same source. 
 Again, the equations are given above, and I find most people roll their clock delays into 
the FPGA -max and -min values.  That being said, SDC has a very nice constraint that allows the 
user to enter board-level clock delays externally: 
 
 set_clock_latency -source -late 2.0 [get_clocks clk_fpga]  
 set_clock_latency -source -early 1.8 [get_clocks clk_fpga] 
 set_clock_latency -source -late 2.3 [get_clocks clk_ext] 
 set_clock_latency -source -early 2.1 [get_clocks clk_ext] 
 
 TimeQuest will then properly roll these into the timing analysis.  This is very nice in that 
it simplifies worrying about clock skew, what sign to use and whether to add or subtract delays, 
as the analysis takes care of it all for you.   Whether you want to roll board-level clock delays 
into the external -max/-min delays, or use set_clock_latency, is purely up to the user’s 
preference.  If done correctly, the analysis will be the same either way. 

Analyzing Results 
 This is one of the most important sections for getting started, not because it's overly 
difficult, but because most other documents gloss over the analysis.  I see time and time again 
where users concentrate on their .sdc files without understanding what it will look like in the 
final analysis.  Knowing what your constraints will look like when analyzing a path is one of the 
most important skills, since it completes the user's understanding and lets them correlate their 
.sdc input to the back-end analysis, and from their determine how the FPGA delay’s affect 
timing. 
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The Iterative Methodology 
 When entering constraints, users will make mistakes, and want a quick method to modify 
their .sdc files, analyze the results, then repeat.  First, launch TimeQuest, either from the Tools 
pull-down menu or the TimeQuest button: 
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 Once open, the first thing I would recommend clicking on is the Task's Macro "Report all 
Summaries", shown below: 

 Doing so will run the three steps in Netlist 
Setup.  These are: 
1)  Create Timing Netlist.  The default is to 
create a slow timing model netlist.  If the user 
wants a different netlist, they should access 
Create Timing Netlist from the Netlist pull-down 
menu.   
 
2)  Read SDC file will read in the user's SDC 
files.  If any were added in Quartus II's 
Assignment -> Settings -> TimeQuest or -> Files, 
they will be read in, otherwise TimeQuest will 
look for any .sdc files matching the project name.  
If the user makes changes to the TimeQuest .sdc 
list in Quartus II, they must re-launch TimeQuest 
for those changes to take affect. 
 
3)  Update Timing Netlist will then apply the 
SDC constraints to the design netlist. 
 
4)  The Report All Summaries macro will the run 
Setup, Hold, Recovery, Removal Summaries, as 
well as Minimum Pulse Width checks.  This is 
basically a summary analysis of every 
constrained path in the design.  (Device Specific 
checks are not run…)   
 The iterative method is when the user 
makes a change to their .sdc.  I recommend user's 
edit .sdc files from within TimeQuest or Quartus 
II.  Besides syntax coloring, there are pop-ups to 
assist command syntax, as well as the power of 
entering constraints with a GUI using the SDC 
editor's Edit -> Insert Constraint. 
 Once a user modifies their .sdc file and 
saves it, they should double-click Reset Design.  
This takes TimeQuest back to the point where it 
has created the timing netlist but not yet read in 
the .sdc files.  Double-clicking Report All 
Summaries will re-read in the edited .sdc files 
and re-create the timing summaries.   
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In essence, the iterative method is: 
 
 1)  Open TimeQuest 
 2)  Double-click "Report All Summaries" 
 3)  Analyze results 
 4)  Make changes to .sdc file and save 
 5)  Double-click "Reset Design" 
 6)  Double-click “Report All Summaries” 
 7) Analyze results 
 8) Repeat steps 4-7 as necessary. 
 
  Be aware that this method just re-runs timing analysis using new constraints, but the fit 
being analyzed has not change.  The place-and-route was run with the old constraints, but the 
user is analyzing with new constraints, so if something is failing timing against these new 
constraints, it may just be that the user needs to run place-and-route again.   
 For example, the fitter may concentrate on a very long path in the user’s design, trying to 
close timing.  Within TimeQuest, the user may realize this path runs at a lower rate, and so they 
add set_multicycle_path assignments to open the window.  Running TimeQuest iteratively with 
these new multicycles, those paths no longer show up but something else does.  The paths may 
have sub-optimal placement since the fitter was concentrating on the other paths when it ran, 
since they were more critical.  The iterative method is recommend for getting the .sdc files 
correct, but the user will have to re-run a full compile to see what Quartus II can do with those 
constraints. 

A diving tool 
 
 The previous section had users run "Report All Summaries".  This will run the four major 
types of analysis on every constrained clock domain in the design: setup, hold, recovery and 
removal.  The top-left TimeQuest box is called Reports, and is similar to a table of contents for 
all the reports created.  Highlighting any name in the Report's box will show that report in the 
main viewing pane.  Below is a design with the Summary (Setup) report highlighted: 

 
  The main viewing pane shows the Slack for every clock domain.  For example, row 5 

says that, for every path where sys_clk feeds the destination register, the worst slack is 6.975ns.  
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Positive slack is good, saying these paths meet timing by that much.  The End Point TNS stands 
for Total Negative Slack, and is the sum of all slacks for each destination and can be used as a 
relative assessment of how much a domain is failing. 

Of course, this is just a summary.  To get details on any domain, the user should right-
click that row and select Report Timing…   

 
The report_timing dialogue box 
appears, auto-filled with the Setup 
radio button selected and the To 
Clock filled with the selected clock.  
This is done because the user was 
looking in the Setup Summary 
report, and right-clicked on that 
particular clock.  As such, the worst 
10 paths where that is the destination 
clock will be reported.  The user can 
modify the settings any way they 
want, such as increasing the number 
of paths to report, adding a Target 
filter, adding a From Clock, writing 
the report to a text file, etc. 
 Note that any report_timing 
command can be copied from the 
console at the bottom into a user-
created Tcl file, so that a user can 
analyze specific paths again in the 
future without having to click so 
many buttons.  This is often done as 
users become more comfortable with 
TimeQuest and find themselves 
analyzing the same problematic parts 
of their design over and over, but is 
by no means required.  Many 
complex designs successfully use 
TimeQuest as a diving tool, i.e. just 
starting with summaries and diving 
down into the failing paths after each 
compile. 
 

report_timing 
 The command report_timing is by far the most important analysis tool in TimeQuest.  
Many designs require nothing but this command.  Because of this, I recommend the user typing 
"report_timing -long_help" in the TimeQuest console, just to see every option available.   This 
command can be accessed from the Tasks menu on the left, from the pull-down menu Reports -> 
Custom Reports pull-down menu, and by right-clicking on just about anything in TimeQuest.  



27 
 

Looking at the screen-shot above, the major options are shown for report_timing.  The From 
Clock and To Clock filter paths where the selected clock is used as the launch or latch.  The pull-
down menu allows you to choose from existing clocks(although admittedly has a "limited view" 
for long clock names).   
 The Targets for From and To allow the user to report paths with only particular 
endpoints.  These are usually filled with register names or I/O ports, and can be wildcarded.  For 
example, a user might do the following to only report paths within a hierarchy of interest: 
 
report_timing -from *|egress:egress_inst|* -to *|egress:egress_inst|* -(other options) 
 
 If the -from/-to/-through options are empty, then it is assumed to be *, i.e. all possible 
targets in the device.  The -through option is to limit the report for paths that pass through 
combinatorial logic, or a particular pin on a cell.  My experience is this is seldom used, and 
troublesome to rely on due to combinatorial node name changes during synthesis.  I try to only 
use -from and -to options when possible.  Also, the […] box after each target will open the Name 
Finder, which is a GUI for searching on specific names.  This is especially useful to make sure 
the name being entered matches nodes in the design, since the Name Finder can immediately 
show what matches a user's wildcard. 
 The Analysis type will be -setup, -hold, -recovery or -removal.  These will be explained 
in more detail later, as understanding them is the underpinning of timing analysis. 
 The Detail level, -detail, is an option often glanced over that should be understood.  It has 
four options, but I will only discuss three.  The first level is called Summary, and will only give 
Summary information, specifically the Source Register, Destination Register, Source Clock, 
Destination Clock, Slack, Setup Relationship, Clock Skew and Data Delay.  The summary report 
is always reported with more detailed reports, so the user would choose this if they want less 
info.  A good use for summary detail is when writing the report to a text file, where -detail 
summary can be quite brief. 
 The next level is -detail path_only.  This report gives all the detailed information, except 
the Data Path tab will show the clock tree as one line item.  This is useful when the user knows 
the clock tree is correct, and does not want to be bothered with all the details.  This is common 
for most paths within the FPGA.  A useful data point is to look at the Clock Skew column in the 
summary report(which is shown for all options of -detail), and if it's a small number, say less 
than +/-150ps, then the clock tree is well balanced between source and destination. 
 If there is clock skew, the detail option should be set to -detail full_path.  This breaks the 
clock tree out into explicit detail, showing every cell it goes through, including such things as the 
input buffer, PLL, global buffer(called CLKCTRL_), and any logic.  If there is clock skew, this 
is the way the user determines what in their design is causing the clock skew.  The -detail 
full_path option is also recommended for I/O analysis, since only the source clock or destination 
clock is inside the FPGA, and therefore its delay plays a critical role in meeting timing. 
 Here are screen-shots of the same path analyzed with -detail summary, -detail path_only, 
and -detail full_path.  Note that the clock delays are identical between path_only and full_path, 
but full_path has more details: 
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 Quartus II 9.1 added the +/- feature to the Data Path report, whereby a user can "roll-up" 
their clock and data path.  So -detail full_path can be used all the time, and the user would roll-
up the clock tree if they don’t need it.  The -detail path_only is more useful is when writing to a 
text file, which does not have the roll-up feature, or when locating a path to the Chip Planner, so 
it does not also locate the clock path. 
 The Data Path tab of a detailed report gives the delay break-downs, but there is also 
useful information in the Path Summary and Statistics tabs, while the Waveform tab is useful to 
help visualize the Data Path analysis.  I would suggest taking a few minutes to look at these in 
the user's design.  The whole analysis takes some time to get comfortable with, but hopefully is 
clear in what it's doing. 
 Report_timing also has the Panel Name, which is what name will be used in TimeQuest's 
Report section.  There is also an optional -file, which allows the user to write the information to a 
file.  If they name the file <filename>.htm, it will write out an HTML report. 
 The command report_timing shows every path.  Two endpoints that have a lot of 
combinatorial logic between them might have many different paths.  Likewise, a single 
destination may have hundreds of paths leading to it.  Because of this, the user might list 
hundreds of paths, many of which have the same destination and might have the same source.  
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The checkbox option pairs only, will only list one path for each pair of source and destination.  
An even more powerful way to filter the report is limit the Maximum Number of Enpoints per 
Destination.  I often set this to 1 and re-run timing analysis. 
 Finally, at the bottom is the Tcl Command, which shows the Tcl syntax of what is run in 
TimeQuest.  This can be directly edited before running the command.  One thing I commonly 
add is the -false_path.  With this option, only false paths will be listed.   A false path is any path 
where the launch and latch clock have been defined, but the path was cut with either a 
set_false_path assignment or set_clock_groups_assignment.  Paths where the launch or latch 
clock was never constrained are not considered false paths.  This command is useful to see if a 
false path assignment worked and what paths it covers, or to look for paths between clock 
domains that should not exist.  Note that the Task window's Report False Path is nothing more 
than report_timing with the -false_path flag enabled. 
  

Correlating Constraints to the Timing Report 
 One skill that is seldom explained is how timing constraints show up in the report_timing 
analysis.  Most constraints only affect the launch and latch edges.  Specifically, create_clock and 
create_generated_clock create clocks with default relationships.  The command 
set_multicycle_path will modify those default relationships, while set_max_delay and 
set_min_delay are low-level overrides that explicitly tell TimeQuest what the launch and latch 
edges should be.  Let's look at the report_timing on a particular path.  The top row is setup 
analsys, and the bottom row is hold analysis. 

 
 This is an eyeful, but going from left to right, we start with a clock driving the source and 
destination registers with a period of 8ns.  That gives us a setup relationship of 8ns(launch edge 
= 0ns, latch edge = 8ns) and hold relationship of 0ns(launch edge = 0ns, latch edge = 0ns).  In the 
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middle column, we have added multicycles to open the window, making the setup relationship 
16ns while the hold relationship is still 0ns.  In the third column, we use set_max_delay and 
set_min_delay constraints to explicitly override the relationships.  Note that the only thing 
changing for these different constraints is the Launch Edge Time and Latch Edge Times for 
setup and hold analysis.  Every other line item comes from delays inside the FPGA and are static 
for a given fit.  Whenever analyzing how the user’s constraints affect the timing requirements, 
this is the place to look. 
 For I/O, this all holds true except we must add in the -max and -min values.  They will be 
shown as Type iExt or oExt.  Let's look at an output port with a set_output_delay -max 1.0 and 
set_output_delay -min -0.5: 

 
 Once again, the launch and latch edge times are determined by the clock relationships, 
multicycles and possibly set_max/min_delay constraints.  The set_output_delay's value is also 
added in as an oExt value.  For outputs this value is part of the Data Required Path, since this is 
the external part of the analysis.  The setup report on the left will subtract the -max value, 
making the setup relationship harder to meet, since we want the Data Arrival Path to be shorter 
than the Data Required Path.  The -min value is also subtracted, which is why a negative number 
makes hold timing more restrictive, since we want the Data Arrival Path to be longer than the 
Data Required Path.   
 



31 
 

Section 2:  Timing Analysis Basics 
 

Basics of Setup, Hold, Recovery and Removal 
 
 When just learning digital design, usually in school, most designers learn about the setup 
and hold of a register, calling them Tsu and Th.  The Tsu is how long the data must be stable 
before the clock edge and Th is how long it must be stable after the clock edge.  If we violate 
those requirements, the register can go metastable.  These values are a characteristic of the 
register, and are independent of the clock rates, the place-and-route of the FPGA, etc.  We call 
them micro-parameters, and when used, will reference them as the micro-setup and micro-hold, 
or µTsu and µTh, of the register.  These micro parameters are used by TimeQuest during timing 
analysis, but they are NOT the fundamentals when we talk about setup and hold relationships.  
For the most part, the user can ignore these micro parameters since they are always properly 
calculated by TimeQuest, and should worry about the Setup Relationship and Hold Relationship. 
 The basic infrastructure of TimeQuest is based on clocks.  Clock are first created and 
applied to the design.  Those clocks have relationships within their domain and to other domains.  
Those relationships create a setup relationship and a hold relationship based on the clocks.  
These relationships are the fundamental building block of static timing analysis.   
 Two quick notes before continuing: 
 Note 1:  TimeQuest uses the terms Setup Relationship and Hold Relationship.  I will try 
to follow that nomenclature, but have always thought of them as requirements, and so may say 
Setup Requirement or Hold Requirement, in which case I mean the same thing.  The setup and 
hold relationships are requirements for the fitter to meet, and are used to determine final timing 
sign-off, so the two can be inter-changed. 
 Note 2:  Whenever I refer to the Setup Relationship, I also mean the Recovery 
Relationship.  Any mention of the Hold Relationship also includes Removal Relationship.  
Recovery and Removal are analogous to Setup and Hold, except they deal with signals driving 
the asynchronous ports on the latching register.  This is all discussed in the upcoming Recovery 
and Removal section.  For brevity, I will just write out setup and hold relationship, while 
inferring recovery and removal. 
 TimeQuest, and static timing analysis for that matter, is based on the principle of 
repeatable, periodic data relationships.  In other words, they rely on clocks.  Pretty much every 
analysis begins with a launch clock and a latch clock.  Let's look at a basic case: 

 
 This waveform is the fundamental case most users understand without even thinking 
about it.  The setup relationship is 10ns and the hold relationship is 0ns.  The setup relationship 
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means that when the Launch Clock sends a rising edge, it must get to the latch register before the 
Latch Clock's 10ns edge gets there.  The hold relationship means it must get there after the Latch 
Clock's 0ns edge gets there.  Note that this waveform is based on how the .sdc describes the 
clocks.  The Launch clock and Latch clock may be from a create_clock or 
create_generated_clock statement, they may be the same clock or different clocks.  The 
relationships are the same regardless, as the Launch and Latch clocks are 10ns clocks, with rising 
edges at 0ns and falling edges at 5ns. 
 Let's look at how this applies to a schematic: 
 

 
 So let's look at this in equation form: 
 
Data Arrival Path = Launch Edge + src_clk_dly + src_reg_uTco + data_delay 
Data Required Path = Latch Edge + dst_clk_dly 
 
 So when we do a setup check on this path, the Data Arrival Path must get to the FPGA 
before the Data Required Path's micro setup time(uTsu).   
 
Data Arrival Path + uTsu < Data Required Path 
Launch Edge + src_clk_dly + src_reg_uTco + data_delay <  
  Latch Edge + dst_clk_dly - dst_reg_uTsu 
 
 Let's look at this in an actual timing report: 
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 As can be seen, the Data Arrival Path starts with the Launch edge at 0ns and adds all the 
delays until it gets to the destination register.  This results in a total delay of 3.875.  The Data 
Required Path starts at time 10ns and goes through the latch clock's delay to the destination 
register, ending in 13.045ns.  This meets timing since the Data Arrival Path is less than the Data 
Required Path, and it's 8.963ns less, which is the slack on this path.   
 (Note that the clock path’s are a single line item.  This is because I ran report_timing with 
the option -detail path_only.  If it were -detail full_path, then the clock tree would have been 
broken out in more detail.   This is explained in the report_timing section of Getting Started.) 
 The Waveform tab also shows this information, although at a higher-level.  I find the two 
tabs work together nicely, where the Waveform view helps users understand what is going on, 
and if the path fails timing, the Data Path tab helps detail why it fails, giving individual delays, 
placement information, Interconnect Delalys(IC), and Cell Delays(Cell). 
  
 Let's now look at the hold relationship of the same path.  Going back to the waveform: 

 
 As can be seen, the hold relationship is 0ns, i.e. the latch edge is now at 0ns, and we want 
our data to arrive after the latch edge in order to meet timing.  Looking at the same path above in 
a timing report: 
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Note that the differences between the setup and hold analyses are: 
 - The Launch and Latch Edges change.  In this case the Launch Edge stayed the same, 
but the Latch edge went from 10ns to 0ns 
 - µTh is the micro parameter used for the Latch register instead of the µTsu. 
 - The Data Arrival Path is supposed to be greater than the Data Required Path.  The slack 
is Data Arrival Path - Data Required Path, while for setup it was Data Required Path - Data 
Arrival Path.  (This one is not apparent to everyone, but makes sense when you go back to the 
original waveform.) 
 - The delays vary slightly.  This is due to rise/fall variation, on-die variation, and other 
timing model effects.  For setup checks we wanted to compare the longest possible Data Arrival 
Path to the shortest possible Data Arrival Path, while for hold checks we want the shortest 
possible Data Arrival Path compared to the longest possible Data Required Path.   
  
 Hopefully these equations make sense and the user feels comfortable looking at their own 
paths and analyzing the results.  Note that most paths are internal to the FPGA, have the same 
source and destination clock(are in the same clock domain), and that clock is on a global.  When 
these conditions exist, the launch and latch clock delays are close to equal and subtract out of the 
equation, leaving the data path delay as the major component.  This is what users often think of 
for static timing analysis, whereby if they have 10ns clocks, the data delay must be greater than 
0ns and less than 10ns.  This is a simplistic approach, but approximately correct when the clock 
delays are balanced. 
 Now that we've looked at how the initial clock waveform's default setup and hold 
relationship are used to analyze a path, let's find out how those default setup and hold 
relationships are calculated. 
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Default Relationships  
 By default, all clocks are related in TimeQuest and hence have a default setup 
relationship and hold relationship.  This is easy to see when the clocks are straightforward, such 
as the following which have the same period and are edge-aligned: 

 
 Most paths fall into this simple relationship, but it is important to understand how default 
relationships are calculated for anything more complicated.  Examples would include clocks with 
different periods, clocks with phase-shifts or offsets, registers clocked on the falling edge, etc. 

Determining Default Setup and Hold Relationships in Three Steps 
 There are three simple steps for determining default setup and hold relationships: 
 1)  Draw clock waveforms based on SDC constraints 
 2)  The default setup relationship comes from the closest edge pairs where Launch Edge 
< Latch Edge 
 3)  The default hold relationship comes from the closest edges where Launch Edge + 
Setup Relationship < Latch Edge 
 4)  Optional - Verify/Validate in TimeQuest 
  
 Note that I use equations for steps 2) and 3), but rely on the waveforms to really 
determine the relationships, as we'll see.  Let's go through these steps in more detail: 
 
 1)  Draw clock waveforms based on SDC constraints 
 
 This is the step most users want to skip.  Waveforms seem simple and the user can 
picture them in their head, but note that I use TimeQuest every day, and still find benefit in 
drawing out waveforms, no matter how simple they may be.  So taking some SDC constraints: 
 
 create_clock -period 10.0 -name system_clk [get_ports system_clk] 
 create_clock -period 8.0 -name adc_clk -waveform {1.0 5.0} [get_ports adc_clk] 
 create_clock -period 10.0 sys_clk_ext 
 derive_pll_clocks 

Info: Calling derive_pll_clocks { 
create_generated_clock -name sys_clk \ 
 -source [get_ports system_clk] sys_pll|c[0] 
create_generated_clock -name sys_clk_shift -phase 90 \ 
 -source [get_ports system_clk] sys_pll|c[1] 
 
create_generated_clock -name alu_clk -multiply_by 4 -divide_by 5 \ 
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 -source [get_ports system_clk] sys_pll|c[2] 
} 

 create_generated_clock -name sys_div2 -divide_by 2 \ 
  -source sys_pll|c[0] [get_keepers sys_div_reg] 
 
 I show derive_pll_clocks since I recommend having that in the .sdc, but then show what 
generated clocks were created from that, copied from the TimeQuest messages.  I also shortened 
the PLL names for readability.  The final generated clock is on a divide-by-2 register in the 
design. 
 Anyway, drawing out the waveforms shows: 

 
 
The purpose of this is not to show how to draw waveforms.  Instead, let's take note of a few 
things: 
 - The waveforms are not dependent on the whether they are from create_clock or 
create_generated_clock.  System_clock comes in on a port, while sys_clk is the output of a PLL, 
but their waveforms look the same.    
 - The waveforms are not dependent on their target.  Clock sys_clk_ext is a virtual clock 
that is not applied to any target, yet has the same waveform as system_clk and sys_clk.  
Likewise, sys_div_2 is applied to a ripple clock register in the design, yet it's waveform is 
aligned with the other clocks. 
 - Only explicit options in the .sdc affect the waveform.  Clock adc_clk has a -waveform 
option that offsets it by 1ns.  Clock sys_clk_shift has -phase option that shifts it 90 degrees.  
Clocks alu_clk and sys_div_2 use -multiply_by and -divide_by that affect the waveform.  
Nothing from the user’s HDL affects what the clock waveform looks like.  Obviously the clocks 
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in the .sdc should match the clocks in hardware, the point is that making changes in the hardware 
will not change these waveforms. 
 Now that we’ve drawn the waveforms, let's go to step 2: 
 
2)  The default setup relationship comes from the closest edge pairs where  
Launch Edge < Latch Edge 
  
 This is an equation, but easier to do from our waveforms.  In essence, assume every edge 
launches data.  Start with the first launch edge in your waveform and move forward to the 
nearest latch edge AFTER the launch edge.  A difference as littls as 1ps counts.  Then go to the 
next launch edge and repeat.  Continue until a pattern shows up(values start repeating).  The 
smallest latch-launch value is the default setup relationship.   
 Let's look at a complicated example, where a register clocked by adc_clk feeds another 
register clocked by sys_clk.  As shown above, adc_clk is an 8ns clock with a 1ns offset, and 
sys_clk is a 10ns clock.  Finding the default setup relationship looks like so: 

 
 
 The waveforms were drawn per step 1, then a line was drawn from every launch edge to 
the nearest latch edge after it.  The default setup relationship is the smallest of these lines.  So in 
this example, any transfers from adc_clk to sys_clk will default to a 1ns setup relationship.  Note 
that we’re not saying the other relationships don’t matter, but that if we can meet the 1ns 
relationship then we’ve automatically met the other setup relationships.  Of course, 1ns might be 
too tight of a requirement, and we will shortly be analyzing exceptions, which tell TimeQuest 
that the default relationship is not correct. 
 Now, the two clocks above are definitely strange, and most designs wouldn't transfer data 
between them.  Most transfers are between clocks that are edge-aligned, or perhaps have a 
manual phase shift.  Some common examples: 
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 Case #1 is just a 10ns clock edge-aligned with another 10ns clock.  In the original 
constraints above, system_clk is what comes in the FPGA input port while sys_clk is this signal 
going through the PLL.  Even though the clocks are created differently and applied to different 
targets in the design, they still have a 10ns setup relationship.  Only once the placed and routed 
design is analyzed will the skew between these clocks be analyzed. 
 Cases #2 and #3 deal with sys_clk and sys_clk_shift, which is the same period as sys_clk 
but phase-shifted 90 degrees, or 2.5ns.  When the latch clock is phase-shifted forward, the 
amount of that phase-shift amount of 2.5ns becomes the setup relationship.  When the launch 
clock is phase-shifted forward, then (period - phase-shift) becomes the setup relationship. 
 Cases #4 and #5 deal with transfers between edge-aligned clocks, where one clock is a 
multiple of the other clock.  In each case, the period of the faster clock becomes the default setup 
relationship.   
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 These are just common examples.  If ever unsure, follow Step 2) for determining the 
default setup relationship. 
  
3)  The default hold relationship comes from the closest edges where  
 Launch Edge + Setup Relationship < Latch Edge 
 
 Again this is an equation, but let's look at it from the waveforms.  We have drawn them 
out and determined the most restrictive setup relationship.  For the hold relationship, we will 
similarly assume that every launch edge sends data.  So start with the first launch edge in the 
waveform, moving forward by the amount of the Setup Relationship, and then look for the first 
Latch Edge before that.  Let's take our previous clock transfer used for the setup relationship: 

 
 In the diagram we start at each launch edge and move forward by the setup 
relationship(straight green arrow).  We then move back to find the first latch edge before 
that(curving blue arrow).  The difference between the launch edge and latch edge is the hold 
relationship, and TimeQuest will use the most restrictive one.  Note that for hold, the most 
restrictive is the largest number, since we need to make sure the data arrival path is larger than 
the data required path by the hold relationship.   
 Rather than strange clock relationships like this, most designs have related clocks like the 
following examples: 
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 - Note that Cases #1, #4 and #5 all have hold relationships of 0ns.  For transfers with 
aligned edges, the default hold relationship will be 0ns. 
 - The 0ns hold relationship is independent of the clock period.  The clocks in Case #1 
could have a period of 1 Hertz, and the hold relationship would still be 0ns.  When designs have 
a timing failure, users often try to slow the clock down until it works.  This is often valid for 
setup failures, but hold failures are generally immune and will fail at any frequency.   
 - Case #4 has different launch edges used for the setup relationship and the hold 
relationship.  There is no requirement that the launch edge be the same edge for setup and hold 
analysis, it just works out that way most of the time.  Remember that we assume all edges launch 
data and all edges latch data.  If the user only looked at the launch edge at 10ns, they would 
determine the most restrictive latch edge to be at  0ns, for a hold relationship of -10ns.  By 
looking at the other launch edges, specifically 0ns, we find a more restrictive hold relationship of 
0ns, that still meets our requirement of being less than the setup relationship. 
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 - Cases #2 and #3 are phase-shifted clocks.  Note that the setup relationship - hold 
relationship adds up to the clock period.  This is not guaranteed, but for most clock relationships 
this is true.  It also makes sense, as that would be the fastest rate at which data can be passed 
between these clocks. 
  
 
4)  Optional - Verify/Validate in TimeQuest 
 The previous three steps show how to determine the default setup and hold relationship.  
They are mainly for understanding, since TimeQuest will be doing this on its own and reporting 
it to the user.  Since TimeQuest is doing this, all the user needs to do is run report_timing on a 
path between the specified clock domains to get the relationships.  For the difficult case above, 
where the launch clock has an 8ns period with a 1ns offset, and the latch clock has a 10ns period, 
we calculated the default setup relationship to be 1ns and the default hold relationship to be -1ns.  
Running report_timing -setup and report_timing -hold between these clocks in TimeQuest 
shows: 

 
 
 The left timing report shows the setup analysis, where the setup relationship is 1ns.  The 
launch edge time is 9ns and the latch edge time is 10ns.  Likewise on the right panel we see the 
hold analysis, where the hold relationship is -1ns, shown with a launch edge time of 1ns and 
latch edge time of 0ns. 
 Now, we already knew this would be the setup and hold relationships based on our 
analysis, but it's good to see the correlation with TimeQuest.  Most importantly, if you're not 
completely sure how to calculate a relationship, you can always have TimeQuest do it for you. 
 

Points of Interest for Default Relationships 
 Now that we know how to determine default setup and hold relationships, there are some 
points of interest worth noting: 
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Falling Edge Analysis 
 Up until now, this section has assumed the registers are clocked on the rising edge, but 
the analysis can also be done for registers clocked on the falling edge.  Note that the steps for 
determining setup and hold relationships should be run independently for these transfers.   In 
fact, when a user defines two clocks, TimeQuest determine 16 different relationships between 
those clocks.  For example, if we define sys_clk and  adc_clk, TimeQuest determines: 
 
sys_clk rising -> adc_clk rising setup relationship  sys_clk rising -> adc_clk rising hold relationship 
sys_clk rising -> adc_clk falling setup relationship sys_clk rising -> adc_clk falling hold relationship 
sys_clk falling -> adc_clk rising setup relationship sys_clk falling -> adc_clk rising hold relationship 
sys_clk falling -> adc_clk falling setup relationship sys_clk falling -> adc_clk falling hold relationship 
adc_clk rising -> sys_clk rising setup relationship adc_clk rising -> sys_clk rising hold relationship 
adc_clk rising -> sys_clk falling setup relationship adc_clk rising -> sys_clk falling hold relationship 
adc_clk falling -> sys_clk rising setup relationship adc_clk falling -> sys_clk rising hold relationship 
adc_clk falling -> sys_clk falling setup relationship adc_clk falling -> sys_clk falling hold relationship 
 
 Now, in most designs these relationships will be the same for multiple scenarios.  In 
determining the default setup and hold relationship for falling edge registers, just follow the 
same steps used, but the launch and/or latch edges should use the falling edge, depending on the 
situation.  For example, let's look at the clock transfers we've been using, but re-analyze them 
when the source register is clocked on the falling edge: 
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 Since we’re analyzing a falling launch edge to a rising latch edge, the edge of concern 
have been highlighted.  Most falling to rising edge transfers(or vice-versa) occur within a 
domain, and so most relationships are like Case #1, where the setup relationship is a half period 
and the hold relationship is a negative half period.   
 Also note that the Setup Relationship - Hold Relationship still adds up to the period of the 
faster clock.  I also think, if I had this hooked up in my design, this is the relationship I would 
expect.  When there are problems with falling edge registers, it's usually not that the user doesn't 
understand the default relationships, or that the defaults are not the user's intent, it's usually that 
they don't realize a register is clocked on the falling edge.  This results in case #1 above, where 
the setup relationship is half the clock period, and they end up not meeting timing.  There are 
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some identifiable points in TimeQuest.   The following report timing is on a design where there 
are a chain of registers, and one in the middle is clocked on the falling edge: 

  
 As can be seen, two paths have a 5ns setup relationhip.  This is the Rise->Fall transfer to 
the register, and the Fall -> Rise transfer from the register.  In the Data Path tab, the launch clock 
is shown with R for a rising edge while the latch clock is shown with an F for falling edge.  The 
Waveform tab also clearly identifies the Launch edge is rising while the Latch edge is falling. 

Periodicity 
 
 The way to determine default setup and hold relationships requires the user to look at 
edges over time.  Admittedly, in most cases the first edge or two is the correct one to use, but as 
we'll see in a moment with unrelated clocks, it may be many cycles out in time before the most 
restrictive setup or hold is found.  The nice thing about this is that our waveforms are considered 
periodic, not just a single snapshot.  For example, a designer could take a clock coming out of a 
PLL and phase-shift it +270 degrees or -90 degrees, and they would get the same relationships to 
other clocks: 
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 Other examples of periodicity are: 
 - Moving the launch clock back 90 degrees or the latch clock forward 90 degrees will 
result in the same relationships between those two clocks.   
 - Inverting a clock to a register or phase-shifting it +/-180 degrees results in the same 
relationships to other clocks. 
 This periodicity matches what occurs in hardware, so it's good to see timing analysis 
reflect that.   

Relationships between Unrelated Clocks 
 
 What happens when two clocks are clearly unrelated?  For example, what is the setup 
relationship if the launch clock has a 4.567ns period and the latch clock has a 7.777ns period?  
TimeQuest will do exactly what it is supposed to, and find the most restrictive setup relationship 
over time: 
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 Following the procedure, it finds that after launching data at time 1407.636ns, there is a 
latch edge exactly 1ps after that, which becomes the setup relationship.  The path naturally fails 
timing and shows up at the top of their list. 
 How is a user supposed to calculate that?  They're not.  In reality, these clocks can't be 
related and the user shouldn't care how TimeQuest relates them.  Instead, the user should either 
be fixing the data path or applying a set_clock_groups or set_false_path assignment on the path 
or between the clocks, to tell TimeQuest not to analyze this path in a synchronous manner.  The 
important point is being able to recognize why this occurs. 
 Some  users rely on this phenomenon to find code problems.  For example, if they 
mistakenly modify their RTL so there is a path from adc_clk to sys_clk, it will get a 1ps setup 
relationship, fail timing, and show up at the top of their list as a failure for that domain.  They 
then analyze the path and either realize they need to synchronize properly between the domains, 
or apply a set_false_path directly on the path.  The problem with this is that there is no guarantee 
the default setup relationship will be 1ps.  For example, let's say the user has two independent 
20ns clocks coming into the FPGA, which they constrain like so: 
  
 create_clock -period 20.0 -name clk_a [get_ports clk_a] 
 create_clock -period 20.0 -name clk_b [get_ports clk_b] 
  
 Now, if the clocks are from independent sources, the will have no known phase-
relationship and will vary from each other by some parts-per-million(PPM) difference.  In 
essence, it will be impossible to synchronously pass data between these clock domains.  But if a 
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user mistakenly passes a data bus from clk_a to clk_b, TimeQuest will see a default setup 
relationship of 20ns, the fitter will try to meet timing on those paths, and assuming it can, the 
paths will not show up as a timing failure.  So in this case, relying on a tight relationship between 
unrelated clocks to identify mistakes in the code did not work.   

Phase-Shift Affect on Setup and Hold 
 
 Manually phase-shifting a clock, usually done with a PLL, naturally affects the setup and 
hold relationships to other clocks, but it is important to understand exactly how.  Let’s look at 
some quick examples usingthree 10ns clocks, one without any phase-shift, one with a 9ns phase-
shift, and one with a 100ps phase-shift. 
 

  
 Case #1 shows transfers from the base clock to the 9ns phase-shifted clock.  The setup 
relationship is 9ns and the hold is -1ns.  This makes sense and probably what the user wants.  But 
when we go to Case #2, which are transfers in the other direction, the setup relationship is 1ns 



48 
 

and the hold relationship is -9ns.  This is probably not what the user wants.  Note that there may 
not be any transfers in this direction, in which case they don’t care what the relationships are, but 
if there are, a multicycle may be necessary. 
 As mentioned, clocks are periodic, so a 9ns phase-shift has identical relationships as a -
1ns phase-shift.   
 Case #3 is even more extreme, whereby the latch clock is phase-shifted by a mere 100ps.  
Since the default setup relationship is the most restrictive latch edge after a launch edge, the 
setup relationship is now 100ps.  If the clock was phase-shifted as little as 1ps, then that would 
be the setup relationship.  Again, this is probably not what the user wants, and a multicycle may 
be necessary. 
 Important Note:   When the user phase-shifts their clock, they should determine the 
relationship to other clocks and determine if they need a multicycle to shift the window data is 
passed through.  Multicycles are discussed in the next section, including this specific scenario 
where the user wants to shift the window 
 Of course, a phase-shift does not always mean a multicycle is necessary.  Let’s say the 
clock was phase-shifted 180 degrees.  The default setup and hold relationship to the unshifted 
clock would be 5ns and -5ns, which is probably what the user wants.   
 New users often think that, if they phase-shift a clock 100ps, TimeQuest should be able 
to figure out that they don’t want that to be the setup relationship and should target the next edge.  
By itself, this is probably true.  The question does come up of determining what phase-shift is 
obviously not targeting the next edge?  90 degrees?  180 degrees?  More importantly, there are a 
number of technical reasons that make TimeQuests’s methodology correct.  It preserves 
periodicity.  It allows generated clocks of generated clocks, each of which have phase-shifts.  It 
allows various clocks from various sources and their generated outputs to all have easily 
determined relationships.  In the simple case of a single phase-shifted clock with a small shift, it 
may look silly, but for a robust timing engine, it is correct. 

Multicycles 
 
 Now that we’ve examined all the ins and outs of default setup and hold relationships, it’s 
time to examine multicycles, which are the main way users tell TimeQuest to use a relationship 
other than the default.  Multicycles are based on existing edges defined by the clocks, and just 
tell TimeQuest to use a non-default launch or latch edge.   

A major benefit of using multicycles is that they work in conjunction with the clock 
assignments.  Since multicycles are based on existing clock edges, a user can modify their clock 
constraints and all the multicycles should adapt accordingly.  This phenomenon is described 
here. 
 Note that most multicycles fall under two common cases, and if users know those, they 
can get by without understanding the ins and outs of multicycles.  Those are explained at the end 
of this section, and may users could just skip to that part.  Also, step 6) below just points out that 
TimeQuest will always tell you what a multicycle does to a relationship, so it’s certainly possible 
to get by without understanding how multicycles are calculated, and just follow step 6) whereby 
the user guesses at a multicycle value, looks at what TimeQuest calculates it to be, and the user 
determines if that is what they want or if they should try a new multicycle value.   
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Determining Multicycle Relationships in Five Steps 
  
 1)  Draw clock waveforms based on SDC constraints 
 2)  The default setup relationship comes from the closest edge pairs where Launch Edge 
< Latch Edge 
 3)  Apply multicycle –setup modification 
 4)  The default hold relationship comes from the closest edges where Launch Edge + 
Setup Relationship < Latch Edge 
 5)  Apply multicycle –hold modification 
 6)  Optional - Verify/Validate in TimeQuest 
 
 Note that steps 3) and 5) are new. The other steps are identical to the steps in determining 
the default setup and hold relationships.  We’re going to skip steps 1) and 2) since they have 
been covered and go right to step 3).  An important point is that the default setup relationship is 
considered the “1” edge.  If a multicycle applies a larger number, then the setup relationship gets 
larger(easier to meet).  Let’s look at some examples: 

 
 Case #1 is the default setup relationship.  If a user applied a multicycle -setup 1, they 
would get the same results, which is why the default is called the 1 edge.  As the multicycle 
value gets larger, the setup relationship grows by that many clock periods.  So in Case #2, with a 
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multicycle -setup of 2, the setup relationship is 20ns.  Case #3 takes it to 30ns.  I put in Case #4, 
where the multicycle setup is 0, and since the value is 0, the setup relationship is reduced by a 
clock period to 0ns.  This is occasionally what a user wants in source-synchronous interfaces, 
which is why I point it out.  In essence: 
 
 setup relationship = default_setup_relationship + (MC_setup_value – 1) * clk_period 
 
 So in Case #2, we start with the default relationship of 10ns.  A multicycle of 2 was 
applied, so our new setup relationship is 10 + (2-1)*10 = 10 + 10 = 20ns. 
 As discussed in the section on set_multicycle_path, the actual constraint could be applied 
between nodes in the design, or between clocks.  The -from/-through/-to options determine what 
paths the assignment is applied to, while the -setup <value> determines how much the 
assignment modifies the default relationship by. 
 Now, in the equation above we use the term clk_period.   What if our launch and latch 
clocks have different periods?  This is determined by the option -start/-end.  If no option is given, 
set_multicycle_path defaults to -end.  This option determines whose clock period to use, 
whereby -start means to modify the relationship by the period of the launch clock, and -end 
means to modify the relationship by the period of the latch clocks.  Another way to think of this 
is to begin with the default setup relationship, and if the option is -start, move the start of the 
arrow back in time that many edges, and if the option is -end(the default if no option is 
specified), move the end of the arrow forward this many edges.  Some examples: 
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 Case #2 has a multicycle -setup -start 2.  Since we use the -start, we’re going to move the 
start of the green arrow back one cycle, so our setup relationship increases by the period of the 
launch clock, from 5ns to 15ns.  Case #3 is a multicycle -setup of 2, but the -end option is 
specified(and the default if -start/-end is not specified), and the end of the arrow is moved out a 
clock cycle, taking the setup relationship from 5ns to 10ns.  Case #4 takes it to 15ns.  So in this 
particular example, where the destination clock is half the period of the source clock, a 
multicycle -start 2 and a multicycle -end 3 both result in a setup relationship of 15ns.  Remember 
that our relationship is the difference between the launch and latch edges, so Case #2 and #4 
have the same relationship, even though the arrow is drawn between different edges. 
 From an equation perspective, we need to introduce some logic, making the calculation 
look something like the following, whereby -start and -end are mutually exclusive options: 
 
  
 -start setup relationship = default_setup_relationship + ((MC_setup_value – 1) * launch_clk_period) 
 or 
 -end setup relationship = default_setup_relationship + ((MC_setup_value – 1) * latch_clk_period) 
 
 Now that we’ve done the newly added step 3), let’s look at step 4): 
 

4)  The default hold relationship comes from the closest edges where  
Launch Edge + Setup Relationship < Latch Edge 

 
 We already did this step when determining default relationships, but note that step 4) 
comes after the multicycle -setup is applied, so the default hold relationship follows the setup 
multicycles, like so: 
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 As can be seen in Case #2, after applying a multicycle -setup 2, not only does the setup 
relationship increase to 20n, the default hold relationship increases to 10ns.  This is because the 
default hold relationship is determined from the setup relationship, even if the setup relationship 
was modified with a multicycle.  So following our methodology of determining default hold 
relationships, in Case #2 we assume every launch edge launches data. We start at the first launch 
edge at 0ns, go out by the setup relationship which is now 20ns, and start moving back until we 
find the first latch edge, which occurs at 10ns.  This is our default hold relationship now.   
 Case #3shows this again, as the setup relationship goes to 30ns due to multicycles, the 
default hold relationship also increases to 20ns.  As can be seen, the multicycle hold tends to 
shift the window data passes through but doesn’t change how big it is.  (By window I mean the 
difference between the setup relationship and hold relationship, where data passes through.)  If 
the default hold relationship is not what the user wants, they can apply a multicycle -hold. 
 (Note:  The default hold relationship follows the setup relationship with multicycles.  If a 
user applies a set_max_delay constraint to override the setup relationship, the default hold 
relationship does NOT follow that.  It is still based on the setup relationship, either the default or 
with multicycles). 
  

5)  Apply multicycle –hold modification  
 
 In step 4, the default hold relationship is called the “0” edge.  As seen in the last set of 
waveforms, this default hold relationship changes with multicycle setups, but is still considered 
the “0” edge for each case.  Applying a multicycle hold greater than 0 will loosen(make smaller) 
the hold requirement by that many edges.  Multicycle holds are usually applied to paths that have 
a multicycle setup applied first, so we will look at a case with a multicycle -setup of 4: 
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 As can be seen in Case #1, the default “0” edge for the hold relationship is at 30ns.  As 
we apply multicycle holds that are greater than 0, the end of the arrow moves back in time, 
making the hold requirement smaller, and hence easier to meet.  With a multicycle setup of 4, we 
need to apply a multicycyle hold of 3 to get the hold relationship back to 0ns. 
 Just like setup multicycles, when the launch and latch clock have different periods, the -
start/-end option determine which clock’s period to move the hold relationship by.  The -start 
option moves the start of the hold arrow forward by one clock cycle, while the -end option 
moves the end of the arrow back by one clock cycle.  Looking at it as an algorithm where the 
multicycle can only have -start or -end: 
 
 -start hold relationship = default_hold_relationship - (MC_hold_value * launch_clk_period) 
 or 
 -end hold relationship = default_hold_relationship - (MC_hold_value * latch_clk_period) 
 

6)  Optional - Verify/Validate in TimeQuest 
 
 Just like with default relationships, TimeQuest’s report_timing will explicitly report the 
setup and hold relationships it is using.  So if you’re unsure of what you’re doing or just want to 
make sure your analysis is correct, quickly enter the multicycles you think are correct and do 
report_timing -setup and report_timing -hold on the path and see what setup relationship and 
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hold relationship TimeQuest calculates.  If they are not what you want, modify the multicycle 
values and re-run TimeQuest. 

When analyzing a path, the waveform tab nicely shows the previous 5 steps.  For 
example, let’s say I have a 10ns clock and put in the following constraints: 
 
 set_multicycle_path -setup -from {*source} -to {*dst} 2 

set_multicycle_path -hold -from {*source} -to {*dst} 3 
 
 For this example, let’s not worry about why the user has these multicycles, but how they 
are reported.  When I look at the report_timing -setup waveform tab: 

 
  
  Step 1 was to draw the waveform, which is done above.  Step 2 is to determine the 
default setup relationship.  That is the dotted arrow labeled No Exceptions, and shows what the 
setup relationship would have been without a multicycle setup.  This is purely informational, as 
the Setup Relationship arrow shows the relationship after the multicycle setup of 2 is applied.  
This is what is used for the anlaysis.  Now let’s look at the report_timing -hold waveform tab: 

 
 The No Exceptions is what the hold would be if there were no setup or hold multicycles.  
The No Hold Multicycle Exceptions is step 4), where the hold relationship is determined based 
on the setup relationship, showing what it would be with just the multicycle setup but before the 
multicycle hold.  Since the multicycle setup shifted the setup by one clock period, the hold 
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relationship has also increased by one clock period to 10ns.  Both of these arrows are for 
informational purposes only. 
 Finally, we do step 5) and apply the multicycle hold of 3, which shifts the hold 
relationship by 3 clock cycles, moving it from +10ns to -20ns.   
 Note that if you had done all these steps with pencil and paper, you might end up with 
different edges then what the waveform viewer shows.  For example, my final hold relationship 
started with a launch edge at 0ns and a latch at -20ns, while the one above launches at 20ns and 
latches at 0ns(I cut off the time scale).  These different launch and latch times will give the exact 
same analysis and the exact same slack, since it’s the difference between the launch and latch 
edges that we ever care about.  Don’t get hung up if TimeQuest chooses different edges as long 
as the difference between your launch and latch edges is the same. 
 
Designing with Multicycles 
 I’ve found the previous steps for calculating multicycle relationships to be the best way to 
learn how they work, whereby the user can take different multicycle values and determine what 
the new relationships will be.  The user may encounter this when given an .sdc with multicycles, 
either inside IP or when working on a design written by someone else.  That being said, it is not 
the normal approach for designing with multicycles.  Instead, a user will create logic and 
determine that the default setup and hold relationships are not what they want.  They must 
determine what relationship they do want, and then apply multicycles to get that relationship. 
  The step of determining what relationship the user wants was left out, as it’s not really a 
step for understanding TimeQuest, but a step in hardware design that could probably be a whole 
other chapter.  Once the user determines what the new setup and hold relationships should be, 
they then use the steps above to determine what multicycle assignments would give that analysis. 
 I’ve added this comment because this question comes up for users who are new to 
multicycles and being taught how they work.  In a training session, where there is no real design, 
it’s easy to view this backwards.  Remember, the normal flow is not, “I have multicycles in my 
.sdc and need to determine the new setup and hold relationships.”  Instead, it’s usually “I’ve 
created hardware that needs a relationship different than the default.  What multicycles do I need 
to apply to get the timing relationships to match my hardware?” 

Multicycles - Two Common Cases 
 The previous section covered how multicycles affect setup and hold relationships, and 
will hold true for any clock relationships and any multicycle value.  In reality, almost all 
multicycles fall under two different cases, and most users will be fine just understanding those 
two scenarios.  

 Case 1 - Opening the Window 
 
 When paths transfer data at a slower rate than the clock rate, users want to open the 
window.  For example, let's say a design has a 10ns clock, but a group of registers in the design 
are fed by a toggling clock enable, and hence only toggle on every other clock.  Since they are 
fed by a 10ns clock, the default analysis is a 10ns setup and 0ns hold, but the data is really 
transferring as if the clocks were 20ns, and hence a 20ns setup and 0ns hold is how the paths 
should be analyzed.    The user wants to open the data window, making the setup relationship 
larger while keeping the hold relationship constant.  This is done like so: 
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 set_multicycle_path -setup -from src_reg* -to dst_reg* 2 
 set_multicycle_path -hold -from src_reg* -to dst_reg* 1 
 

Note that the multicycle -hold assignment is necessary.  Without it, the hold relationship 
would have been 10ns, which is not what the user wants.  So to open the data window during 
analysis, the user needs to make their multicycle -setup with a value of N, and a multicycle -hold 
with a value of N-1.  Here are two examples, where the user wants to open the data window to 2x 
and 3x its original size: 

 
 
 For an even larger data window, just continue the pattern.  For example, if the user 
wanted to say the data could change anywhere between 0ns and 80ns, they would add: 
 
 set_multicycle_path -setup -from group_A -to group_B 8 
 set_multicycle_path -hold -from group_A -to group_B 7 
 
 I see many .sdc files filled with pairs of multicycles like this.  Note that these multicycles 
are loosening the constraints, i.e making it easier to close timing.  If the user knows a path runs at 
a lower rate while designing, it is recommended they make the multicycle constraints 
immediately, while the designer is intimately familiar with the logic.  Too often designers say 
they'll do it later, and then spend time trying to find multicycle paths in their design to help close 
timing.  Making the assignments up front is much easier. 
 Also note that these multicycles are often used for slow I/O interfaces.  For example, 
when writing to an asynchronous RAM, the design might send out address and data, and then a 
few clock cycles later toggle the write enable signal.  In this case, the address and data have extra 
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cycles to settle, and hence a multicycle to the I/O ports can help close timing.  To give it three 
cycles, the designer might enter: 
 
set_multicycle_path -setup -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 3 
set_multicycle_path -hold -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 2 
 
 These multicycles assignments work in conjunction with the I/O constraints 
set_input_delay and set_output_delay, as described here. 
 

Case 2 - Shifting the Window  
 This case occurs when a user’s PLL does a small phase-shift on a clock, and that domain 
transfers data to/from other domains that do not have a phase-shift.  For example, when the 
destination clock is phase-shifted forward and the source clock is not, the default setup 
relationship becomes that phase-shift.  In the next example, the destination clock is phase-shifted 
by 200ps.  I show two ways this could be done in the constraints.  In example 1), clk_b is a base 
clock whose first rising edge is starts at 200ps rather than 0ps.  The constraints in 2) are more 
common, whereby the PLL phase-shifts one of its outputs forward by a small amount.  Both of 
these scenarios result in a default setup relationship of 0.2ns, which is pretty much impossible to 
meet, and probably not what the user intended.    

If the user really wants data to transfer to the next edge, then they can add the following 
constraint to get the relationship shown in the second waveform: 
 
set_multicycle_path -setup  -from [get_clocks clk_a] -to [get_clocks clk_b] 2 
 

  
 There is no need for a multicycle hold, since the hold relationship follows the setup 
relationship.  I call this "shifting the window", since the size of the data window between setup 
and hold is the same, it is just the next window that we're sending data through.   
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 Note that the original relationship is not wrong, just not what the user intended.  For 
example, if the destination clock were phase-shifted forward by a larger amount, say 5ns, then 
it's likely they would want the default relationship, which is a setup relationship of 5ns and a 
hold relationship of -5ns.  It's only the small phase-shifts where user's often do not want the 
default relationship, but what constitutes a "small phase shift" must be decided by the user. 
 In recap, when adding a small phase-shift to a clock, a multicycle is often needed to shift 
the window that the data passes through.  If the phase-shift is positive, they would add: 
 
 set_multicycle_path -setup -from [get_clocks base_clk] -to [get_clocks shifted_clk] 2 
 
 If the phase-shift is negative, then the constraint would be: 
 

set_multicycle_path -setup -from [get_clocks shifted_clk] -to [get_clocks base_clk] 2 
 
Of course, this only has to be applied where there are real clock transfers.  If a design has 

forty clocks, and the user adds a small positive phase-shift on one of them, they do not have to 
add multicycles from the other thirty-nine clocks to this one.  Most of the clocks will not have 
any paths to this shifted domain, and so the multicycle only needs to be applied between clocks 
with real connections. 

 

Max and Min Delays 
 
 We have looked at calculating default setup and hold relationships and how to modify 
them with multicycles, which choose different clock edges of the existing waveforms.  The 
constraints set_max_delay and set_min_delay allow users to modify setup and hold relationships 
to arbitrary values.  In essence, these constraints are a low-level override allowing users to 
directly define setup and hold relationships.  Set_max_delay directly modifies the setup 
relationship and set_min_delay directly modifies the hold relationship.  Let’s look at an example 
to understand it better.  This first screen shot shows setup analysis on the left and hold analysis 
on the right within a 10ns clock domain:  
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 As expected, the default setup relationship is 10ns, and the worst path meets timing with 
a slack of 6.095ns.  The default hold relationship is 0ns, and the worst path meets timing with a 
slack of 0.475ns.  If the user puts the following in their .sdc: 
  
 set_max_delay -from [get_clocks sys_clk] -to [get_clocks sys_clk] 8.0 
 set_min_delay -from [get_clocks sys_clk] -to [get_clocks sys_clk] 1.0 
 
 This example applies the constraint between clocks, so all paths between those clocks are 
modified, but in truth these constraints are more commonly applied between specific register or 
I/O endpoints.  Re-running TimeQuest against the same fit shows: 

 
 Looking at the setup analysis on the left, the relationship has changed from 10ns to 8ns.  
That directly correlates to changes in the launch and latch edges.  Note that everything else 
analyzed for this path is the same, i.e. the clock delay, data delay, etc.  The slack has now 
changed from 6.095ns to 4.095ns, which is from the requirement being 2ns tighter.  Likewise 
with the hold analysis on the right side, the hold relationship is now a positive 1ns, which 
changes the slack from +0.475ns to -0.525ns, and the design now fails timing. 
 An important note is that the physical clock delays are still being analyzed with this 
constraint, and hence clock skew still can affect whether or not a path meets timing.  Users many 
times see the names set_max_delay and set_min_delay and assume it is constraining the data 
path independently of the clock paths. 

The Dangers of set_max_delay and set_min_delay 
 
 The constraints set_max_delay and set_min_delay allow users to easily override default 
setup and hold relationships.  It is important to note what is used to calculate the default setup 
and hold relationship to be aware of what information is being ignored when a user applies 
set_max/min_delay assignments.  Some of the things that go into default analysis, such as clock 
period, make sense when they are overridden.  For example, in the previous example we 
overrode a 10ns clock period and made it 8ns.  The two places where I see problems are: 
 

- Paths between registers clocked by different rise/fall edges 
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- Paths where one clock is phase-shifted or offset from the other 
 

In theory, a user could use set_max_delay and set_min_delay to explicitly constrain their 
clocks.  For example, if we wanted to overconstrain a 10ns clock to 8ns, we could apply: 

 
set_max_delay -from [get_clocks sys_clk] -to [get_clocks sys_clk] 8.0 

 
 This would overconstrain the setup relationship on every path in this domain from 10ns 
to 8ns while leaving the hold relationships at 0ns, exactly what we want.  The problem is that 
clock relationships are more complicated, and clocks have multiple relationships, since falling 
and rising edges can be used.  If sys_clk has any falling -> rising transfers or rising -> falling 
transfers, they would have a default setup relationship of 5ns.  Our constraint has now loosened 
the requirement on those paths to 8ns.  If we really wanted to overconstrain this domain, we 
would have to do: 
  
 set_max_delay -rise_from [get_clocks sys_clk] -rise_to [get_clocks sys_clk] 8.0 

set_max_delay -fall_from [get_clocks sys_clk] -fall_to [get_clocks sys_clk] 8.0 
 set_max_delay -rise_from [get_clocks sys_clk] -fall_to [get_clocks sys_clk] 4.0 

set_max_delay -fall_from [get_clocks sys_clk] -rise_to [get_clocks sys_clk] 4.0 
 
This is necessary because the options -rise and -from are inclusive of all rise/fall edges, 

whereby we need to be more specific.  Of course, if there are no registers clocked on the falling 
edge, none of this would have been necessary.  Luckily, set_max_delay and set_min_delay are 
usually not used to constrain entire clock domains and are point solutions applied to specific 
paths, whereby the user knows whether rise and fall paths exist and constrains them accordingly. 

The second issue involves phase-shifted clocks.  Let’s start with two 10ns clocks that are 
not phase-shifted.  The default setup relationship is 10ns, and if wanted to overconstrain it by 
2ns, we would apply a set_max_delay assignment of 8ns.  Now let’s say we phase-shift the 
launch clock forwared by 90 degrees.   
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The default setup relationship between these clocks is now 7.5ns.  If we apply a 
set_max_delay constraint of 8ns, we’ve actually loosened the requirement.  (Since 
set_max_delay and set_min_delay are independent of what the clocks look like, they are always 
analyzed with a launch edge of 0ns and a latch edge of whatever value is used in the 
assignment).  In order to overconstrain this path by 2ns, we would want to enter a set_max_delay 
of 5.5ns.  We have to take into account the phase-shift in our constraint.   

Another way to think about this is to take an example where everything in the FPGA is 
constant except the phase-shift on the launch clock.  With a 90 degree phase-shift, we have a 
7.5ns requirement, and some slack number to tell us how much we meet timing by.  If we change 
the phase-shift to 180 degrees, our setup relationship changes by 2.5ns, and our slack drops by 
2.5ns.  But if this path were constrained with a set_max_delay of 8ns, then the phase-shift on the 
launch clock could be 90 degree or 180 degrees and we would get the exact same slack.  The 
phase-shift amount is ignored by set_max_delay and set_min_delay assignments.   

This only applies if one clock is phase-shifted and the other is not.  If both the launch and 
latch edges are phase-shifted 90 degrees, then that phase-shift would cancel out during analysis.   

All of this may seem obvious, that phase-shifting the source clock by 90 degrees would 
reduce the default setup relationship to 7.5ns, and if I wanted to overconstrain this path I would 
need to enter a set_max_delay value less than 7.5ns.  But when set_max_delay and 
set_min_delay assignments are used for I/O constraints, this is often missed. 

Using set_max_delay and set_min_delay for Tsu, Th, Tco, Min Tco and Tpd 
 
 The constraints Tsu, Th, Tco and Tpd are called device-centric constraints, as they 
constrain the I/O ports of the FPGA device independently of its environment.  These constraints 
are not directly supported by TimeQuest, as it uses the system-centric constraints 
set_input_delay and set_output_delay.  They are called system-centric, since they will change 
due to changes in system requirements, such as a change in the clock period or board delays to 
external devices.   

The Classic Timing Analyzer(the original static timing analysis engine in Quartus) used 
device centric-constraints, and so when TimeQuest was first released, all Quartus user’s were 
accustomed to using Tsu, Th, Tco, Min Tco and Tpd assignments.  They had been doing this for 
years and as a result did not like moving to set_input_delay and set_output_delay assignments, 
which are reallythe ones designed for constraining I/O.  As a result, Altera showed users how to 
use set_max_delay and set_min_delay as substitutes for these device-centric constraints.  
Equations were given comparing the two: 
 
Input Ports: 
set_max_delay -from [get_ports {<input>}] <Tsu_Requirement> 
set_min_delay -from [get_ports {< input >}] -<Th_Requirement> 
 
Output Ports: 
set_max_delay -to [get_ports {<portname>}] <Tco_Requirement> 
set_min_delay -to [get_ports {<output>}] <MinTco_Requirement> 
 
Combinatorial Paths through Device: 
set_max_delay -from [get_ports {<input>} -to [get_ports {<output>}] <Tpd_Requirement> 
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set_min_delay -from [get_ports {<input>} -to [get_ports {<output>}] <minTpd_Requirement> 
 

Note that the <Th_Requirement> is negated.  Everything else is directly converted.    
 
So if a user wanted to constrain a 32-bit input bus call ram_data as well as a bit called 

ram_parity to a Tsu of 4ns and Th of 1ns, they would use the equation and write: 
 
set_max_delay -from [get_ports {ram_data[*] ram_parity}] 4.0 
set_min_delay -from [get_ports {ram_data[*] ram_parity}] -1.0 

 
 This method was especially useful when converting legacy designs with Tsu/Th/Tco type 
constraints over to TimeQuest.  It’s important to understand what is going on though. 
 The constraints set_max_delay and set_min_delay were not designed to be I/O 
constraints.  As discussed, they are low-level constraints that override the default setup and hold 
relationship.  But how do they work on an I/O port that doesn’t have a default setup or hold 
relationship?  The answer is that TimeQuest infers a set_input_delay or set_output_delay 
constraint.  For example, if I constrain an output port like so: 
 
 set_max_delay -to [get_ports dout] 5.0 
 set_min_delay -to [get_ports dout] 1.0 
 
 TimeQuest will infer the following: 
 
 set_output_delay -max -clock n/a 0.0 [get_ports dout] 

set_output_delay -min -clock n/a 0.0 [get_ports dout] 
 
 These inferred set_output_delay assignments state that port dout drives an external 
register that is clocked by clock n/a, and the delay to that register is exactly 0ns.  It looks like so: 

 
 The fpga_clk is the clock coming into the FPGA and constrained by the user.  If it goes 
through a PLL or gated clock, those must be constrained too. 
 The clock n/a stands for “Not Applicable” since it’s not a clock that has been defined.  It 
doesn’t matter what this clock looks like, since it’s setup and hold relationships to the fpga_clk 
get overridden by the set_max_delay and set_min_delay assignments(which is how these 
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assignments work, as described).  Since the external delay is 0ns, it has no affect on the final 
slack calculation.  What is left is that our assignments override the setup and hold relationships 
between fpga_clk and n/a clock to make them 5ns and 1ns.  Since the external delays are all 0ns, 
then the FPGA’s delays are the only thing used, and must meet the 5ns setup relationship and 1ns 
hold relationship. 
 The key to this is that it looks like the user has done the constraint with TimeQuest’s 
normal constraints, set_input_delay and set_output_delay.  The I/O ports now have a full register 
to register path, and can be reported as normal setup and hold paths.  If the user runs: 
 
 report_timing -setup -detail full_path -to_clock n/a -npaths 200 -panel_name “Tcos” 

report_timing -hold -detail full_path -to_clock n/a -npaths 200 -panel_name “min Tcos” 
 
 
 They will see all setup and hold analysis to these external registers clocked by clock 
“n/a”.  Looking at one of the setup paths: 



64 
 

 
The setup relationship is 5ns, which is the value entered for the set_max_delay 

assignment.  Data Required Time uses all the delays through the FPGA, which can be seen going 
down the Location column, from the clock entering on Pin_N3, through the IO buffer and PLL, 
the global clock tree G10, the output FF, IO Output Buffer and finally Pin Y11.  This all takes 
3.520ns.  The Data Required Path is outside the FPGA, and just has the latch edge time of 5ns, 
which is our requirement.  The external delay oExt is 0ns, which means the external delay has no 
affect.  So our requirement is 5ns, our delay through the FPGA is 3.520ns, and we meet timing 
by 1.480ns.  Another way of stating this is that the Tco is 3.520ns and meets our requirement by 
1.480ns.  In this case, using set_max_delay 5.0 to our output port analyzed the path the same way 
as a Tco requirement of 5ns would have.  Everything looks good. 
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But there are two dangers with set_max_delay and set_min_delay assignments.  The first 
issue is that negative edge analysis is ignored.  This is not a big deal since Tsu, Th, and Tco work 
that way too.  A good example I often use it to think of a 20ns clock driving an output register, 
where the Tco is reported to be 7ns.  If the user modifies their code so the output register clocks 
on the falling edge.  In hardware, the output signal is now changing a half period, 10ns, 
differently than it was before.  How should the Tco value be reported?  Does it change by a half 
period to -3ns, to 17ns, or stay at the old value of 7ns?  The answer is that it does not change at 
all and would still be reported as a 7ns Tco.  This was always a problem with device-centric 
constraints.  In this example, two output ports could have identical Tcos, but if one were clocked 
on the rising edge and the other on the falling edge, their data would come out at very different 
times.  The constraints set_max_delay and set_min_delay will also ignore falling edges, since the 
falling edge clocks affect the setup and hold relationships, and these constraints override those 
relationships.  This one is not that big of a deal though, since set_max_delay and set_min_delay 
are behaving the same way as device-centric constraints Tsu, Th, and Tco. 

The second danger is unexpected.  Phase-shifts are also ignored by set_max_delay and 
set_min_delay constraints.  In the report_timing diagram above, the clock in the FPGA goes 
through a PLL.  If that PLL has a manual phase-shift, it would show up in the launch and latch 
edges, but these are overridden by the set_max_delay and set_min_delay requirements, and are 
basically ignored.  The PLL could do no phase-shift,  a 90 degree phase-shift, a -270 degree 
phase-shift, i.e. anything, and the analysis would be the same.  The slack would be identical.  
This is exactly how set_max_delay and set_min_delay are supposed to work, but it is not 
expected for I/O constraints.    

Most likely, the user needs to compensate for phase-shifts in their constraints.  For 
example, if the PLL did a phase-shift of 0.2ns, then the data will come out 0.2ns later.  To 
compensate for that, the user would need to make their set_max_delay assignment 0.2ns tighter, 
at 4.8ns, and their set_min_delay assignment 0.2ns looser, at -0.2ns.  The concerning part is that 
there is no warning or anything that the PLL phase-shift is being ignored, as the set_max_delay 
and set_min_delay assignments are working as they’re supposed to.  This is one of the main 
reasons I recommend against using these constraints as a substitute for device-centric I/O 
constraints.  (There are others.  Look at Device-Centric and System-Centric constraints.)  Even 
for users that understand this, I consider it dangerous in a project. The project may eventually get 
passed to anther engineer, who begins modifying the phase-shift of clocks coming out of the PLL 
but doesn’t know to modify their I/O set_max_delay and set_min_delay constraints accordingly. 

In summary, the big concern with using set_max_delay and set_min_delay is that any 
manual PLL phase-shift is not used in calculating slacks.  As long as there is no phase-shift to 
the I/O registers, it works quite nicely, and can still be used if the customer “accounts for phase-
shifts” in their requirements.  The .sdc could always do something like: 
 
set phase_shift 0.0 ;#PLL phase shift in nanoseconds 
 
#Input Ports: 
set_max_delay -from [get_ports {<input>}] [expr <Tsu_Requirement> + $phase_shift] 
set_min_delay -from [get_ports {< input >}] [expr  -<Th_Requirement> + $phase_shift] 
 
#Output Ports: 
set_max_delay -to [get_ports {<portname>}][expr <Tco_Requirement> - $phase_shift] 
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set_min_delay -to [get_ports {<output>}] [expr <MinTco_Requirement> - $phase_shift] 
 

This method creates a variable called phase_shift and uses it in all the device-centric I/O 
constraints.  The user must remember to update this variable if they modify the PLL phase-shift, 
as there is nothing that will warn if it is incorrect. 
 I personally think it is much better to learn how to use set_input_delay and 
set_output_delay constraints, as they are not very difficult and are meant for I/O constraints.  I 
wanted to explain this danger for those who choose not to. 
 

A few other notes: 
 

 - This explains why a clock called “n/a” shows up. It will be the Launch Clock for input 
ports and Latch Clock for output ports.  
 - Now that an external register exists, the I/O paths can be reported as register-to-register 
transfers.  So input registers are fed from an external register clocked by n/a, and outputs feed an 
external register clocked by n/a.  To analyze these paths, you can still use the ports though, such 
as: 
 
report_timing -setup -from [get_ports {<input list>}] -npaths 100 -detail full_path  

-panel_name “Tsu” 
report_timing -hold -from [get_ports {<input list>}] -npaths 100 -detail full_path  

-panel_name “Th” 
report_timing -setup -to [get_ports {<output list>}] -npaths 100 -detail full_path  

-panel_name “Tco” 
report_timing -hold -to [get_ports {<output list>}] -npaths 100 -detail full_path  

-panel_name “minTco” 
 

 - The inference of set_input_delay and set_output_delay only occurs if the user does not 
have their own external delay constraint.  If the designer already has this constraint on the I/O, 
then the values from that constraint are used.  Note that set_input/output_delay and 
set_max/min_delay constraints do not compete with each other, and instead work together.   
  

Recovery and Removal 
 
 Recovery and Removal analysis is one of those things where what is occurring is very 
easy to understand, but the why is very difficult.  As a recap, the user describes clock waveforms 
in their SDC file, and from there TimeQuest determines setup and hold relationships.  The basic 
principle is that the launch edge clocks data from the source register, and it must get to the 
destination register before the setup latch edge and after the hold latch edge.  This is described in 
detail at the beginning of this section. Note for setup and hold we drew the following diagram: 
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 The data_delay path feeds a synchronous port on dst_reg, whether it be the data input, the 
clock enable, the synchronous clear, etc.  It is anything that is clocked in by the latch clock. 
 Recovery and removal is an identical analysis, except data_delay feeds an asynchronous 
input on dst_reg.  Here’s the new schematic, where the only differences are that an asynchronous 
port on the destination register is being driven, and the name of signal was change to reset_delay. 

 
 
 For simple understanding, if these registers were in a 10ns clock domain, and ignoring 
clock skew, recovery states that the reset_delay must be less than 10ns, and removal states that 
the reset_delay must be greater than 0ns.  Recovery analysis is identical to setup analysis, except 
the signal feeds an asynchronous port on the destination register.  Removal analysis is identical 
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to hold analysis, except the signal feeds an asynchronous port on the destination register.  To my 
understanding, some tools don’t even have “recovery and removal”, they just analyze all 
transfers, whether they’re synchronous or asynchronous, as setup and hold. 
 With that understanding, EVERYTHING else about setup and hold relates to recovery 
and removal.  Default relationships are determined the same way.  Multicycles have the same 
affect(set_multicycle_path -setup will affect the recovery analysis, and set_multicycle_path -hold 
will affect the removal analysis).  The constraints set_max_delay and set_min_delay still act as 
low-level overrides of the relationships, and set_false_path will still cut timing analysis on a 
reset path. 
 One thing I do want to make clear is the asynchronous register is an endpoint.  There is 
no analysis through an asynchronous port.  In the diagram below, the recovery/removal analysis 
is only from src_reg to dst_reg, and separately dst_reg to the logic_regs are analyzed as setup 
and hold: 

 
 There is absolutely no analysis from src_reg through dst_reg to the logic_regs.  As a 
result, when src_reg resets dst_reg we know it will occur within a clock cycle, but the 
asynchronous change in dst_reg  might reach the logic_regs before the next latch edge, after it, 
some combination of both(where one logic_reg sees the new value and the other does not), or 
right on the latch clock edge, causing logic_reg to go metastable.  The moral is that the user 
should NEVER use asynchronous ports for general logic and only use them as a domain-wide 
reset.  If the logic_regs are also asynchronously reset by src_reg, then the analysis from src_reg 
through dst_reg to the logic_regs does not matter, since the logic_regs are also being reset and 
hence immune to changes on their synchronous inputs.  
 



69 
 

 If you understand the fundamentals of setup and hold analysis then you understand the 
fundamentals of recovery and removal.  The difficulty is usually not in understanding what is 
being analyzed buy why.  Let’s look at an example where a register asynchronously resets an 
entire domain: 

 
 In this schematic, the register domain_A_rst fans out to the aclr port of all the other 
registers in Domain A.  There might be 10 registers or 100,000 registers, it doesn’t matter  Note 
that the resets source and destination registers are synchronous to each other. 
 The best way to explain why recovery and removal is analyzed it to show a failure.  So 
let’s pretend domain_A_rst is clocked asynchronously to Domain A, or that clk_A_aclr is not 
analyzed by recovery and removal.  Either way, the point is that we have no analysis on when 
clk_A_aclr feeds the registers in Domain A.  Let’s look at a 4-bit binary state-machine within 
Domain A that resets to state “0000” and on the first clock cycle is supposed to transition to state 
“0011”. 



70 
 

 
  
 Due to the aclr port not being timed, it reaches the 4 bits of SM at different times that the 
user cannot analyze.  On one release from reset, it get to SM[1] before SM[0] and a clock edge 
occurs in between.  This releases bit SM[1] on the second clock edge, but still hold SM[0] in the 
reset state, so only some bits of the state-machine transition.  This could cause it to enter an 
unknown state, or possible a known state that will never be valid because earlier parts of the 
state-machine were never reached.  This could cause a system failure, and is exactly what 
recovery and removal prevents.  By ensuring all registers within a domain are released from reset 
on the same latch edge, this type of failure is avoided, and the system comes out of reset the 
same way, every time. 
 In general, logic that changes on the first clock out of reset and that can hold its state is 
the most susceptible to recovery/removal failures.  (Logic that doesn’t hold its state, like a simple 
multiplier, may calculate the incorrect value out of reset, but that value usually filters out of the 
device before anything is done with the incorrect value).  Because of this, most logic is immune 
to recovery/removal failures.   The problem is that there is no tool to determine which logic is 
immune and which is not.  Also, recovery/removal cannot be simulated since there are too many 
different combinations of how the registers could come out of reset.  Finally, recovery and 
removal failures are extremely difficult to debug in the lab since they usually only occur on a 
small percentage of system resets.  Who hasn’t had a design not work in the lab, the designer 
does a reset, and everything starts working?  These problems are usually ignored, but may show 
up as periodic failures in the field. 
 I have received the frantic calls from designers who have designs in the field exhibiting a 
particular failure rate out of so many power-ups/resets.  This is not the time to find out about a 
timing issue like this, and my general suggestion is to design proper resets up front, close timing 
on them, and get it right from the beginning.   
 Once designers understand what a recovery/removal failure looks like, the inevitable 
follow-up question is, “Why not make the reset synchronous?” 
 There are two reasons for this.  The first is that many designs require an asynchronous 
reset for reliability.  The great benefit of an asynchronous reset is that it can be reset without a 
clock.  So if the system failure occurs by a clock generator going bad, the user can still reset the 
design.  If it’s a medical scanning device that is emitting particles at the patient, the 
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asynchronous reset allows them to reset to a safe state.  If the device controls an automobile and 
the user is accelerating when the clock driver goes bad, they can still reset to a non-accelerating 
state.  For conditions like these, it is imperative the reset be asynchronous. 
 Of course many designs don’t care.  If the clock driver fails on a handheld video game 
system, most likely the whole device is getting thrown out.  Minimally, the user doesn’t care 
what happens during this type of failure, and has no safety/security requirements.  But the second 
reason for using an asynchronous reset is that it gets better results in Altera FPGAs.  There is a 
dedicated asynchronous set/reset on each register, and if the design doesn’t use them, they are 
wasted.  More importantly, if the reset is synchronous, it will use up synchronous inputs, whether 
it be the synchronous clear port or an input to the LUT, that could have been used for general 
logic.  So making the domain-wide reset synchronous will make the design a little larger and a 
little slower. 
 We’ve said that the reset needs to be asynchronous for resetting the logic in case the 
clock driver fails, and it has to be synchronous for de-asserting so that all registers can be timed 
and come out of reset on the same cycle.  So is the reset synchronous or asynchronous?  The 
answer is a circuit called the “asynchronous assert, synchronous de-assert reset” and looks like 
so: 

 
 As can be seen, when ACLR asserts, it asynchronously goes through register B and 
sets/resets all the registers in the domain without the need for any clock edges.  This satisfies the 
requirement to asynchronous assert reset.  But when it de-asserts, there must be two clock cycles 
for the VCC to travel through registers A and B before synchronously de-asserting all the logic 
in the domain.  This satisfies the requirement that the de-assert can be timed synchronously.  
Two registers are used for metastability, since ACLR is often released asynchronously to the 
clock.  As the name says, it is an asynchronous assert, synchronous de-assert reset.  Now 
TimeQuests’s recovery and removal analysis can properly time everything from register B to all 
the registers in the domain. 
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 My feeling is that without good reason, this structure should be in every design.  Some 
quick notes on it: 
 - ACLR can be completely asynchronous to the domain in question. 
 - The ACLR signal is usually more complex.  Besides some sort of user logic to 
determine when to reset(whether it be a push-button, a Nios command, an external CPU, etc.), 
there are usually conditions for coming out of reset. The most common is making sure the PLL 
for that domain has asserted its lock signal. 
 - The asynchronous assert, synchronous de-assert should be repeated for every group of 
clocks.  A group consists of all related clocks.  For example, if a PLL creates a 50MHz, 100MHz 
and 200Mhz clock that are all related, only one circuit is necessary to reset all three domains.  
(There is no reason the user can’t create multiple versions).  In general, the two registers should 
be clocked off the slowest clock domain.  This provides the easiest timing requirements to the 
slower domains and provides consistent releasing of each clock domain. 
 - For timing closure of recovery and removal, the Domain_ACLR net often meets timing 
by being put on a global.  If globals are available and the domain is relatively large, that’s the 
best option.  Sometimes a domain is too fast for a global though.  For example, the clock tree 
may be longer than 4ns, which is too slow if the domain has a 4ns period and hence recovery 
needs to meet that requirement.  In these cases, taking the net off of a global often gives better 
timing. 
 - If timing closure is still difficult in fast domains, the structure can be repeated for 
various hierarchies within the domain, reducing the fan-out and distance the net must drive.   
 - Recovery and Removal failures can hurt setup and hold timing.  The fitter considers 
recovery and removal timing to be just as important as setup and hold, and will try to balance 
timing between the two if it achieves a better overall slack.  This is especially true when the 
Domain_ACLR(see above schematic) net is not on a global and has a tight requirement.  This 
will pull all the destination logic close to register B, which could be at the expense of timing 
within the domain.  I recommend trying to close timing on recovery and removal early on, since 
it is usually not very difficult.  Another option is to add a temporary: 
 
 set_false_path -from B 
 
 B would naturally be replaced by the name of the register driving the asynchronous 
set/reset of the domain.  Since recovery/removal failures occur out of reset and are usually very 
sporadic, it’s easy to work around them in the lab.  If this helps meeting setup timing, it would 
allow the designer to continue debugging the rest of their logic.  The designer must be careful to 
later remove the false path and fix the recovery timing issues. 
 
 I’ve found recovery and removal to get a varied reception.  ASIC designers are usually 
fully aware of this topic(even if they didn’t know the terms recovery and removal) and are 
already building reset structures to meet their needs.  On the other hand, many FPGA designers 
have never paid attention to it, which was not helped by the fact that the Classic Timing 
Analyzer did not do Recovery/Removal analysis by default, and the user had to go deep into the 
menus to turn it on.  These designers often ignore this whole topic and pretend it’s not an issue.  
There does seem to be a general shift though, from ignoring it, to being aware, to understanding 
its importance.   
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Section 3: SDC Constraints 
 
 This section discusses the major SDC constraints.  It is not meant to re-state the basics, 
but as an additive source of information.  To help understand a command, type command_name  
-long_help in TimeQuest, e.g. to learn more about set_multicycle_path, type: 
 
 set_multicycle_path -long_help 
 
To get a list of available commands, some suggested commands to type: 
 
 help 
 help sdc 
 help sdc_ext 
  
 The basic syntax for commands is to have the command followed by a list of options that 
have a description, such as -period 10.0.  Some commands have required options that do not 
have a descriptor.  For example, set_output_delay has two options <value> and <target>.   The 
<value> is the numerical delay for this command, and the <target> is what port/s it is applied to.  
This can be confusing at first, as an SDC might have: 
 
 create_clock -period 10.0 -name sys_clk sys_clk 
 
 As can be seen, sys_clk is listed twice.  The first one is linked with the -name option, and 
is the user's name given to the clock.  The second is the <target> it is applied to, which is a port 
in the design called sys_clk.  It could also be written like so: 
 
 create_clock -period 10.0 -name sys_clk [get_ports sys_clk] 
 
 The square brackets execute a command inside and return a value, so the command 
get_ports finds any port that matches sys_clk and returns it.   

create_clock 
 
 Note: In TimeQuest, type "create_clock -long_help" for more information. 
 
 This constraint is used to create base clocks.  There are two major uses, the first being to 
create a clock constraint coming into the FPGA.  The second major use is when the constraint 
does not have a <target> and is a virtual clock, which is used for I/O analysis.  The launch and 
latch edges for these clocks start at the commands target, which is why it is not recommend to 
apply this constraint to clocks inside the FPGA.  For example, if the user has a divide-by-2 
register in their design, they might do something like so: 
 
 create_clock -period 20.0 -name div_clk [get_registers clk_blk:u2|div2reg] 
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 The problem with this is that the delay to div2reg is not analyzed, so on one fit it might 
be 4ns and the next fit it is 8ns, while in both cases that delay is ignored.  That is why this is only 
recommended for clocks coming into the FPGA or virtual clocks outside of the FPGA.  Also 
note that set_clock_latency can be used in conjunction with this constraint to account for external 
delays. 
 
 Options: 
 
 -waveform - This is used to describe what the clock looks like.  If not used, the clock 
defaults to having a rising edge at 0ns, a falling edge at (period/2), and repeated edges from 
there.  I recommend using -waveform only if the user does not want this default, since it is a 
possible source of error when changing a clock period.  For example, if a design has: 
 
 create_clock -period 10.0 -name sys_clk -waveform {0 5} [get_ports sys_clk] 
 
 That constraint is correct, but if the period ever changes to 8ns, it is easy to just modify 
the -period option and leave -waveform {0 5}.  I have seen this done.  The design now has an 8ns 
clock with a rising edge at 0ns and a falling edge at 5ns, which is no longer a 50% duty cycle. 
 The -waveform also allows for a clock offset.  For example, if a clock has a -period 10.0, 
a 2ns offset could be specified with -waveform {2.0 7.0}.  The clock still has a 50/50 duty cycle, 
but is offset by 2ns.  Note that there is no way to do a negative offset since the first rising edge 
must be between 0ns and the period, but they can shift it a whole cycle to accomplish the same 
thing.  For example, if the user wanted to represent a -2ns offset on a 10ns clock, they would add 
-waveform {8 13}.    Due to periodicity, TimeQuest's default setup and hold relationships work 
out the same way.     
 -add - If two create_clock assignments are applied to the same target, the second 
assignment will be ignored and a warning will be issued.  This option on the second assignment 
means that it describes a second clock coming into the device.  An example where this is used is 
if a device plugs into two different boards, and the legacy board might drive a slower clock into 
the FPGA.  This allows TimeQuest to analyze both scenarios.  
 

create_generated_clock 
 
 Note: In TimeQuest, type "create_generated_clock -long_help" for more information. 
 
 This command is used to create clocks based off of other clocks. The most common uses 
are: 
 - PLL outputs.  These are generally covered by derive_pll_clocks. 
 - Source synchronous outputs.  This constraint is applied to the port sending a clock off 
chip, and then used as the -clock option on the data’s set_output_delay constraint. 
 - Clock muxes.  Although not always necessary, generated clock assignments on the 
output of a clock mux, based on the clocks coming into the mux, give the user flexibility in 
analyzing and constraining the muxed domains. 
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 - Ripple clocks.  Any time the output of a register feeds the clock port of another rgister, 
that is a ripple clock.  The source register requires a generated clock assignment or else the ripple 
clock will be unconstrained. 
 Note that it is acceptable to have generated clocks of generated clocks.  I had a design 
with a create_clock on the clock coming in, which then went through a PLL, a ripple clock, a 
clock mux, and then fed out as a source synchronous output.  There were four generated clock 
assignments, at the PLL output, the ripple clock, the mux and the output, each based on the 
previous clock.  We were able to correctly constrain and analyze timing through the whole 
design.  
 
 Options: 
 -name - The name of the newly generated clock. 
 -divide_by/-multiple_by - Used to divide and/or multiply the incoming clock period. 
 -phase/-offset - Used to shift the clock edges from the incoming clock.  A PLL is the only 
thing that can really shift a clock, so that is really the only place this would be used.  In the end, 
these two options can do the same thing, and really depend on how the user wants to represent 
the shift, since -phase is based on the incoming clock period and -offset is a fixed time delay. 
 -invert - This is used when a clock is inverted and TimeQuest does not recognize the 
inversion.  The only time I use this is if I'm sending a clock off-chip through an altddio_out 
megafunction, and I tie the high register's input to GND and the low register's input to VCC.  
This inverts the clock as it leaves the FPGA, but in a way that TimeQuest does not recognize, 
and hence the -invert option is necessary.  When a user inserts an inversion on their clock line in 
RTL, the inversion should be recognized and this option is unnecessary. 
 -source - This option specifies the physical point in a design where the generated clock's 
waveform is derived from.  Note that the -source is not a clock but a physical name in the design.  
More often than not, a user will enter the <target> of the upstream master clock or generated 
clock, but this is not a requirement as the <target> can be any point between the s previous 
clock(create_clock or create_generated_clock).  A good example of this is when 
derive_pll_clocks calls its create_generated_clock assignments, the -source option is the input 
pin of the PLL.  This properly grabs the waveform at that point and the generated clock's 
waveform will be based on this, but the delay to that point will still properly start at the FPGA 
input.  The beauty of this is that the assignment doesn't have to know the name of what drives the 
generated clock.  The PLL could be driven by an input clock port with any name chosen by the 
designer, or by another PLL, or pretty much any clock source, and the assignment would still 
work.   
 -master_clock - If the specified -source option has more than one clock traveling along it, 
then -master_clock is required to specify which clock this generated clock is based on.  For 
example, the output of a clock mux might have two clocks going through it.  If there is a 
create_generated_clock assignment downstream from the mux, the user would use                       
-master_clock to specify which of the two clocks this generated clock is based on. 
 -add - If the <target> already has a clock on it, the -add option is used to add this 
generated clock.  Without it, TimeQuest will ignore the new constraint and issue a warning.  This 
is generally used with clock muxes, where multiple clocks go through a single node.  Another 
use is with the PLL's clock switchover(which is similar to a clock mux), where each output of 
the PLL can be driven by one of two input sources, and hence there are two generated clocks 
applied to each output and the -add option is used. 
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 How Generated Clocks are Analyzed 
  
 Generated clocks are analyzed as if they were coming into the device where the upstream 
create_clock is applied.  Take a look at the following diagram: 

 
  
 This design has a 10ns clock coming into the FPGA, which feeds a PLL where two 
generated clocks come out, one that is 2x the frequency and one that is phase-shifted 90 degrees.  
Now, most users think the PLL "does something" to the source clock, so the main_clk comes 
into the PLL and the fast_clk and main_shift clocks come out.  This is not how it is timed.  
Instead, it will look like three clocks come into the FPGA.  The main_clk feeds all the registers 
in main_clk domain, fast_clk feeds all the registers in fast_clk domain, and main_shift feeds all 
the registers in main_shift domain.  Main_clk and fast_clk are edge-aligned, while main_shift 
has a 90 degree phase shift.  As a result, all clocks modifications will be represented by the 
Launch and Latch edges during timing analysis.  Look at Correlating Constraints to the Timing 
Report to see more of this.  Although many users accept this, it confuses some since they expect 
to see something like a manual phase-shift show up in the PLL delays.  In the example above, 
they might expect to see main_clk as the original waveform and then a shift occur as it goes 
through the PLL to create the clock main_shift.  Instead, it looks like main_shift is coming into 
the FPGA and feeds the registers clocked by PLL|c1. 
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derive_pll_clocks 
 
 Note: In TimeQuest, type "derive_pll_clocks -long_help" for more information. 
 
 This command is not a true .sdc command, but calls out true .sdc commands.  When 
generating a PLL, the user must enter how each output is to be generated.  Because of this, 
TimeQuest knows how each PLL output should be constrained, and can therefore apply the 
proper create_generated_clock assignment to each PLL output.    
 The command does more than constrain PLL outputs; it also configures clocks used in 
the dedicated transceivers and adds multicycles between user logic and True LVDS SERDES.  .  
Note that after it is read in, the TimeQuest messages can be expanded to show every command 
run by derive_pll_clocks, and as such, it is recommended every user run this command on their 
design to see what it does.  Personally, I recommend having this in the main .sdc of every design. 

 
 
 I find many users don't want to use this constraint and prefer entering the individual 
constraints into their .sdc file.  Technically, the two may be equivalent, but I have seen enough 
users modify their PLLs and forget to modify their .sdc that I strongly recommend sticking with 
derive_pll_clocks.  There is a PLL-cross check warning if the user constrains a PLL in a manner 
different than how it was configured, but it is easy to miss warnings. 
 The one advantage to not running this command is that the user can name the clock 
whatever they want, rather than using the long, hierarchical PLL name chosen by 
derive_pll_clocks.  That being said, I feel the advantages of derive_pll_clocks outweigh this. 
 If the user wants to put generated clock assignments on some of their PLL outputs and let 
derive_pll_clocks do the rest, they need to put the their create_generated_clock assignments 
before derive_pll_clocks to make sure they take priority.  This is discussed in priority of derived 
assignments. 
  
 Options:  
  
 -create_ base_clocks - This will add a create_clock assignment to the clock ports driving 
the PLLs.  If the system's clocks are all from input clocks that directly feed PLLs, then this single 
line can constrain all the clocks in the FPGA.  I generally use individual create_clock 
assignments for clocks driving the PLLs, but it is up to the user. 
 -use_tan_name - This option is used when converting constraints from the Classic Timing 
Analyzer(TAN) to TimeQuest.  TAN named it's PLL outputs in a format different than 
TimeQuest's derive_pll_clock command normally does.  If the user had another assignment that 
was converted from Classic that referenced these clock names, they would no longer match.  
This option is used to prevent that from happening.  Unless it's necessary, I recommend not using 
this, since new designs do not need this and it just adds confusion as other users ask why this 
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option was on.  In reality, most designs from TAN didn’t reference the PLL clock names, and 
this option wouldn’t be necessary with those designs. 
 

derive_clock_uncertainty 
 
 Note: In TimeQuest, type "derive_clock_uncertainty -long_help" for more information. 
 
 For all devices on 65nm and newer, this option should be in used in every project.  It 
applies clock uncertainty between clock domains based on device characterization and models 
clock issues like PLL jitter, but is not limited to PLL clocks.  Much like derive_pll_clocks, the 
command calls out individual set_clock_uncertainty for every clock transfer, and these 
assignments can be found in the TimeQuest messages. 
 
 Options: 
  
 This command calls out set_clock_uncertainty assignments between all clocks in the 
user's design, based on characterization.  The options deal with prioritization if the user has their 
own set_clock_uncertainty assignments. 
 -add - Adds derived uncertainty to any uncertainties explicitly added by the user. 
 -overwrite - Overwrites the user's uncertainty, independent of order. 
 
 In most designs the user does not need to manually enter any uncertainty, and so a single 
call to derive_clock_uncertainty is all that is needed. 
  

derive_clocks 
 
 Note: In TimeQuest, type "derive_clocks -long_help" for more information. 
 
 This is a shortcut command to quickly constrain incoming clocks without having to know 
what ports they come in on.  Under most circumstances, do not use this command.  The 
assignment derive_clocks applies a clock with create_clock to all unconstrained clocks in the 
device, except for PLL outputs.  Since only a single -period can be given for this option, it is not 
very useful if more than one clock period is coming into the device. 
 This command is not recommended, and used only for benchmarking small pieces of 
logic, where they user wants to constrain it without thinking about creating a .sdc file.  It could 
also be used for something simple like a CPLD or small FPGA that only has one clock, but 
writing a create_clock directly makes more sense. 

set_clock_groups 
 
 Note: In TimeQuest, type "set_clock_groups -long_help" for more information. 
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 By default, all clocks are related in TimeQuest, and so paths going between different 
clock domains will be analyzed with a setup and hold relationship, and the fitter will try to close 
timing on those paths.  Yet most designs have paths between unrelated clock domains.  The 
set_clock_groups command is an eloquent way to tell TimeQuest what clocks are not related, 
and thereby cut timing on those paths.  It basically creates groups of clocks, and any paths whose 
launch and latch clocks are in different groups will not be analyzed.  The syntax looks like so: 
 
set_clock_groups -asynchronous \ 
 -group { \ 
  adc_clk \ 
  the_adc_pll|altpll_component|auto_generated|pll1|clk[0] \ 
  the_adc_pll|altpll_component|auto_generated|pll1|clk[1] \ 
  the_adc_pll|altpll_component|auto_generated|pll1|clk[2] \ 
  } \ 
 -group { \ 
  sys_clk \ 
  the_system_pll|altpll_component|auto_generated|pll1|clk[0] \ 
  the_system_pll|altpll_component|auto_generated|pll1|clk[1] \ 
  }  
 -group { \ 
  the_system_pll|altpll_component|auto_generated|pll1|clk[2] \ 
  } 
 
 This looks complex at first glance, but the more I use it, the more I realize how elegant of 
a command it is.   For example, if I were to use set_false_path assignments to cut timing between 
each clock domain and try to mimic that above statement, it would take 38 individual 
assignments, which would be difficult to understand.  Instead, I can look at this command and 
quickly ascertain which clocks are related. 
 
 Notes: 
 - Each -group is a list of clocks that are related to each other 
 - There can be as many -group {} as the user wants. If they need fifty groups, that's fine.  
If entering the constraint through Edit -> Insert Constraint, it only has space for two groups, but 
this is only a limitation of that GUI.  Feel free to add more. 
 - User's look at the command and think it is grouping clocks, but TimeQuest relates all 
clocks by default so in essence, they're already in one big group.  This command is really cutting 
timing between clocks in different groups within a set_clock_groups command. 
 - Any clock not listed in the assignment keeps the default of being related to all clocks 
 - A clock can only be in one -group in a single set_clock_groups assignment 
 - A user can have multiple set_clock_groups assignments 
 - PLL clock names get long, and so this command is unreadable if all clocks are on a 
single line.  Instead, make use of the Tcl escape character "\".  By putting a space after your last 
character and then "\", the end-of-line character is escaped.  (And be careful not to have any 
whitespace after the escape character, or else it will escape the whitespace, not the return 
character). 
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 - For designs with complex clocking, writing this constraint can be an iterative process.  
For example, a design with two DDR3 cores and high-speed transceivers could easily have thirty 
or more clocks.  In those cases, I just add the clocks I create and whose relationships I 
understand into the set_clock_groups command.  Since clocks not in the command are still 
related to every clock, I am conservatively grouping what I know while leaving everything else 
related.  If there are still failing paths in the design between unrelated clock domains, I start 
adding in the new clock domains as necessary.  In this case, a large number of the clocks won't 
actually be in the set_clock_groups command, since they are either cut in the IP's .sdc file(like 
the ones generated by the DDR3 cores), or they only connect to clock domains they are related 
to. 
 - I generally leave virtual clocks created for I/O analysis out of this constraint.  The only 
clocks they connect to are real paths, so there is no need to cut their analysis to other clocks. 
 - The option after set_clock_groups is either -asynchronous or -exclusive.  The -
asynchronous flag means the clocks are both toggling, but asynchronously to each other.  The -
exclusive flag means the clocks do not toggle concurrently, and hence are mutually exclusive.  A 
good example of this might be a clock mux that has two generated clock assignments on it.  
Since only one can toggle at a time, these clocks are -exclusive.  TimeQuest will analyze your 
design identically for either flag.  This option is really used for ASICs, where SI issues like 
cross-talk between toggling clocks are analyzed.  The -asynchronous option means cross-talk can 
occur, while the -exclusive option means it cannot.  If going to Hardcopy, which uses ASIC 
analysis tools on the back-end, it is recommended to get this right.  For FPGAs it does not matter 
since the analysis is the same.  The more conservative value is -asynchronous, since this states 
the clocks can interfere with each other. 
 - If set_clock_groups has a single group, then the clocks in that group are implicitly cut 
from all other clocks in the design.  For example, the user could have: 
 
 set_clock_groups -asynchronous -group {clk_a clk_b} 
 set_clock_groups -asynchronous -group {clk_c clk_d} 
 
 The first command cuts clk_a and clk_b from all other clocks in the design, but clk_a and 
clk_b are still related.  The second command does the same for clk_c and clk_d.  This special 
syntax is not recommended because the cuts are implicit without detailing the other clocks.  This 
can lead to errors where users unintentionally cut timing between related clock domains. 
 - A quick tip for writing set_clock_groups can be found here. 
 

set_multicycle_path 
 
 Note: In TimeQuest, type "set_multicycle_path -long_help" for more information. 
 
 By default, all clocks are related in TimeQuest and hence a default setup and hold 
relationship will be found.  This default relationship is not always what the user wants, and 
multicycles allow the user to change this relationship.  The key point of multicycles is that they 
are still based on the clock edges, and the user is just specifying different edges.  For example, 
the following diagram shows the default relationship between two clocks, and the relationship 
after adding a multicycles setup of 2 and multicycles hold of 1: 
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 Since the changes are based on the clock edges, if the user changes their input clock 
period from 10ns to 8ns, the multicycles requirement will change with it, and hence the second 
waveform would automatically have a setup relationship of 16ns instead of 20ns.  I have seen 
designs with hundreds of multicycles, and with a single modification of their input clock period, 
all of their internal requirements are automatically updated.   
 How multicycles affect the default relationships are shown here.  Be aware that there are 
two common cases of multicycles, and most users get by with just understanding these two 
cases. 
 Multicycles can be between keepers, i.e. between registers, I/O ports, etc.  They can also 
be between clocks, in which case all transfers between those clock domains are affected by the 
multicycle.  For the two common cases, opening the window is usually done between keepers, 
and reflects that the behavior on that logic is different than the default relationship.  The second 
case, shifting the window, is usually done between clocks, since the default clock relationship is 
not the user's intent. 
 
 Options: 
 Most of the multicycle options control what paths the multicycles is applied to.  For 
example: 
  
 # Opens the window from halfrate_src to halfrate_dst 
 set_multicycle_path -setup -from *halfrate_src* -to *halfrate_dst* 2  
 set_multicycle_path -hold -from *halfrate_src* -to *halfrate_dst* 1  
  
 # Open the window to data driving flash device: 
 set_multicycle_path -setup -to [get_ports Flash_Data*] 4 
 set_multicycle_path -hold -to [get_ports Flash_Data*] 3 
 
 # Shifts the window for all transfers between clock domains a and b: 
 set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2 
 
 The above examples show different types of filters.  The first one is between registers in 
the design(and could have used get_registers or get_keepers, but I wanted to show an example 
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without it.)  The second example is a multicycle on all paths to an I/O bus, and the third example 
is between clocks, so that every path between these two domains gets multicycled. 
 
 -from/-rise_from/-fall_from - These options control the source.  -from is inclusive of all 
rising edge registers and falling edge registers, while -rise_from and -fall_from allow the user to 
only multicycle paths on registers that are clocked on the rising or falling edge.  If no option is 
specified, then all sources are allowed, i.e. "-from *" 
 
 -to/-rise_to/-fall_to - These work in a similar manner, where -to is inclusive, getting 
registers clocked on both the falling and rising edge, and -rise_to/-fall_to filter to registers that 
are clocked on the rising or falling edge.  If no option is specified, then all destinations are 
allowed, i.e. "-to *". 
 
 The <value> used for a multicycle refers to the edge count.  The default setup 
relationship is called the "1" edge, and the default for hold relationship is called the "0" edge.  As 
these values increase, the relationship gets looser, i.e. the setup relationship gets more positive 
and the hold relationship gets more negative.  This is all covered in more detail in the section on 
determining multicycle relationships. 
 -start/-end - This option determines which clock's period, the launch or latch, is used to 
modify the default relationship.  If no option is specified, the default is -end.  The following 
diagram shows the default setup relationship from a 5ns clock to 10ns clock.  (The line is drawn 
from 5ns to 10ns, but the setup relationship is the difference between these two values).   

 
 
 The middle waveform shows what happens when a multicycles -setup 2 is applied using -
start.  The "start" of the arrow is moved back one clock cycle, increasing the setup relationship 
by the period of the launch clock.  The third waveform shows what happens when -end is used.  
The end of the arrow is moved forward one clock period, increasing the setup relationship by one 
period of the destination clock.  The user should use whatever is appropriate to reflect how their 
design works. 
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 This option only matters if the period of the source clock is different than the destination 
clock.  If they're the same, the user gets the same result using -start or -end. 
 
 One last point is to show how multicycles affect the timing reports of report_timing.  The 
next example has clocks with a period of 6.666ns, but there is a multicycles -setup 2 applied to 
the paths: 

 
Red rectangles show everything that has changed due to this multicycles.  The Summary at the 
top now has a relationship of 13.332ns instead of 6.666ns  The Data Path tab on the bottom right 
has a launch edge time of 0ns and a latch edge time of 13.332ns.  The Waveform tab on the 
bottom left shows that the Latch edge is now the second rising edge, resulting in a Setup 
Relationship of 13.332ns.  The Waveform even shows the 6.666ns relationship if there were No 
Exceptions, i.e. no multicycles.  Finally, the Path Summary tab clearly states a Multicycle was 
applied: 

 
 

get_fanouts 
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set_max_delay/set_min_delay 
 
 Note: In TimeQuest, type "set_max_delay -long_help" or "set_min_delay -long_help" for 
more information. 
 
 These two constraints act as low-level overrides of the setup and hold relationships.  The 
constraint set_max_delay overrides the setup, while set_min_delay overrides the hold 
relationship.  Note that these constraints are not point-to-point requirements between registers, 
which is a common misperception, and clock skew is still used in calculating slack.  These 
constraints are similar to multicycles, but rather than being based on edges of the existing clock, 
they are based solely on the <value> entered by the user.  If a user applies a set_max_delay of 
8ns between two registers, the user can modify their source and/or destination clock properties in 
their SDC file, and it will have no affect on the slack calculation for that path.  
  
 Options: 
 -from/-rise_from/-fall_from - These options control the source.  -from is inclusive of all 
rising edge registers and falling edge registers, while -rise_from and -fall_from allow the user to 
only multicycle from registers clocked by the rising or falling edge.  If no option is specified, 
then all sources are allowed, i.e. "-from *" 
 
 -to/-rise_to/-fall_to - These work in a similar manner, where -to alone is inclusive, getting 
registers clocked on both the falling and rising edge, while -rise_to/-fall_to filter the multicycle 
to apply to destinations clocked by the rising or falling edge.  If no option is specified, then all 
destinations are allowed, i.e. "-to *". 
 
 <value> - This is the override value, in nanoseconds.   
 
 These values show up in report_timing in the same manner as multicycles.  The 
following example uses the same paths from the previous multicycle example but applied: 
 

set_max_delay 8.0 -from domain:inst4|inst -to domain:inst4|inst2 
 
 Running report_timing -setup shows the following: 
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 The setup Relationship is now 8.0ns, where on the previous example it was 13.332ns.  
The launch edge time becomes 0ns, and the latch edge time becomes the <value> entered of 8ns.  
The Waveform view on the bottom left is a good visualization, in that the launch and latch edge 
times are now independent of the clock waveform.   
 
 The set_max_delay and set_min_delay constraints have two dangers that users should be 
aware of, described here.  These constraints can also be used for device-centric I/O constraints, 
specifically Tsu, Th, Tco and Tpd constraints, which are described here.  

set_false_path 
 
 Note: In TimeQuest, type "set_false_path -long_help" for more information. 
 
 This command tells TimeQuest not to analyze a path or group of paths.  It can be between 
keepers(registers, I/Os, etc.) or between clocks.   When the constraint is applied to clocks, then 
all paths that are clocked by the respective clock will not be analyzed.   Three examples: 
 
# Cut timing from an input port to all of its destinations: 
set_false_path -from [get_ports reset_button] 
 
# Cut timing from a mode_select register, which is static in the design, to all of its destinations:  
set_false_path -from [get_keepers *|mode_select] 
 
# Cut timing from clk_a to clk_b: 
set_false_path -from [get_clocks clk_a] -to [get_clocks clk_b] 
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 The last example cuts timing on all paths where clock clk_a drives the source register and 
clock clk_b drives the destination register.  Note that transfers in the other direction have not 
been cut, and another set_false_path assignment would be necessary.  Cutting timing between 
clocks is often best accomplished with set_clock_groups. 

set_clock_uncertainty 
 
 Note: In TimeQuest, type "set_clock_uncertainty -long_help" for more information. 
 
 When clocks are created, they are ideal and have perfect edges.  This constraint is used to 
add uncertainty to those perfect edges, and mimic clock-level effects like jitter.  In general, most 
designs never use this constraint and rely on derive_clock_uncertainty, which models all internal 
clock effects for the user.  If a user does want to use this, I suggest they use the -add option, so 
their uncertainty is additive to that calculated by derive_clock_uncertainty. 

set_clock_uncertainy applied to a clock does not have its uncertainty propagate to 
generated clocks downstream.  The user needs to apply uncertainty to those clocks too, if that is 
how they want it analyzed. 

set_clock_latency 
 
 Note: In TimeQuest, run "set_clock_latency -long_help" for more information. 
 
 This is a cool command that models board-level clock delays, although admittedly, I 
seldom see it used.  The basic syntax looks like so: 
 
 set_clock_latency -source -late 1.234 sys_clk 
 set_clock_latency -source -early 1.1 sys_clk 
 
 With such constraints applied to a clock, TimeQuest knows the board-level clock delay to 
sys_clk can be as late as 1.234ns and as early as 1.1ns.  Where this is most useful is for I/O 
constraints, where the user can specify the clock latency to the FPGA clock port, as well as the 
clock latency to the virtual clock.  TimeQuest will use the correct value when doing setup and 
hold slack analysis.  For example, on an output port, it will use the late clock latency to the 
FPGA's clock and early clock latency to the external virtual clock.  This analyzes the worst case 
scenario where the data arrival path is as long as possible, and the data required path is as short 
as possible.  Likewise, for hold checks it will use the early value for the clock to the FPGA, and 
the late value for the delay to the external virtual clock. 
 The second use for set_clock_latency is on feedback clocks, where a clock goes out an 
FPGA port and then comes back.  This scenario would have a generated clock on the output port 
with -source from the clock driving it, and another generated clock on the input port, whose -
source would be the output port.  This input generated clock needs a set_clock_latency 
assignment to show the external delays from the output to the input.  
 One slightly annoying thing with set_clock_latency is that the -early and -late values are 
used for internal clocks, and then removed through common clock path pessimism.  For 
example, let's say a design had the following: 
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 set_clock_latency -source -early 1.0 adc_clk 
 set_clock_latency -source -late 7.0 adc_clk 
 
 Now, -early and -fall times would never really vary by that much, but I made them large 
for illustration purposes.  Let’s run report_timing -setup on a path inside the FPGA clocked by 
adc_clk.  Highlighted below, the source register gets the 7ns late latency and the destination 
register gets the 1ns early latency.  This is not what we want, as the clock does not really vary by 
6ns cycle to cycle within the FPGA.  Note later on, the clock pessimisim adds 6.014ns back to 
the path.  This completely accounts for the 6ns difference.  The extra 14ps is for pessimism 
inside the FPGA, and would have been there regardless of using set_clock_latency.  In the end, 
the set_clock_latency had no affect within the clock domain, and only has an affect when relating 
to other clocks with different latencies, which is how board-level clock latencies should work. 
The problem is that the math looks confusing in that it uses different latencies and then backs 
them out with clock pessimism. 

 

 
 

set_input_delay/set_output_delay 
 
 Note: In TimeQuest, type "set_input_delay -long_help" or "set_output_delay -long_help" 
for more information. 
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 These are the two dedicated commands for constraining I/O.  Personally, I find it better to 
not think of them as constraints at all.  Instead they describe a circuit outside of the FPGA and 
that circuit, coupled with the circuit inside the FPGA, creates a full setup and hold analysis.  The 
steps for creating these constraints are found in the Getting Started - I/O Timing section.  Please 
look at that section before using this constraint. 
 
 Options: 
 <target> - This is the port the constraint is applied to.  This means there is a register 
external to the FPGA connected to this port. 
 -clock - This is the clock driving this external register.  In almost all cases this clock 
should be a virtual clock.  The only major exception is for source-synchronous outputs, where 
the -clock should be the name of a create_generated_clock that is applied to the port driving out 
the clock. 
 -max/-min - This is the external delay to this external register.  The -max value affects the 
setup analysis, and the -min value affects the hold analysis.  As the -max value increases, the 
setup requirement gets tighter because the FPGA's internal delays must get smaller in order to 
meet the setup relationship between clocks.  Likewise, as the -min value decreases, the hold 
requirement gets tighter, because the FPGA must add more delay in order to meet the hold 
relationship between clocks.   This makes sense, as the difference between -max and -min grows, 
then a larger percentage of the data period is being used externally, and the FPGA’s delays must 
tighten. 
 -reference_pin - This option is for set_output_delay only, and meant to reference the 
output port that a clock goes out on, mainly for source-synchronous outputs.  After doing many 
of these interfaces, I recommend not using this option at all, and instead always putting a 
create_generated_clock assignment on the output port driving out the clock, and referencing that 
clock with the set_output_delay -clock option.  By putting a generated clock on the output and 
referencing that, the user can achieve identical analysis to the -reference_pin option, but can do a 
lot more if need be.  The ability to constrain source-synchronous outputs in two different way 
probably adds more confusion than helps, and so I just recommend against using -reference_pin.  
(Although if it is in your design and working, there is nothing explicitly wrong with this option). 
 -clock_fall - This option states that the external register is clocked on the falling edge of 
the clock.  This naturally affects the setup and hold relationships to clocks inside the FPGA.  
This option is most commonly used on double-data rate interfaces, where -add_delay is also 
used. 
 -add_delay - This option does not mean to add the delay from this constraint to any 
previous external delays.  In reality it means there is another external register connected to the 
port.   This is most commonly used with double-data rate interfaces, and often looks like so: 
 
set_input_delay -clock ext_clk -max 0.5 [get_ports {ddr_data[*]}] 
set_input_delay -clock ext_clk -min -0.5 [get_ports {ddr_data[*]}] 
set_input_delay -clock ext_clk -max 0.5 [get_ports {ddr_data[*]}] -clock_fall -add_delay 
set_input_delay -clock ext_clk -min -0.5 [get_ports {ddr_data[*]}]-clock_fall -add_delay 
 
 The values of 0.5 and -0.5 were chosen arbitrarily.  The above constraints basically state 
that each input port of bus ddr_data is driven by two external registers, one clocked by the rising 
edge of ext_clk(this is done in the first two lines) and one clocked by the falling edge(the last 
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two lines).  Without -add_delay on the last two lines, they would override the first two lines and 
a warning would be issued. 
 

 set_max_skew 
 
 Note: In TimeQuest, type "set_max_skew -long_help" for more information. 
  
 This is not a true SDC constraints, and was added to TimeQuest because it was 
commonly requested.  It must be used in conjunction with report_max_skew.  This command 
constrains the skew, and running report_max_skew in TimeQuest will give a report of everything 
that has been constrained.  (Quartus II 10.0 added a Task called Report Max Skew Summary that 
can easily be clicked on, rather than manually typing report_max_skew, but it only gives a 
summary.  Re-run the command with -detail set to full_path to get a detailed analysis).  There is 
also a reporting command called report_skew, which reports the skew on specified paths, but 
won’t actually constrain them during a compile.  That command is useful for experimenting with 
skew analysis, and when the user feels they have it right, using its parameters with 
set_max_skew. 
 Note that I have often been asked how to constrain the skew of something, and when I 
ask more, realize the user really wants regular setup and hold analysis.  Source synchronous 
interfaces are the common scenario, whereby the user claims they want to constrain the outputs 
to have a specific skew, when in reality they want to constrain their data in relation to the clock 
going off chip.   My point is that user's should look at the original SDC constraints before using 
set_max_skew. 
 Pretty much every real use I've seen involved inputs or outputs.  On inputs, it's usually a 
signal feeding multiple registers, all clocked by different phases of the same clock.  In essence 
it's an oversampling circuit, or a timing circuit(an edge comes in and the user is trying to time it 
as accurately as possible).  The command looks like: 
 
 set_max_skew -from [get_ports din] 0.5 
 
 Then in the analysis the user would run something like: 
 
 report_max_skew -npaths 20 -detail full_path -panel_name "Skew" 
 
 The second common case is when the user has multiple outputs they want aligned, and 
are not feeding a synchronous interface(if they are feeding anything synchronous, skew is not the 
correct command to use).  The constraint might look like: 
 

set_max_skew -to [get_ports led_data*] 0.5 
 
 Notes: 
 - The skew command is not just the datapath, but also includes the clock driving the 
launch and/or latch registers.  This can be modified with the -include/-exclude options. 
 - There are -include and -exclude options that give the user much control over what is 
calculated for skew.  Part of this is because there is not a consensus on how to report skew.  For 
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example, if the user is controlling skew on a single input being clocked by multiple registers at 
different phases of the same clock.  Should the capture register's micro-parameters of µTsu and 
µTh be included against the slack budget, whereby it would add in µTsu for the long path and 
subtract µTh for the short path, making the skew longer?  Now technically these micro-
parameters aren’t a difference in the data delay, but on the other hand if the inputs is 
asynchronous it will transition at times that violate these register's µTsu/µTh, causing it to go 
metastable.  Different scenarios deal with this in different ways, so it has been left up to the user.  
(And again, if the input isn't really asynchronous, the user should not be using the skew 
constraint). 
 - This is discussed in the fitter section, but note that the placer will not optimize for skew 
and will try to place all signals as close together as possible.  This can lead to a non-balanced 
placement whereby two destinations of an input port might be placed in the LAB next to the 
register and two other destination registers are placed a LAB over.  (The four registers can’t be 
placed in the same LAB because only two clocks can feed a LAB, and each register has its own 
clock)  It is the router that then adds delays and try to meet the skew requirements, but if the 
placement is non-balanced, routing delays may be too coarse and the results may not be good.  I 
generally suggest hand-placing the registers with LAB location assignments, getting a balanced 
placement that the router can then work with.   This is relatively easy to do and gets better results 
than relying completely on the fitter.   
 - The report can be a little confusing at first.  Below is a screen shot of the skew on an 
input feeding multiple registers: 
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 The Latest Arrival Path below shows the Data Arrival minus the Clock Arrival of the 
longest path to a register, resulting in 2.178ns.  The Earliest Arrival Path is the also Data Arrival 
minus Clock Arrival of this early path, resulting in 1.255ns.  The difference is 0.923ns, or the 
Actual Skew shown at the top.   
 - Calculated skews tend to be larger than most users expect.  This is because the skew 
calculation includes On-Die Variation(ODV).  Without ODV, which was not in device models 
before the 65nm node, skew values looked extremely small.  Without ODV, I have seen skew 
values reported to be less than 10ps.  This is unrealistic in hardware.  Likewise, I have seen 
Altera FPGA's skew compared to other FPGA's that do not model ODV, which makes Altera’s 
look bad, but ODV is a significant component of skew and must be taken into account for 
realistic analysis.  This is discussed in detail in the On-Die Variation section.   
 

Constraint Priority 
 
 There are three ways that constraints co-exist, and it's probably best to understand them 
in that context.  They are: 
 - Different constraints.  What if a multicycles and a false_path are applied to a constraint?  
Which one has priority? 
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 - Same constraint, different value.  What if a path gets multicycles -setup assignments 
from two different places?   
 - Multiple assignments applied to a node 

 Priority between Different Constraints 
 
 The basic hierarchy of different constraints from lowest priority to highest priority: 
 1)  create_clock and create_generated_clock 
 These constraints create clocks that drive registers, and as a result have a default setup 
and hold relationship.  
 2)  set_multicycle_path 
 This constraint tells TimeQuest that the default setup and hold relationship is incorrect, 
and the user wants a different relationship based on the clock edges. 
 3)  set_max_delay and set_min_delay 
 These constraints tell TimeQuest that the setup and hold relationships, whether 
determined by default or with multicycles, is incorrect, and the user wants the relationship to be 
an explicit value.  Note that set_max_delay overrides the setup relationship and set_min_delay 
overrides the hold relationship, which are two mutually exclusive analyses. 
 4)  set_false_path and set_clock_groups 
 These constraints tell TimeQuest not to analyze specific paths or clock transfers.  Once a 
path has been cut by either of these commands, there is no way to un-cut it, i.e. these constraints 
have the highest priority. 
  
 You may note that I did not discuss set_input_delay and set_output_delay.  This is 
because they are not really constraints in the classical sense, and instead describe a circuit 
outside of the FPGA.  As such, they work in conjunction with these other constraints.  For 
example, let's say I have a signal coming into the FPGA on port din, which goes through some 
combinatorial logic and out through dout.  To constrain it, I might do something like: 
 
 create_clock -period 20.0 -name ext_clk  
 set_input_delay -clock ext_clk -max 4.0 [get_ports din] 
 set_output_delay -clock ext_clk -max 7.0 [get_ports dout] 
 
 (Note that I did not do -min delays.  I am going to ignore hold time analysis for this 
example, but normally a design should have this too.)  Anyway, the set_input_delay and 
set_output_delay describe registers outside of the FPGA and states they are clocked by ext_clk.  
As such, there is a default setup relationship of 20ns when this clock is the source and 
destination.  This is the lowest priority.  Since 11ns of delay are used externally, the FPGA must 
get its signal from din to dout in 9ns. 
 A user could then add a multicycles if that is too tight of a requirement: 
 
 set_multicycle_path -setup 2 -from [get_ports din] -to [get_ports dout] 
 
 This multicycles has priority over the default clock relationship, and makes the setup 
relationship two clock periods, or 40ns.  Since 11ns are used externally, the FPGA must get its 
data from din to dout in 29ns.  If the .sdc also had: 
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 set_max_delay -from [get_ports din] -to [get_ports dout] 30.0  
 
 This set_max_delay would have priority over the default setup relationship and the 
multicycled relationship, making the new setup relationship 30ns.  Since 11ns are used 
externally, the FPGA must get its signal from din to dout in 19ns.  Finally, if the .sdc had: 
 
 set_false_path -from [get_ports din] -to [get_ports dout] 
 
 The path is now no longer analyzed.  This priority occurs independent of the order these 
commands are read in.  As you can see, the set_input_delay and set_output_delay commands 
really just complete the circuit, and hence work with all the other commands. 
 One final note is the special case when set_max_delay and set_min_delay are applied to 
an I/O port that has no set_input_delay or set_output_delay assignment.  As discussed, this 
special case will implicitly add a set_input_delay or set_output_delay constraint to the I/O with 
0ns external delay  and a clock called “n/a” behind the scenes.  This only occurs if the user does 
not have a set_input_delay or set_output_delay constraint anywhere in their .sdc files.  If they do, 
those constraints take priority over these implicit constraints. 
 

 Priority between Equal Constraints  
 
 This is when a path has two different multicycles assignments applied to it, or two 
different set_max_delay assignments.  These could be from two different .sdc files, or two 
different levels of assignments.  By levels, I mean a user might have the following two 
assignments in their .sdc files: 
 
 set_multicycle_path -setup -from top|domain1:inst_a|reg_a \ 
   -to top|domain1:inst_b|reg_b 4 
 set_multicycle_path -setup -from clk_a -to clk_b 2 
 
 If reg_a is clocked by clk_a, and reg_b is clocked by clk_b, then this would have two 
different assignments, one directly on the path and one between the clocks.  The priority is quite 
simple, it is whatever constraint is read in last.  Of course, knowing that may not always be so 
straightforward, and so it is recommended to run the task Report Exceptions.  This command 
goes through the user's exception in their .sdc file and writes a report on if they were completely 
followed, partially, or incomplete.   
 

 Priority between Multiple Assignments to the Same Node 
 
 This is different than exception priority, in that an actual attribute is assigned to the node.  
These assignments include: 
 
 create_clock 
 create_generated_clock 
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 set_input_delay 
 set_output_delay 
 
 All of these are applied to a node, and have different behavior.  If a create_clock or 
create_generated_clock apply a clock to a node that already has a clock on it from a previous 
call of these commands, then the second clock will not be added.  If the user wants multiple 
clocks on that node, then they should use the -add option for the second constraint. 
  Set_input_delay and set_output_delay assignments will overwrite any previous input or 
output constraints.   If the user wants multiple delay constraints on the port, then they should use 
the -add_delay option for the latter assignments.  Note that the -max and -min options are 
mutually exclusive and don’t require -add_delay.  A port feeding external DDR registers might 
have: 
 
set_output_delay -clock ext_clk -max 0.5 [get_ports {ddr_data[*]}] 
set_output_delay -clock ext_clk -min -0.5 [get_ports {ddr_data[*]}] 
set_output_delay -clock ext_clk -max 0.5 [get_ports {ddr_data[*]}] -clock_fall -add_delay 
set_output_delay -clock ext_clk -min -0.5 [get_ports {ddr_data[*]}]-clock_fall -add_delay 
 
 The first two lines are -max and -min, and since they are mutually exclusive(one affects 
setup analysis, the other is for hold analysis), there is no need for the -add_delay.  The last two 
constraints would override the first two if not for the -add_delay option. 
 Finally, for both clock and I/O constraint conflicts, TimeQuest will issue a warning if the 
user has multiple assignments that are not resolved with the -add or -add_delay option.  The 
warning for a second clock looks like so: 
 
Warning: Ignored create_clock: Incorrect assignment for clock.  Source node: adc_clk already 
has a clock(s) assigned to it.  Use the -add option to assign multiple clocks to this node.  Clock 
was not created or updated. 
  
The warning for a second input/output delay constraint without -add_delay looks like so: 
 
Warning: Assignment set_input_delay is accepted, but has the following problems: 
Set_input_delay/set_output_delay has replaced one or more delays on port "adc_din_100". 
Please use -add_delay option. 
 

 Priority between Derived Assignments and User Assignments 
 
 One common concern involves derive_pll_clocks and derive_clock_uncertainty, which 
are making create_generated_clock assignments and set_clock_uncertainty assignments for the 
user.  These are handled in different ways due to what they are doing.   The command 
derive_pll_clocks runs when it is immediately met, executing create_generated_clock 
assignments for each of the PLL output as if the user had them directly in their .sdc.  If any of the 
PLL outputs already had a generated clock assigned to them earlier in the .sdc files, the 
command will not add a new assignment.  If any generated clocks are applied to the PLL outputs 
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after derive_pll_clocks is called, the latter assignment is ignored with a warning, unless it has the 
-add option.   
 On the other hand, derive_clock_uncertainty’s individual calls of set_clock_uncertainty 
occur when the timing netlist is being updated, which is after all SDC files have been read in.  If 
the user has set_clock_uncertainty assignments elsewhere in their .sdc files, those assignments 
will have priority.  If the user’s set_clock_uncertainty assignments or the 
derive_clock_uncertainty assignment has the -add option, then the uncertainties will be additive. 
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Section 4: The TimeQuest GUI 
 
 This section is not meant to give details on every option in the TimeQuest GUI, but 
instead is meant to get the user familiar and comfortable with analyzing their design.  Because of 
that, the organization and recommendations will be based on how I use it.  There is certainly 
room for disagreement on many of these topics, but I want to give an opinion that new users can 
evaluate.  Starting off with an opinion… 
 

Entering SDC Constraints from the GUI 
  
 There are two ways to use the TimeQuest GUI for entering SDC constraints.  Method #1 
is directly from the main window’s Constraints pull-down: 
   

 
 I recommend that users do not do this.  It does not save the actual SDC constraint to a 
text file, so the user must go through extra steps to get the command into their .sdc file.  Users 
end up using the Write SDC command, which makes their .sdc machine-generated, and prevents 
users from getting the many benefits of a user-created .sdc file, including useful comments, 
variables, constraint ordering, wildcards, etc.  This method also applies the constraint directly to 
the database, which can cause difficulties in debugging priority issues.  For example, a constraint 
run this way may work because it was applied after a clock was created, but when the user adds 
the constraint to their .sdc file it stops working, because they added it before the clock gets 
created. 

The bottom line is this works as a quick method for testing a constraint by an expert user 
who is fully aware of what is occurring.  Too many beginner/intermediate users run into trouble 
with these pull-down menus and so I recommend avoiding them altogether.  Most importantly, 
there is another way to access these constraint dialogue boxes that is much, much better. 
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 Open your .sdc file in Quartus II or TimeQuest  Place the cursor where you want your 
constraint to be and go to Quartus II’s pull-down menu Edit -> Insert Constraint.  The exact same 
dialogue boxes are accessible and the constraint will be added, in plain text, to your .sdc file.  It 
is not executed until the user reads the .sdc back into TimeQuest.  This method is much easier to 
understand and really what the user should be doing.  Method #2 is entering constraints into the 
.sdc file from the Quartus II/TimeQuest editor’s Edit Insert Constraint: 

 
 
 Two quick notes on using the GUI for entering constraints: 

- The GUI menus do not show every option available for a constraint, only the most 
commonly used ones.  To see all options, type “command –help” in the TimeQuest 
GUI, e.g. “create_clock –help”.  Note that a user can point to a constraint in the .sdc 
editor and a tooltop will pop-up showing all the options. 

- The command dialogue boxes are good for new users, but I find most users quickly 
abandoning them and cutting-and-pasting commands directly in their .sdc.  The one 
great benefit of the dialogue boxes is the […] box that opens the Name Finder.  This 
lets the user enter a wildcard and see if it matches anything in the design database, 
avoiding name-matching mistakes.  This can be done from the main TimeQuest 
GUI’s View -> Name Finder, which copies the name matching command to the user’s 
clip-board, allowing the user to paste it into their .sdc. 
 

 Since this is about the options under TimeQuest’s Constraints pull-down menu, I will 
briefly touch on the options that are not constraints: 
 
 Generate SDC File from QSF - This command is for designers that have constrains 
from the Classic Timing Analyzer(TAN) stored in their .qsf, and want to convert them to an SDC 
file so they can use TimeQuest.  Note that this conversion is only a getting started point, and is 
not guaranteed to be 100% correct.  The Quartus II Handbook has a whole section on converting 
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to TimeQuest.  I have seen user’s who understand the Classic Timing Analyzer try to convert 
their designs without learning TimeQuest, and have a very difficult time.  I recommend learning 
TimeQuest up front, especially the Getting Started section of this guide.  If you understand what 
TimeQuest is doing, it is much easier to convert a design.  The other big issue I’ve seen is that 
the Classic Timing Analyzer allowed designers to constrain a design without understanding 
much about timing analysis.  It basically makes a lot of assumptions, which are right in most 
cases, but problematic when they are wrong.  Since users of the Classic Timing Analyzer often 
don’t understand these assumptions, they don’t really understand their original constraints and 
hence don’t understand how to convert them.  Again, learning TimeQuest and taking a more 
rigorous approach to static timing analysis is the recommended course of action. 
 
 Read SDC File… - This allows the user to select an .sdc file for TimeQuest to read in.  
This does not get used much because the user’s .sdc files have usually been added to the project 
and are automatically read in by the Task menu’s Read SDC File. This is covered in the next 
section.  If the user wants explicit control to read in SDC files, this is how to do it.  
 
 Write SDC File… - This command is useful to see all the applied constraints in a text 
file.  For example, the .sdc files created by Altera’s DDR IP are long, parameterized, and hence 
very difficult to read.  This command will write out a file showing all the constraints applied to a 
design.  It’s often too simplistic, in my opinion, but it’s a nice feature.  The one thing I do not 
recommend is to write out an .sdc that overwrites your own .sdc.  This command should only be 
used to write to a test file, and if there are any constraints the user wants out of it, they should 
copy and paste them into their own .sdc file.   
 
 Reset Design - This command takes TimeQuest back to the point where a timing netlist 
has been created but before any .sdc files have been read in.  It’s very useful for the iterative 
method of creating constraints, whereby the user edits their .sdc file, resets the design, and then 
reads in the modified .sdc file.  That being said, I usually access it from bottom of the Task menu 
on the left rather than the Constraints pull-down menu.
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 Getting Started - Timing Netlists and SDCs 
 
 There are three things TimeQuest must do before any analysis can be done: 

 
 Create Timing Netlist 

Read SDC 
Update Timing Netlist 

 
 They show up in the Tasks menu and will have 
a checkmark when completed.  Note that the user does 
not have to double-click them individually.  If they 
double-click on any report in the Tasks window, such 
as Report Setup Summary, then these 3 commands will 
automatically run.  That means they will: 
 - Create a timing netlist based on the slow 
timing model. 
 - Read in all the .sdc files that have been added 
to the Quartus project, listed under Assignments -> 
Settings -> Add Files or TimeQuest Timing Analyzer, 
as well as any SDC commands embedded in the design 
files. 
 - Update the timing netlist, which is really just 
applying the timing constraints to the netlist so it can 
now be analyzed. 
 
 That’s the default behavior for these three steps, 
but looking at them in more detail: 
 1)  Create Timing Netlist.  There are up to three 
timing models for an FPGA, which are explained here.   
When TimeQuest runs during a compilation, it will 
analyze the user’s design against all available timing 
models, but when analyzing a design in the TimeQuest 
GUI, the user can only analyze one timing model at a 
time.  Most setup and recovery failures are in the slow 
timing model, hold failures are in the fast timing model, 
and there is an occasional failure in just the slow 0° 
timing model.  
 The default is the slow timing model, since most 
failures occur in this model, but the user can go to the 
Netlist pull-down menu in TimeQuest and choose 
another timing model.  They can also create a timing 
netlist for another speed grade, or they can create a 
Post-Map Netlist, which is based on the synthesis of the 
design but without any placement.  (I would not use a 
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Post-Map Netlist for any serious timing analysis, but find this useful to edit an .sdc file and make 
sure it is doing what I want before running a full compile). 
 2)  The next step is to read in the .sdc files, as well as any SDC constraints embedded in 
the HDL.  The user can manually read in .sdc files from the pull-down menu Constraints -> Read 
SDC.  To read in .sdc commands embedded in the HDL, type “read_sdc -hdl”. 
 3)  Finally the design must be updated.  This is just applying all the SDC constraints to 
the physical database so that analysis can be done. 
 
 Notes: 
 - To start over, the user can go to the pull-down menu Netlist Delete Timing Netlist. 
 - To switch to a different netlist, the user can go to Netlist -> Set Operating Conditions, 
or access this command from the bottom of the Tasks menu. 
 - Finally, the task Reset Design is a great way to iteratively modify the .sdc commands 
and then re-analyze.  This iterative method was described in the Getting Started section. 
 

 Major Reports 
 
 After compiling a design, the one command in TimeQuest I always run first is the macro 
Report All Summaries.  This automatically runs the first three steps just shown as well as the five 
major reports: 
 

Report Setup Summary 
 
Report Hold Summary 

 
Report Recovery Summary 

 
Report Removal Summary 

  
Report Minimum Pulse Width 

 
Report Max Skew Summary 

  
(It also runs Report Clocks).   

 
 The first four summary reports show each domain in the design, their slack and Total 
Negative Slack.  Here is an example Setup Summary: 
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 As you can see, 12 clock domains are analyzed, where the worst slack is 0.770ns.   All 
paths are grouped by their latch clock, so if a path has a different source and destination clock, 
it’s the destination clock that it will be reported under for Summary reports.  The End Point TNS 
is Total Negative Slack, which is the sum of negative slacks for each endpoint(if there are 
multiple failing paths to an endpoint, only the worst slack will be used).  By itself I don’t find 
TNS very useful, but when comparing to previous compiles of the same design is there some 
benefit.  For example, Slack is always based on the single worst-case path in that domain, so if 
the user modifies code that is not the worst case path, the TNS may go up or down, signifying 
other paths got better or worse.  To be honest, I don’t find TNS all that beneficial though.  
 So why do I consider the Setup, Hold, Recovery and Removal Summaries the “Major 
Reports”?  It’s because they encapsulate every path in every domain that TimeQuest is analyzing 
and the fitter is trying to close timing on.  I’ve seen too often where a user only looks at the 
Fmax Summary, which only covers paths within a domain.  Or they might only run the Setup 
Summary, but have Recovery Paths that are failing and that the fitter is optimizing for at the 
expense of setup.  These reports are really “the big picture”, and hence it’s important that users 
start at this high-level approach that shows them everything, and then work their way down with 
the command report_timing, which will be analyzed shortly.   
 The Minimum Pulse Width Summary analyzes structures that are capped at certain delays 
or frequencies.  A good example is that a user might have a domain consisting of a single register 
feeding another register.  If the data delay and clock skew were 1ns, then the summary setup 
report would state that the clock could run at 1GHz.  The problem is device clock trees are 
capped at lower frequencies, as described in each device’s handbook.  So if the user tried to 
constrain this clock to 1GHz, it might pass the setup analysis but would fail the minimum pulse 
width check.  Besides clock trees, other examples of structures that are capped are memory 
blocks, DSP blocks and I/O ports.  All of these will show up in the Minimum Pulse Width check 
if the user tries to run them faster than they can handle.   Note that the fitter generally can’t do 
anything to improve Minimum Pulse Width checks, as it is a hard limit on a single portion of the 
device.  Generally the user needs to either select a faster speed grade when possible, or lower the 
clock rate.  The rate at which structures are capped should be in the device handbook. 
 The final report is Report Maximum Skew Summary.  Unlike the other major reports, this 
one won’t actually run in most designs because it only analyzes paths that have been constrained 
by set_max_skew.  Since the majority of designs do not use this constraint, the majority of 
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designs will not have this reported.  But any design that does have set_max_delay constraints, 
this is the final summary to state if they made timing or not. If the user wants more detail than 
the summary report, they can run: 
 

report_max_skew -detail full_path -panel_name "Detailed Max Skew" 
 

Device Specific Reports 
 These reports are device specific and design specific.  If your design does not use True 
LVDS blocks or Altera’s DDR PHY(altmemphy or UniPHY), then they are not generally not 
relevant.  If you are unsure if they apply to your design, simply double-click and see what 
happens.  If they apply to your design, you will get a report.  They will also be run in TimeQuest 
during a full compile, and any failures would show up there. 

Report TCCS 
This command reports Transmitter Channel-to-Channel Skew, which is only relevant on 

designs using True LVDS Transmitters.  These are created with the altlvds megafunction, and 
must use the dedicated LVDS silicon.  A full explanation of TCCS is given in each device’s 
specific handbook, so please refer to that for timing diagrams.  Here is an example TCCS report: 

 
 
There is not much to this report.  It doesn’t say what I/O it is referring to, although this 

should be known by the user based on what outputs use True LVDS.  The value is independent 
of timing model(a single value covers all models), and generally independent of device, package 
and speed grade within a family.  This value can also be pulled from the datasheet. 

The user does not need to enter any timing constraints on their True LVDS outputs, and if 
they do, those constraints will be ignored.  This report does not have any pass/fail mechanism, it 
just states a value.  Because of this, the user wants to make sure they get their clock/data 
relationship correct when setting up the altlvds block.  For example, the TCCS value is the same 
whether clock and data are sent edge-aligned or center-aligned, yet obviously a receiver can only 
handle one of those relationships.  I have never seen this be a problem, but think it’s worth 
clarifying. 

Report RSKM  
 The command reports Receiver Skew Margin, and is relevant on designs using True 

LVDS Receivers without Dynamic Phase Alignment (static timing analysis is not run on DPA, 
since that changes timing dynamically).  A full definition with timing diagrams of RSKM, RCCS 
and the Sampling Window is given in each family’s handbook.  Here is a sample report: 
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The report identifies which input ports it is analyzing, and makes use of input timing 

constraints, although in a minimal manner.  If the user applies set_input_delay -max and 
set_input_delay -min constraints on the inputs, the values are used to determine RCCS.  It takes 
the difference of the -max and -min values and applies that as the RCCS.  The above report did 
not have any input constraints, so the RCCS is 0.  After adding: 

 
set_input_delay -clock sys_clk -max 0.100 [get_ports din*] 
set_input_delay -clock sys_clk -min -0.050 [get_ports din*] 
 
The report now looks like so: 

 
  As can be seen, the RCCS went up by 150ps, which is the difference between the -max 
and -min values I applied.  Note that the independent -max and -min values do not matter, as this 
report only looks at the difference between them.  If I had entered a -max 10.150 and -min 
10.000, the difference would still be 150ps and I would have identical analysis.  As such, this 
report does not analyze how well the clock is centered in the data eye and assumes the user has 
taken care of that when creating the altlvds receiver.   
 Personally, I do not see most users entering constraints, and just looking at the raw 
RSKM value and determining on their own if that is good enough.  Since this value is a constant, 
this method works fine. 

Report DDR 
 This command runs a timing analysis for designs using Altera’s DDRx PHY, specifically 
the ALTMEMPHY or UniPHY.  This analysis makes use of .tcl and .sdc files written out by the 
cores during generation, and should exist in the user’s project directory.  This is all explained in 
detail in the DDR IP documentation. 

Report Metastability 
 I have to admit, I have not had a user concerned about metastability, and hence do not 
have real experience with these reports.  I am not sure why this hasn’t gained in popularity.  My 
guess is that user’s have gotten by this long without a good metastability analyzer, and hence feel 
it’s probably not important.  That’s a shame because one nice feature of metastability problems is 
that, once identified, they are usually very easy to fix, by adding a little more timing margin on 
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the synchronization path, or adding another synchronization register.  The difficulty with 
metastability has always been in identifying where it might be a problem in a real design.  
TimeQuest has the capabilities to do that analysis, giving Mean Time Between Failure(MTBF) 
values on individual synchronizers and across the entire design. 
 Note that MTBF analysis is not something you just turn on.  The user must assist 
TimeQuest to make sure it analyzes the correct synchronizing registers, and if they want, tell 
TimeQuest the toggle rate of the data.  (A reset signal may only toggle once a day, and hence is 
orders of magnitude less likely to suffer an MTBF failure than a data signal that is constantly 
changing).  This is all detailed in the Quartus II handbook.  Just search on www.altera.com for 
metastability, and select the Quartus II handbook link to Managing Metastability. 

report_timing - If you only know one command… 
 
 I break this command out into its own section because 99% of my design analysis is done 
with this command.  It really is the work-horse of TimeQuest and should be understood by every 
user.  For starters, I recommend typing the following in TimeQuest: 
 
 report_timing -long_help 
 
  

The report_timing dialogue box can be accessed from Report Timing.. in the Tasks menu 
on the left, or the pull-down menu Reports -> Custom Reports -> Report Timing.  Both of these 
methods will pull it up “empty”, whereby the user has to fill in what criteria they want to 
analyze.  More often than not, report_timing is accessed by right-clicking on an existing report 
and selecting Report Timing.  This uses report_timing as a diving tool, whereby they look at 
what domains are failing in the Summary reports and dive down with report_timing to get more 
detailed information. 

This command is so important it is covered in the Getting Started section.  Here are some 
more detailed notes on the command: 

 

TQ_Analysis.tcl 
 
When analyzing a project, I create a new Tcl file in my project directory called 

TQ_analysis.tcl.  When analyzing paths I may want to analyze again, I copy my report_timing 
command out of the TimeQuest console and into TQ_analysis.tcl.  This way I can access those 
commands in the future without having to go through the report_timing dialogue box.  The most 
common case is for I/O interfaces.  I might do something like: 

report_timing -setup -npaths 100 -detail full_path -to [get_ports txout*] -panel_name “s: 
* -> txout” 

report_timing -setup -npaths 100 -detail full_path -to [get_ports txout*] -panel_name “h: 
* -> txout” 

 
This two commands analyze setup and hold to the output bus tx_out*.  For inputs, I 

would use the -from option instead.  Often an even better filter for I/O is to use -from_clock or -

http://www.altera.com/�


105 
 

to_clock.  Since most I/O interfaces have a virtual clock created just for them, filtering on that 
clock automatically filters onto every I/O port associated with that clock. 

Once TQ_analysis.tcl has been saved in the project directory, it can be accessed in 
TimeQuest from the Scripts pull-down menu.  This allows easy access to analyze these specific 
paths anytime in the future without having to re-create the filters. 

When creating a TQ_analysis.tcl file, it is especially important to pay attention to the -
panel_name.  This option specifies the name used for that report in Reports section.  It often 
defaults to the generic name “Timing Report”, and the user should be careful to change this to 
something more descriptive or else multiple calls of report_timing will just over-write existing 
reports with the same name.  As a suggestion, I often start with what analysis is being done, 
using s: h: rec: rem: to represent setup, hold, recovery or removal.  Next I use some shorthand to 
specify the path: 

 
-panel_name “s: * -> *KeyRAM*” 
 
This tells me the report does setup analysis on all paths with *KeyRAM* as the 

destination.  This is my own syntax, and the designer should do whatever makes the most sense 
to them.  One thing that most users don’t know is that adding two pipe characters into their panel 
name will add hierarchy to their reports.  So if I have a bidirectional bus called pci address, there 
are 4 things to analyze, setup and hold going off chip and setup and hold coming into the chip.   
Taking these four analysese: 

  
report_timing -setup -npaths 100 -detail full_path -to [get_ports {pci_address[*]}] -

panel_name “PCI Address||s: * -> pci address” 
report_timing -hold -npaths 100 -detail full_path -to [get_ports  {pci_address[*]}] -

panel_name “PCI Address||h: * -> pci address” 
report_timing -setup -npaths 100 -detail full_path -from [get_ports {pci_address[*]}] -

panel_name “PCI Address||s: pci address -> *” 
report_timing -hold -npaths 100 -detail full_path -from [get_ports {pci_address[*]}] -

panel_name “PCI Address||h: pci address -> *” 
 
Running these commands after Report All 

Summaries creates a Report table as shown on the 
right. 

As can be seen, PCI Address is a folder that 
can be opened and closed, containing the four sub-
reports within it.  If your TQ_analysis.tcl script 
contains a lot of report_timing commands, this is a 
good way to help organize the results. 
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-false_path 
 The -false_path flag filters report_timing to only show paths that have been cut.  These 
false paths are created in the .sdc files by either set_false_path or set_clock_groups commands.  
This flag is an extremely useful tool to look for paths that have either been incorrectly cut or 
signals that go between asynchronous domains without correctly being synchronized.  This 
methodology is discussed in more detail in the Miscellaneous section Strategies for False Paths. 
 If the user forgets to constrain a clock, this option won’t report paths to that clock.  It 
only reports paths that have clock constraints and are then cut.  To find clocks that aren’t 
constrained to begin with, use Report Unconstrained Paths. 

Path Filters 
 First off, I would suggest avoiding the -through option.  This is not because it doesn’t 
work, but the -through implies combinatorial logic, and combinatorial logic naming is always 
subject to the vagaries of synthesis.  Endpoints are generally registers and I/O ports, which are 
much more reliable for matching the name in the original RTL.  I’m not saying the -through filter 
should never be used, just that it should be avoided if the same thing can be accomplished with -
from/-to. 
 The endpoint filters have many options.  There are a slew of -fall_* and -rise_* options 
that I never use.  These will limit your paths to only rising or falling edge transfers.  The more 
generic -from/-to and -from_clock/-to_clock cover both rising and falling edges, which is usually 
fine.  Users can filter on both clocks and endpoints, and only paths that meet both criteria will be 
reported.  If an endpoint or clock is not specified, then all clocks or endpoints are allowed.  So 
something generic like the following, which has no endpoint or clock filters, will list the worst 
500 failing paths in the design, regardless of clock or endpoint: 
 
 report_timing -setup -detail full_path -npaths 500 -pairs_only -panel_name “s: 500 worst 
paths” 
 
 Note that I used the option -pairs_only.  This option will limit the report to only 1 path 
between a pair of endpoints.  Paths with large blocks of combinatorial logic can have many 
different routes between the endpoints, where the user really only cares about the worst case one.  
This may reduce the size of a timing report to something more readable.  Note that -pairs_only is 
filtered during the display, so if 500 paths are found in the example above, -pairs_only most 
likely filter that to a smaller number. 
 Another good filter is -nworst #.  I often run with -nworst 1.  This will only show one 
path per destination and can reduce the number of failing paths reported by an order of 
magnitude.  This often provides a much easier to read snapshot of the failing paths in a design.  
Be careful though, as it limits the information shown.  For example, -nworst 1 might show only 
one path feeding a register, and that path might look like its placement was bad.  Without the 
option -nworst, report_timing might show hundreds of sources feeding that register, which 
would explain why the critical path is forced to be spread out. 
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Datasheet Reports 
 

Report Fmax 
 I am not a fan of this report.  Fmax is only reported within a clock domain, and is 
therefore based solely on paths where the launch and latch clock are the same.  Although the 
majority of paths meet this criterion, it is still a limited view of timing closure and a limited view 
of what the fitter is working on.  Any paths between clock domains that are being analyzed and 
worked on by the fitter will be ignored by these reports.   
 My biggest complaint with report Fmax is that many customers rely on it rather than 
Setup Summary.  When a design’s critical paths are within a domain, then the Fmax and Setup 
reports will match.  If the critical paths are between clock domains, those paths will show up in 
Setup Summary but not in the Fmax report.  The only way to verify this is to run Report Setup 
Summary.  Also, the Fmax report does not give detailed information on what paths it is using for 
analysis let alone what those paths look like.  My feeling is that the sooner a user understands 
their setup reports, the better off they’ll be and the sooner they’ll realize they don’t need the 
Fmax reports at all. 
 Report Fmax can be useful as long as the user understands it is only analyzing a subset of 
paths in the design.  Many people prefer to talk about clocks in term of Fmax rather than slack, 
and this allows a quick reference point.  That being said, it is generally not difficult to convert 
setup slack into Fmax.   

 

Report Datasheet 
 Report datasheet will report the timing on your I/O ports in a device-centric manner, i.e. 
it reports Setup and Hold times on your input ports, Clock to Output and Min Clock to Output 
Times on your output ports, and Propagation Delays and Minimum Propagation Delays for input 
to output port connections with no registers in between.  These reports have been requested so 
that users can describe their FPGA’s timing with a fixed number, much like a device datasheet.  
This is a useful request, but has some flaws. 
 First, these reports are based on a specific place-and-route.  If an output pin has a 
requirement that it get its data out in 6ns, and on a particular compile it is done in 5ns, Report 
Datasheet will say the Clock to Output is 5ns.  That may be correct, but if the design is re-fit, it’s 
possible the Clock to Output could get worse, up to 6ns, and there would not be any warnings or 
errors.  From that perspective, I believe it makes more sense that the FPGA’s I/O timing should 
be looked at based on its requirements, rather than the results of a single place-and-route. 
 Of course, I/O requirements are not made in a device-centric manner, which makes this 
more difficult.  In reality, once a user understands the basics of  I/O, it hopefully becomes clear 
how their requirements relate to these values.  A more thorough discussion on device-centric 
versus system-centric timing can be found here.  As can be seen, values like Tsu, Th and Tco 
make sense in many I/O cases, but there are a number of situations where they can’t do complete 
analysis(such as source-synchronous interfaces) and a number of timing effects that they can’t 
properly handle(like PLL phase-shifts and clock inversions). 
 The other issue I have with Report Datasheet is similar to my problem with Report Fmax, 
in that users rely on it to determine if their device met I/O timing.  There are two major problems 
with this.  First, Report Datasheet does not look at the user’s requirements and therefore has no 
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pass/fail mechanism.  Relying on this report for I/O timing would require the user to look at the 
numbers after EVERY compile and determine if they were good enough.  Just as importantly, 
these reports do not give detailed path analysis.  If the Clock to Output time on a port was 10ns 
but the user needed 8ns, there are no path details to tell them why their Clock to Output delay is 
so long.  The user must go to their setup and hold reports to get these delays, and they will only 
get them if they constrain their I/O. 
 Much like Report Fmax, Report Datasheet does have its uses.  Minimally they provide a 
quick glimpse of I/O timing.  For slow interfaces, users often won’t constrain them, and they 
may just occasionally look at these reports to make sure their values aren’t significantly off from 
what they expect.  It is important to note how this report deals with two major issues, clock 
inversion and PLL phase-shifts: 
 Clock inversion - The example I like to use with this is to think of a simple Clock to 
Ouput, where a clock comes into the FPGA and clocks data through an output register to the 
output port.  Let’s say the clock period is 20ns and after place-and-route, the Clock to Output is 
7ns.  Very straightforward.  Now let’s say everything is the same except the designer changes the 
output register so it is clocked on the falling edge.  The data will now come out shifted by a half-
period, 10ns, from when it was coming out before.  Should the Clock to Output time be -3ns, 
17ns, or 7ns?  None of these actually seem right? 
 The answer is 7ns.  So if two signals output ports were clocked on opposite edges of the 
clock, their data would come out at very different times, but their Clock to Output values would 
be the same.  Luckily, the Datasheet has a column called Clock Edge.  The following screenshot 
is from a design with an output bus called tx_out[7:0], where the upper four bits are clocked on 
the falling edge and the lower four bits on the rising edge.  As can be seen, they have similar 
Clock to Output Times, but the lower bits are labeled with Rise while the upper bits are labeled 
with Fall: 

 
 This column is easy to ignore, which is why it’s worth pointing out. 
 
 PLL Phase-shifts - The second issue with device-centric timing concerns PLL phase-
shifts.  Let’s start with the same example as above, whereby a clock with a 20ns period clocks 
data out and it takes 7ns.  Let’s say that it’s going through a PLL now, so the Clock to Output 
time is still 4ns.  (A PLL normally compensates for the clock tree delay and makes the Clock to 
Output timing better).  Now let’s start phase-shifting the PLL. 
 Let’s start with a small phase-shift, say +/-500ps shift, and the Clock to Output times 
become 3.5ns or 4.5ns, respectively.  This generally makes sense.  Large shifts tend to be where 
things get confusing.  If the user phase-shifts the clock +180 degrees of -180 degrees, the data 
will come out at the exact same time, but the +180 degree shift will give a Clock to Output time 
of 14ns and the -180 degree phase-shift will give a Clock to Output time of -6ns.  Having a 
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negative Clock to Output does not generally make sense.  In essence, it treats the phase-shift like 
a delay element on the clock path.   
 This is not like normal setup and hold analysis, where any user inserted phase-shift is not 
a delay, but actually effects the setup and hold relationships.  In normal setup and hold analaysis, 
clocks are periodic functions, where a +180 degree phase-shift will be analyzed the same way as 
a -180 degree phase-shift.  All in all, the way the Datasheet Report handles phase-shifts is how 
many users think, but it’s important to understand the differences between its report and the real 
analysis being done for setup and hold. 
 
 

Diagnostic 
 

report_clocks 
 
 This command is the only diagnostic report that runs as part of Report All Summaries.  
This report nicely tells what the clocks look like after everything has been read in, including .sdc 
files, and hence what TimeQuest is using for analysis.  This “view” can be much more 
straightforward of what’s going on, rather than digging through RTL for clock names, or into 
.sdc files from IP vendors to see what clocks are created.  It also clearly states the clock name, 
which can be cut and paste from for use in .sdc constraints or timing reports.    

 

report_clock_transfers 
 
 I’m a big fan of this command.  It gives an excellent report of how many paths exist 
between every pair of clocks, false paths included.  If there are no physical connections between 
two clocks, they won’t show up.   Here’s the report from a sample design: 
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 This report gets generated for setup, hold, recovery and removal.  I find Setup Transfers 
to be the most interesting.  Note that RR Paths refer to paths where both registers are clocked on 
the rising edge.  RF, FR and FF refer to different combinations of rise/fall clock transfers. 
 Finally, domains with false_path indicate that timing was cut between these clocks, either 
with a set_false_path between the clocks or in a set_clock_groups assignment.  If the clock 
transfer is not cut at the clock level but some individual paths are cut, the number of paths 
between those clocks will be reported and the false paths will be included in that number.  (E.g if 
there are 10 paths between two clocks, and 5 of them are cut with a set_false_path, this report 
will still state 10 paths exist.) 
 The user can right-click on any row and either do a Report Timing…, or Report False 
Path.  These two commands will explicitly show the paths between those domains, with the 
number of paths and detail level specified by the user.  Remember that Report False Path, which 
is just report_timing with the -false_path flag added to it, will only report paths that have been 
cut, either at the path level or at the clock level, so Report Timing and Report False Path will 
create a mutually exclusive list of all paths between those clocks made up of real paths and false 
paths. 
 Major domains that clock a lot of logic will have a LOT of paths listed, which is expected 
and not that useful of a number. Instead, it’s the domains that have a small number of transfers, 
usually less than 100, that I find interesting.  The first thing to ask is if the domains are related.  
If they are it’s not a big deal, it just means a small number of paths send synchronous data.  But 
if the clocks are asynchronous to each other and paths exist, is that expected?   Quite often it is, 
and the paths will be inside an asynchronous FIFO, or perhaps a clock adaptor bridge inside 
SOPC Builder.  But if the transfers are not expected, the user should investigate those paths and 
see if a mistake was made.  Debugging incorrect transfers between asynchronous clocks is 
difficult in simulation, and extremely difficult in hardware, so being able to identify them in 
other ways can be useful.  This is discussed more in the miscellaneous section on strategies for 
false paths.  
 There’s a quick trick for getting rid of the “false path” description in this report.  I will 
open my .sdc file and comment out the set_clock_group assignments, as well as any 
set_false_path assignments that are between clocks.  I will reset_design, and then double-click 
Report Clock Transfers.  This will read in the edited .sdc files that do not have any domains cut, 
and will report the number of paths between every domain.  It may be helpful to take a 
screenshot of the original report or put it in a text file to compare which domains are really cut 
with this new report that shows how many paths exist between all domains.   
 

Report Unconstrained Paths - report_ucp 
 
 This is an extremely important report, as it identifies unconstrained paths in the design.  
The most useful items it reports are unconstrained clocks and unconstrained I/O.   
 Unconstrained clocks start at the most basic, which is an input port that is used as a clock 
and does not have a clock constraint.  After that are generated clocks, such as PLL outputs and 
transceiver outputs, which are usually covered by derive_pll_clocks, but would be missed if 
you’re not using that command.  Finally, ripple clocks, which occur when a register’s output 
drives the .clk port of another register, need a create_generated_clock assignment or else they 
will show up as an unconstrained clock in this report.  The one thing that will not show up is a 
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gated clock, i.e. when clocks go through purely combinatorial logic such as a mux.  In these 
cases, the base clocks just pass through the structure, and hence it is not unconstrained, but could 
be constrained with a create_generated_clock at the mux output if the user wishes.  See the 
section on clock muxes for more detail.  
 The unconstrained clock report is useful first off for any clocks the user forgot to 
constrain.  If some clocks are unconstrained, they will be optimized for area during synthesis and 
the fitter will not try optimize paths within this domain.  The user may say that’s all right, as the 
domain may be very slow, but remember that hold violations can occur on the slowest of clock 
domains, i.e. 1Hz clocks can still fail a hold violation and still fail in hardware.  More 
importantly, transfers between this domain and other domains will not be analyzed, which is 
another source for failure. 
 The second big use for unconstrained clocks is when a clock shows up that the user 
thought they constrained.  The most likely scenario is from an error in the SDC file where their 
assignment did not take.  The user should re-examine their assignment, as well as go back to the 
TimeQuest messages to see if a warning was issued when the assignment was processed. 
 Besides clocks, I/O ports are the next major portion of this report.  Minimally, most users 
know they have not constrained all of their I/O, and hence this is a quick list of which I/O they 
missed.  A constrained I/O port has one of the following constraints on it, set_input_delay, 
set_output_delay, set_max_delay, set_min_delay, or set_false_path.  Note that output ports 
which send out a clock usually have a create_generated_clock assignment on them, but nothing 
else.  These outputs show up in the unconstrained path report, although the comment section 
nicely states that it does have a clock assignment. I generally leave output ports sending clocks 
as unconstrained, although this will annoy some users, and some designs have requirements that 
all I/O are constrained.  Adding a loose timing constraint would work around this:  
 

set_max_delay 200.0 -to [get_ports clkout] 
set_min_delay -200.0 -to [get_ports clkout] 

 
The clock output won’t be anywhere near those values, but these assignments will stop 

the port from showing up as unconstrained. 
 

report_sdc 
 

If your .sdc is straightforward, then this report won’t do much more than report out what 
you put in.  I find this most useful for complex constraints.  For example, if the user’s constraints 
are made of variables, it’s sometimes helpful to see the constraint at its most basic level.  For 
example, with an .sdc like so(I made up the values): 

 
# CPU Specs: 
set cpu_tco_max 6.123 
set cpu_tco_min 3.434 
 
# Board delays: 
set cpu2fpga_max 0.877 
set cpu2fgpa_min 0.488 
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set clk2cpu_max 1.455 
set clk2cpu_min 1.011 
set clk2fpga_max 1.505 
set clk2fpga_min 1.074 
 
# Equations for CPU to FPGA: 
set iMax_cpu [expr $clk2cpu_max + $cpu_tco_max + $cpu2fpga_max - $clk2fpga_min] 
set imin_cpu [expr $clk2cpu_min + $cpu_tco_min + $cpu2fpga_min - $clk2fpga_max] 
 
# FPGA’s inputs from CPU: 
set_input_delay -max -clock cpu_clk_ext $iMax_cpu [get_ports i_cpu_*] 
set_input_delay -min -clock cpu_clk_ext $imin_cpu [get_ports i_cpu_*] 

 
That makes for a nicely descriptive SDC file, with the benefit of auto-calculating new 

requirements if the user changes the board delays or parameters of the external device.  The only 
problem is that the final value isn’t apparent without doing the math by hand.  The user could 
add something like the following to their .sdc to echo the calculated value to the messages: 

 
puts “iMax_cp => $iMax_cpu \n imin_cpu => $imin_cpu” 
 
The problem is that you still have to find it in the messages.  Running report_sdc allows 

the user to quickly find: 

 
 Of course, the user could also run basic timing analysis on the path: 
  
report_timing -setup -detail full_path -from [get_ports i_cpu*] -panel_name “s: i_cpu*” 
report_timing -hold -detail full_path -from [get_ports i_cpu*] -panel_name “s: i_cpu*” 
 
 This will analyze the paths based on the constraints, and as discussed in correlating 
constraints to timing reports, the iExt delays would be 7.381ns in the setup report and 3.428ns in 
the hold report.   
 The report_sdc command is also useful if looking at constraints from an SDC created 
elsewhere, such as Altera’s DDR2/3 IP cores.  The user won’t hand-edit machine-generated SDC 
files, but can use report_sdc to see what constraints were added. 
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Report Ignored Constraints - “report_sdc -ignored” 
 
 Ignored constraints will always produce a warning in TimeQuest’s messages, which is 
useful, but often ignored by the user.  I find this panel very useful to manage ignored constraints 
and try to get them down to as few as possible. 
 Note that ignored constraints are not always a problem.  I have seen designs with various 
parameters that add/remove large sections of code depending on the build configuration.  That 
code might have a lot of assignments, say multicycles and false paths, which are ignored when 
that block of code is not in the design.  But unless the reason is well understood and accepted, 
ignored constraints should be cleaned up by the user.  I also think they should be taken care of 
early on, rather than as a final design clean-up.  The reason is that an ignored constraint often 
causes other problems that are difficult to debug. 
 A common example is when a user’s set_clock_groups command has errors and is 
ignored, whereby all their asynchronous clocks become related, analyzed, and fail timing.  The 
designer spends time analyzing a bunch of failing paths with impossible requirements, finally 
realizing they should not have been analyzed in the first place, and then going back to the 
TimeQuest messages to find why a constraint was ignored.  If the user checked this report first, 
the problem would have been found much more quickly. 
 A more serious situation is when a user has multicycles or false paths within a domain 
that are ignored.  The fitter might actually be able to close timing on those paths, so they don’t 
show up as failures, but because they compete with real paths, those real paths suddenly get less-
than-ideal placement.  Without looking at the Ignored Constraints report, the user may never 
know of this problem and spend days/weeks trying to optimize timing through other methods, 
always assuming their exceptions were working. 
 And be aware that exceptions which are working might stop working midway through a 
project.  One of the most common issues is when a hierarchy path changes, and hence the node 
names to everything beneath it have changed.  If the assignments use full path names, they will 
no longer take.  The hierarchy may change due another designer making a modification.  It might 
be due to a different naming convention for generate statements.  It may be due to regeneration 
of IP.  All of these might occur without the user thinking to check if their .sdc constraints are still 
valid. 
 Recommendation:  When possible, strive to get your design’s Ignored Constraints report 
as close to having no ignored constraints as possible.  The benefit is that if anything changes, 
new Ignored Constraints should be easily identifiable, and the user can fix the problem up front 
rather than debugging the secondary effects of an ignored constraint.   

check_timing 
 
 This report was created by the TimeQuest group to look for common mistakes they see.  
Some of them are covered in other reports, such as unconstrained clocks or I/Os, and some give 
warnings in the messages, such as the PLL cross-check.  These checks are not saying something 
is wrong, and if the user knows what they are doing there are many conditions where they would 
purposely design something that is flagged by check_timing.  These checks are mostly stating 
that the design is doing something uncommon, and so the user might want to verify what they are 
doing is correct. 
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 These checks are not documented very well.  When they flag a possible issue, they give a 
quick description of the problem which is often clear enough, but in a few scenarios can leave 
the user scratching their head.  I’ll try to address as many as I can: 
 
 
 Virtual_clock - This flag occurs when no virtual clocks are found, which is generally a 
bad thing, since they are the basis of I/O constraints and really the first step for creating 
set_input_delay and set_output_delay constraints, as described in the Getting Started section.   

This flag also occurs when a virtual clock is created, but not used in any constraints.  
Naturally if it’s never used, there isn’t any point in creating it, and so something may be wrong. 
 
 No Input Delay/No Output Delay - This check is not saying that the I/O are 
unconstrained, just that they don’t have a set_input_delay or set_output_delay assignment on 
them.  If they have a set_false_path assignment, then I consider that more than enough since 
you’re explicitly saying the I/O should not be constrained.  If the design has only set_max_delay 
and set_min_delay constraints, then it is not the official methodology for constraining I/O, but 
fine for users who understand what they’re doing.  A section on using these constraints for I/O is 
found here, while a section comparing the two methods is covered here. 
 I have found this check get flagged on True LVDS I/O, which generally do not need 
these constraints, as they get analyzed by Report TCCS and Report RSKM, or in the case of 
DPA Receivers, don’t get reported at all.  This is a case where the check needs to be analyzed by 
the user.  Yes, True LVDS ports might not have input/output delay constraints, but they are also 
not needed. 
 
 Generated_IO_delay - This check occurs when the user has a set_input_delay or 
set_output_delay assignment whose -clock option uses a clock internal to the FPGA.  The 
common scenario is when a new user enters the clock that drives the register inside the FPGA, 
such as the PLL that drives the input register: 
 
set_input_delay -clock the_adc_pll|altpll_component|auto_generated|pll1|clk[0] -max 4.0 \ 
[get_ports din*]  
 
 As highlighted in red, the user is specifying an internal PLL clock for their 
set_input_delay constraint.  New users often make this mistake and it is always wrong, since the 
analysis to the external register will use part of the FPGA’s clock tree up to the PLL output, but 
that’s it.  Please look at the I/O timing section in getting started to understand.    
 Note that the name is a little misleading, since there is one common case where generated 
clocks work for I/O constraints.  If the user has a create_generated_clock assignment on an 
output port to designate a clock being sent off chip, it is perfectly fine to use that clock for the     
-clock option of set_input_delay and set_output_delay constraints.  This will not be flagged by 
check timing either.  It is only when a set_input_delay or set_output_delay’s -clock option uses a 
generated clock from inside the FPGA, such as a PLL output or ripple clock, will this get 
checked. 
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 Partial Input/Output/MinMax Delay - These constraints usually come in pairs.  For 
example, if the user does the following constraint, they have only applied the max delay 
analysis(i.e. setup analysis): 
 
 set_input_delay -max -clock cpu_clk_ext 6.0 [get_ports cpu_data*] 
 
 To be complete, the user should have a matching set_input_delay -min constraint to make 
sure the path is not too fast, which will be checked during hold analysis.  This check occurs when 
a user has constrained a path, but only half of it. 
 Like many of the other checks, something getting flagged does not mean it is wrong.  A 
user may override the default setup relationship on a path with set_max_delay, but keep the 
default hold analysis.  This path would be flagged as only having a Partial Min-Max Delay 
constraint, which is true, but the user is all right with that since the min analysis done by the 
default hold relationship is what they want. 
 
 Partial Multicycle - This check occurs when a path has either a multicycle setup or hold, 
but not the other.  If the user is trying to open the window, then this check is very useful, as the 
path will have a positive hold requirement and the design may become unroutable as it adds 
delay to meet that requirement, where the necessary multicycle -hold would fix the problem.  If 
they are trying to shift the window, then the default hold relationship is all right and this check 
can be ignored.  To get rid of the check, the user could add a matching multicycle hold that 
mimics the default hold: 
 
 set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2 
 set_multicycle_path -hold -from [get_clocks clk_a] -to [get_clocks clk_b] 0 
 
 The first constraint shifts the window.  The second constraint is unnecessary since it 
mimics the default hold relationship, but it would prevent this timing check from being flagged. 
 
 PLL Cross Check - PLL’s are configured based on how they are instantiated in the 
design, not what the timing constraints say.  So if the user creates a PLL that has a 10ns input 
and creates a 5ns output, then physically the PLL will be configured for that.  But if the user 
applies a timing constraint stating the input is 8ns, and derive_pll_clocks says the output is 4ns, 
there will be a PLL Cross Check flag.  There will also be a warning in the messages. 
 The ability to have different settings is useful for a user who may want to run timing 
analysis at different rates without re-generating the PLL and creating a new image.  In the 
example above, they may be curious if they can meet an 8ns input if they move up a speed grade, 
so they would create_timing_netlist for the faster speed grade and modify the SDC for the faster 
requirement, and just run TimeQuest to see the results.  But if they are actually going to 
production, they need to regenerate the PLL with the new settings to ensure the correct 
bandwidth, VCO, and other internal settings are chosen for optimal performance. 
 
 Input Delay assigned to Clock - Clocks coming into the FPGA generally have a 
create_clock assignment, but do not have any set_input_delay assignments, which are for data 
inputs.  This check alerts they user they have put a set_input_delay constraint on a clock, which 
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is probably not what they want.  Usually this stems from using too broad of a wildcard for the 
port name and mistakenly matching the clock port. 
 

report_partitions 
 
 This command cycles through all the partitions and does timing analysis within a 
partition and between partitions.  It very nicely gives the user a sense of which partitions have 
the most difficulty, and if there are any inter-partition problems.   
 

Custom Reports 
 

Report Timing  
 This is the most important command for analyzing designs, and was covered at the 
beginning of this section. 
 

Report Minimum Pulse Width 
 This command is the analysis tool for diving into minimum pulse width failures.  These 
were described earlier in this section. 
 

Report False Path  
 This is report_timing with the flag -false_path added.  It is described here. 
 

Report Path/Report Net 
 Report_path does timing analysis on a path(between registers or I/O ports).  The clock 
delays to those endpoints are ignored, and there is no requirement.  Likewise report_net will 
report the delay of individual nets, independent of any requirements.  I have never found a good 
use for these, and more often than not find users going to these reports because they don’t 
understand setup and hold reports, and want to try to do an analysis on their own.  Minimally, 
these reports are missing vital information.  Clock skew is generally always important, and they 
do not model On-Die Variation because they do not know if you want the slow or fast sub-
models.  Generally I have not found anything these reports can do that report_timing could not 
do better.   

I would suggest the TimeQuest beginner concentrate on report_timing, since that shows 
the entire analysis that will drive the fitter and determine if the design passes timing.  One 
possible benefit is that these commands will run on paths without any timing constraints, while 
report_timing requires constraints.  I would argue that if the user is interested in the timing of a 
path, it probably needs a requirement. 
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Report Exceptions 
 
 The Report Exceptions analysis goes through all the exceptions in a user’s .sdc files, such 
as set_false_path, set_multicycle_path and set_max/min_delay, and reports the status of that 
constraint.  It determines if it matched any paths, if it was partially or completely overridden by 
another exception, and can report timing on paths covered by that exception.  I would suggest 
running “report_exceptions -long_help” to read the description, as well as running it, since 
that’s the best way to understand what it’s doing. 
 All-in-all it’s a very cool report, especially for a design with lots of exceptions that are 
hard to keep track of.  The downside is that it takes a long time to run on a design with a lot of 
exceptions, since each exception translates to a call of report_timing.  It also has a report on 
every single exception, which can be a lot of information.  Because of long run times and long 
reports to wade through, report_exceptions can be unwieldy for general purpose analysis, but can 
be very useful for the occasional clean-up analysis, or to be run on a specific portion of the 
design.   
 As a data point, I ran this on an EP4SGX230 design, 80% full that did not have any user 
created exceptions.  It took about 45 minutes to complete, and found almost 300 exceptions from 
the IP being used(QDR II, Altlvds, Asynchronous FIFOs).  So in this case, it’s an increase of 45 
minutes and the report isn’t overly helpful since all the exceptions are packaged in the IP, and 
hence not overly debuggable.  For example, a lot of exceptions from the QDRII core come up as 
partially overridden or invalid, but since the user did not write the core, they have to assume they 
are correct.  If a user has a hierarchy with a lot of user generated exceptions, it might be 
worthwhile to use the -to option to filter on that hierarchy.  
 

Report Skew and Report Max Skew 
 
 These constraints report skew.  Note that report_skew is a back-end tool for analyzing 
skew, in that the user specifies the endpoints they want to analyze.  It is not a constraint but a 
back-end reporting tool.  This is most useful for setting up an analysis, and then converting that 
analysis to a set_max_skew constraint in the .sdc file.  Once that is done, report_max_skew will 
report the skew on all set_max_skew constraints.   Skew constraints are discussed in more detail 
in the set_max_skew constraint section. 
 

Report Bottlenecks 
 
 Run “report_bottleneck -long_help” in TimeQuest to get more information.  I believe 
this command is similar to one in primetime, and used by ASIC designers to analyze timing 
problems.  The premise is that just looking at long lists of paths based on their endpoints can 
leave the designer looking at the wrong things.  Bottleneck is analysis of combinatorial nodes 
that have many critical paths going through them(with critical being defined by the -metric 
option).   

This can be useful when the endpoints might not look like a pattern, such as various 
control signals going through a cloud of logic and fanning out to multiple hierarchies, and so 
looking at critical paths based on endpoints may show many paths that seem unrelated, where 
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report_bottleneck would identify the bottleneck.  Even when the endpoints are common, if they 
go through multiple hierarchies, the bottleneck may not be apparent. 

Technically, this all sounds very good.  In practice, I have not had this report help me in 
identifying something I couldn’t determine from report_timing.  Just as importantly, having 
identified a critical combinatorial node, it can be difficult to relate that back to the RTL, and 
even more difficult to determine an actionable fix for the problem. 

The report_bottleneck command might be a useful tool for analyzing a design, but in 
general is probably not the first place to look. 

 

Create Slack Histogram 
 This command gives a histogram of all paths within a domain and what their slack is.  It’s 
a nice way to show thousands or paths quickly: 

 
 First note that the vertical axis is based on Edges, not paths.  An edge is a timing point in 
the design, generally a combinatorial or register output.  It makes for a good metric instead of 
paths, since a single long-hop could create thousands of failing paths, yet it’s really only one bad 
node placement. 
 I find this report somewhat interesting, but not very useful in determining next steps for 
timing closure or design optimization.  I tend to think this makes for a better marketing slide than 
for a true analysis tool.  One other thing to note is that the fitter concentrates on the worst case 
paths in a design.  Let’s take the slack histogram above and say the domain had a 1ns tighter 
requirement, so everything with a slack less than 1ns would be in red.  This would mean tens of 
thousands of thousands of edges would be failing.  But note that the fitter will really spend most 
of its time optimizing the most critical paths in a domain, since they determine its slack and how 
fast it can run, while other edges might get better timing if the fitter spent more time on them.  
By fixing the most critical paths in a design(a code change, a timing exception, etc.), the user 
might find less critical paths get fixed too.   
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Macros 
 Macros are essentially custom scripts that make use of existing commands.  They are not 
direct commands, but instead special calls.  For example, double-clicking Report All 
Summaries will actually run the following command within TimeQuest: 
 
qsta_utility::generate_all_summary_tables 
 
 Note that this can be run by the user and can be put into the user’s own Tcl analysis files.   

Report All Summaries 
 I recommend all new users run this macro, and discuss it in more detail at the beginning 
of this section.   
 

Report Top Failing Paths 
 A quick way to get the failing paths in all domains.  The major downside to this report is 
that it defaults to just summary details.  To get the full path details and analysis, the user must 
right-click on them and select Report Timing.  I find it easier to run Report All Summaries and 
then right-click Report Timing on the domain of interest, whereby I can set the -detail level to 
something more robust like path_only or full_path, and thereby get low-level details on each 
failing path.  Still, this macro delivers a nice snapshot of failing paths in the design. 
 

Report All I/O Timings 
 I/O constraints describe a register outside of the FPGA, so the I/O analysis are just 
register-to-register paths just like internal paths.  As such, they are reported with all the internal 
paths, which can be annoying for the user who wants the I/O broken out separately.  This macro 
nicely does that, but has the downside of only giving a summary report, whereby the user still 
has to right-click Report Timing on a given path to get more details.  
 This command will not report I/O that are not constrained. 
 Note that there is nothing overly special about this macro, and the user could do their 
own Tcl script to achieve similar results, allowing them to modify settings such as the number of 
paths, the detail level, or write out to a text file.  For example, the following does the same but all 
reports have -detail full_path. 
 
report_timing -setup -npaths 1000 -detail full_path -from [get_ports *] \ 

-panel_name “Report I/O Timing||Inputs to Registers (Setup)” 
report_timing -hold -npaths 1000 -detail full_path -from [get_ports *] \ 

-panel_name “Report I/O Timing||Inputs to Registers (Hold)” 
report_timing -recovery -npaths 1000 -detail full_path -from [get_ports *] \ 

-panel_name “Report I/O Timing||Inputs to Registers (Recovery)” 
report_timing -removal -npaths 1000 -detail full_path -from [get_ports *] \ 

-panel_name “Report I/O Timing||Inputs to Registers (Removal)” 
report_timing -setup -npaths 1000 -detail full_path -to [get_ports *] \ 

-panel_name “Report I/O Timing||Registers to Outputs (Setup)” 
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report_timing -hold -npaths 1000 -detail full_path -to [get_ports *] \ 
-panel_name “Report I/O Timing||Registers to Outputs (Hold)” 

report_timing -setup -npaths 1000 -detail full_path -from [get_ports *] -to [get_ports *] \ 
-panel_name “Report I/O Timing||Registers to Registers (Setup)” 

report_timing -hold -npaths 1000 -detail full_path -from [get_ports *] -to [get_ports *] \ 
-panel_name “Report I/O Timing||Registers to Registers (Hold)” 

 
 

 

Report All Core Timing 
 Similar to report_timing on a specific domain, except I/O paths are excluded.  As with 
the other macros, this only reports summary detail and the user must right-click Report Timing 
on a specific row to get details on that path. 
 

Create All Clock Histograms 
 This macro is a shortcut to create histograms for every clock domain, rather than using 
create_slack_histogram to make them one by one.  The pros and cons of histograms are 
discussed on the individual command. 
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Section 5: Timing Models 
 

Why Timing Models are Important 
 
 Most critical paths designers deal with are in the core of their FPGA, and usually within 
the same clock domain, which is using a global.  In such cases, users tend to ignore the clock 
delays and just analyze the data path.  With such an analysis, all they need to know is how slow 
the data path can be(setup analysis) and how fast the data path can be(hold analysis).  In such 
circumstances, we naturally want the timing models to be as accurate as possible, but if they’re 
too pessimistic, that’s all right.  Our design may not run as fast, but at least we know our design 
will work.   
 The basic parameters that affect these delays are Process, Voltage and Temperature, 
which will be referenced as PVT throughout.  Process accounts for the variation in different 
devices coming out of the FAB.  They are all tested and binned into speed grades, but still have 
variation over that process.  Voltage covers the fact that the voltage will vary over time, which 
directly causes the device to run faster or slower.  A higher voltage makes it run faster.  Finally 
there is Temperature, whereby a lower temperature makes the devices run faster.  Generally, 
these three variables are lumped together and considered as two data points, the slow timing 
model (what’s the slowest my design will run on the slowest device that met the speed grade, at 
the lowest voltage in spec and the highest temperature in spec) and the fast timing model(what’s 
the fastest my design will run on the fastest device, highest voltage and lowest temperature).  The 
general analysis is that, as long as the design passes timing under these two data points, it is 
ready to go. 
 That’s the “simple view” of static timing analysis.  Although accurate at a high level, 
there are many more issues at play. It might be worth reviewing the Basics of setup, hold, 
recovery and removal.  The important point to recognize is that timing analysis is not just how 
long or short a path it is.  Instead, it is the measure of the Data Arrival Path compared to the Data 
Required Path: 

 
 For setup analysis, we want the Launch Edge to get data to the dst_reg before the 

Latch Edge.  For hold analysis, we want it to get there after the Latch Edge.  As a result, we have 
two signals racing against each other, and don’t want to measure their extremes by themselves, 
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but want to measure them in relation to each other.  This is where the difficulties of dealing with 
real silicon come into play.  Even if the device was at the slow corner(worst process, high 
temperature, low voltage), not all paths within the device will actually be at that worst case 
delay.  For example, our data arrival may be at that slowest point, but our data required path may 
actually be running a little faster.  This could be due to localized variations in PVT within a 
single device, rise/fall variation in the transistors, PLL jitter, and a myriad of other issues that 
occur in silicon.  If we model the Data Required Path as if it were at the worst case corner, then 
we’re being optimistic compared to how real silicon behaves, and might pass static timing 
analysis while our device fail in the field.  For setup analysis, we really want the slowest Data 
Arrival Path compared to the fastest possible Data Required Path that could occur 
simultaneously.   

This is exacerbated in cases where the data arrival path and data required path have 
matching delays, such as inputs, where the data and clock path are often quite similar, or on 
source-synchronous outputs, where the user wants the clock and data delays to be aligned as 
close as possible: 

 
In these cases, the two signals race each other the whole way, and without accounting for 

these variations, we get inaccurate results.  An excellent example is when users just look at Tcos 
for a source-synchronous output.  The Tco is a spec for the worst case delay to the output 
without relation to anything else.   If the user compares the Tco of a clock and data leaving the 
FPGA, they might find them to be within tens of picoseconds of each other.  This is true, since 
that is the worst case possible delay for each path.  But when trying to see how different they can 
really be in hardware, all sorts of other phenomenon such as on-die Variation, temperature 
inversion, rise-fall variation, will make the variance much higher, possibly adding hundreds of 
picoseconds.   

Luckily TimeQuest has ways to account for all of these.  Let’s see how: 
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Timing Models 
 
 Historically there have always been two timing models for sign-off, a slow corner and a 
fast corner.  This is shown in the diagram on the left: 

 
 With two models, the assumption is that everything tracks between those two models in a 
similar manner.  For example, if a transistor is at the 50% point between the fast and slow 
models, than all transistors in the die are at 50%, all wires, etc.  The line between the Fast and 
Slow Corners does not have to be straight, it just has to be bounded by the Fast and Slow points, 
and all structures in the FPGA must move in unison.  The first point is true, in that the points at 
the Fast and Slow Corners are the extremes, but not all structures move between these points in 
unison.  This issue has been exacerbated by a process called temperature inversion, whereby 
delays can actually decrease with rising temperatures. 
 The end result is that a third timing model was added, called the “Slow 0° Corner”.  The 
graph above on the right shows two different paths between the Slow and Fast, whereby different 
structures take different routes between the Fast and Slow Data points.  (The graph’s only 
purpose is to show different paths are possible. I completely made up the magnitude and shape of 
the lines).  The important point is that, when comparing two paths, which is what static timing 
analysis does, structures may following different paths between the slow and fast corners.  The 
slow 0° model is meant to capture that analysis.  I have seen real designs that pass both the fast 
and slow corners, but fail in this middle model.  
 Analysis of this third model is done by default, but can be found under Quartus II’s pull-
down menu of Assignments -> Settings -> TimeQuest Timing Analyzer -> Enable Multi-Corner 
Timing Analysis During Compilation.  It can be studied in TimeQuest after Updating the Timing 
Netlist by going to the pull-down menu of Netlist -> Set Operating Conditions.  The results of all 
three timing models can be found in the Compilation Report under TimeQuest: 
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Uncertainty 
 The clocks described in a user’s .sdc are perfect, where their edges repeat down to the 
exact picoseconds.  In reality, clocks aren’t perfect for various reasons.  A big one is that PLLs 
can add jitter.  The set_clock_uncertainty constraint allows users to add uncertainty, but the user 
doesn’t know what uncertainty is inside the FPGA.  Luckily the derive_clock_uncertainty 
command will determine this uncertainty based on the user’s design.  In general, this is the only 
constraint necessary to cover clock uncertainty.   

Rise/Fall Variation 
 
 Transistors have different rise and fall times, which TimeQuest uses in its analysis.  Note 
that it’s not just rise and fall times, but the cell delays are based on what type of edge comes in 
and what kind of edge comes out.  This means there are 4 unique delays, RR, FF, RF, and FR, 
where the first letter is the edge coming in, and the second letter is the edge going out.  Here’s a 
screenshot from a timing report where the RF column is highlighted: 
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 Rise/fall differentiation is pretty straightforward by itself, but becomes much more 
complex when analyzing multiple rise/fall elements in a row, in which case unateness comes into 
play. 

Unateness 
 
 Rise/fall variation by itself creates delay values that are inaccurate.  For example, let’s 
say we had a chain of 3 AND gates followed by 3 OR gates, and wanted to determine the slowest 
delay through this structure.  (Yes, the FPGA fabric is really made of LUTs, but for this example 
I’m looking at logic as if it were gates).  Now let’s say the slowest delay through the AND gate 
is RR, i.e. rising in to rising out, and the slowest delay through the OR gate was FF.  If we 
summed each gate’s worst delay we would get a worst case total delay that is impossible.  The 
reason is that, if the AND gates have a RR edge propagating through them, there is no way for 
the OR gate to get a falling edge coming through them.  In reality, this structure only has two 
possible delays through it, all falling edges or all rising edges, but no combinations of RF or FR. 
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 Both an AND gate and OR gate are positive unate.  This means a rising edge in will 
always create a rising edge out, and a falling edge in will always create a falling edge out.  So 
only RR and FF models are necessary. 
 A NOT gate and NAND gate are negative unate, in which a falling edge in creates a 
rising edge out, and vice versa.   

An XOR gate is non-unate, in which case all combinations are possible.  
 
Potive unate = RR, FF 
 Example: AND gate, OR gate 
Negative unate = RF, FR 
 Examples: NAND gate, NOR gate, NOT gate 
Non-Unate = RR, FF, RF, FR   

Examples: XOR gate 
 

 The key to properly analyzing unateness is to determine what is possible through a 
circuit.  Let’s look at another series of gates: 

 
 
 I only showed valid delays for each gate.  The first AND gate, for example, is positive 
unate and can only be RR or FF.  From there, the arrows show the only possibly transitions, so 
the RR out of the first gate can only drive the RR of the next OR gate and cannot drive the FF.  
So if we wanted the slowest possible path, we would need to find the path that gives the longest 
delays.  Likewise, the same has to be done for the fastest possible path.   
 For clocks delays, the analysis is restricted by how the register is clocked.  If it’s clocked 
on the rising edge, then TimeQuest will only analyze paths that result in a rising edge at the 
register. 
 This can be confusing at first, but it’s important to note is that the user does not have to 
do anything for this, TimeQuest analyzes unateness behind the scenes and the correct edges are 
automatically used during timing analysis.  The only reason this is discussed is so the user 
understands what is going on under the hood. 
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On-Die Variation 
 On-Die Variation, or ODV, is the principle that all paths within a die do not track with 
each other exactly.  Note that this is not the same as the different timing models, which are used 
to analyze different macro-conditions, specifically process, voltage and temperature.  ODV 
occurs at a given timing model’s PVT, and measures the amount of variation that can occur at 
that macro point. I think of ODV as being a sub-timing model.  So when doing timing analysis at 
the Slow Corner, there is a fast and slow sub-model. All three corners have these sub-models.  
The best way to explain it is to show it: 

 
 Above we see report_timing run on the exact same path, the left side showing the -setup 
analysis and the right side showing the -hold analysis.  Both of these are taken at the slow corner.   
 Note that most data paths that go through multiple levels of logic have multiple paths 
between the same register.  When doing a setup analysis the slowest path shows up first, but 
when doing a hold analysis the shortest path shows up first.  That alone will cause vary different 
results.  In this particular case, there is only one path through a single LUT, so I am comparing 
the exact same path in both the setup and hold analysis. 
 For setup analysis, we want the slowest possible Data Arrival Path compared to the 
fastest possible Data Required Path.  For hold analysis, we want the exact opposite.  If you look 
at lines 7 and 8 of the Data Arrival Path, you find that the incremental delay on the left(setup) is 
slower and the delay on the right(hold).  This is because TimeQuest uses different sub-timing 
models.  For setup, the Data Arrival Path uses the Slow Corner, slow sub-timing model.  For 
hold, the Data Arrival Path uses the Slow Corner, fast sub-timing model.  This causes a 
difference of 100ps on this short path.   
 Note though that this is not all due to different sub-models.  TimeQuest is also choosing 
different rise/fall options, as we have already discussed.  The setup analysis chose FF, while the 
hold analysis chose RR.  That’s because the datapath will have both conditions traveling through 
it, and we want the worst possible case to make sure timing can be met. 
 On the other hand, the clock delays are only rising edge, since both registers are rising 
edge triggered.  So looking at line 3 of Data Arrival Path, the network delay is slower for setup 
analysis than for hold analysis.  This is purely from modeling On-Die Variation.  Similarly, on 
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the Data Required Path, the clock network delay is faster for setup analysis than for hold 
analysis.  ODV works in both directions, and so we must always choose the worst case model for 
our particular analysis.  (The fact that clocks can’t be both slow and fast will be covered in the 
next section, Common Clock Path Pessimism.) 
 Once again, this is all taken care of for the user underneath TimeQuest’s hood, and there 
is nothing they need to do.  The reason it’s worth knowing is to understand why timing numbers 
on the same path may look different under different analysis.  It also should help in the user’s 
confidence when doing timing analysis.   
 As already stated, On-Die Variation is a real phenomenon.  Without it, the timing models 
would be overly optimistic, and the hardware could fail on a design that passes static timing 
analysis.  But one thing TimeQuest does not do in its models is account for locality.  Two output 
ports right next to each other will have the same on-die variation in their analysis as two outputs 
on opposite sides of the device.  In reality, locality does play a factor that is not accounted for.  
Without it, the current models are overly pessimistic though, meaning if they pass timing the 
hardware will only work better, but it can make timing closure more difficult.  (The only place I 
have seen it be a problem is on source-synchronous outputs not using the True LVDS blocks, 
where ODV can make the timing seem quite bad, and in theory, accounting for locality could 
make them better.) 
 

Common Clock Path Pessimism 
 
 As just discussed, On-Die Variation makes use of a slow and fast sub-model within each 
major timing model.  This accounts for slight variations in the die, and is important since we are 
timing signals that race against each other.  But in many signals, part of the source clock delay 
and destination clock delay are identical, i.e. they are fed by the same clock, and until it splits, 
there can be no On-Die Variation.  Common Clock Path Pessimism removes any on-die variation 
for the common part of the clock.  Let’s look at a simple schematic: 
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 In this example, the clock comes into the FPGA, through a PLL, onto the global clock 
tree, and at some point splits in different directions, one path feeding the src_reg and the other 
path feeding the dst_reg.  Before the split, there is no on-die variation because it’s the same path, 
and a single path can’t vary from itself. 
 Setup and hold analysis will not see it this way.  For setup, the entire Data Arrival Path, 
which includes the source clock delay of green and red lines, will be analyzed completely in the 
slow sub-model, and the Data Required Path, which includes the destination clock delay of the 
green and blue lines, will be analyzed with the fast sub-model.  This can be shown in the 
following screen-shot: 
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  The left side shows the setup analysis and the right side shows the hold analysis 
of the same path with the clock path broken out in more detail using report_timing -detail 
full_path.  I highlighted a single cell delay, the input clock’s IO buffer, which is in row 6 for all 
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four sections.  Multiple lines have On-Die Variation for the common part of the clock tree.  Line 
14 of the Data Arrival Path there is a 291ps delay called clock pessimism.  This represents the 
clock pessimism between the two sub-models that is not real, and basically adds back in the 
difference.  Note that this 291ps is added to the Data Required Path, which makes it easier to 
meet setup timing, so common clock path pessimism removal is helping us close timing. 
 On the right side is the hold analysis, and you can see the numbers are reversed.  The 
faster sub-model is used for a delay of 748ps on the Data Arrival Path, and the slower sub-model 
delay of 753ps is used on the Data Required Path.  These differences occur throughout the clock 
tree, but line 14 subtracts 291ps of clock pessimism.  This helps us meet hold timing.  The 
bottom line is that common clock path pessimism always helps us meet timing, and hence is a 
good thing.  Without it, we would be overconstraining this path by 291ps on both setup and hold. 
 The clock pessimism is a single line item, so it doesn’t break out exactly where in the 
previous delays it is accounting for pessimism.  This is most apparent in the clock tree, which in 
this example is CLKCTRL_G11.  This global line has an IC delay of more than 1.4ns.  
Somewhere along that clock tree the clock will split, where part of it routes to the source register 
and part of it routes to the destination register.  Only the part that is common will be accounted 
for by common clock path pessimism, but where that split occurs is not shown.   (You could add 
do report_timing -show_routing to the path to get detailed routing info.) 
 In the end, there is nothing the user needs to analyze with common clock path pessimism 
removal, just make sure it’s on since it helps close timing.  It is on by default, and can be found 
under Assignments -> Settings -> TimeQuest Timing Analyzer.  It’s also useful to know why 
that line item is there, but there is really nothing the user has to do, as TimeQuest handles all the 
calculations. 
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Section 6: Quartus II and Timing Constriants 
 
 

Section 7:  Tcl Syntax for SDC and Analysis 
Scripts 
 
 

Section 8: Common Structures and Circuits 
 

PLLs 
 
Dedicated Output 
Clock Switchover 
 

Transceivers 
 

LVDS 
 

Memory Interfaces 
 

Clock Muxes 
 

Ripple Clocks 
 

Clock Enables 
 

Section 9: Examples 
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Section 10: Miscellaneous 
 

Strategies for False Paths 
 

Analyzing Paths 

Comparing set_input_delay/set_output_delay to Tsu/Th/Tco 
and min Tco 
 


	Section 1: Getting Started
	Quartus Setup
	Core Timing
	create_clock
	derive_pll_clocks
	derive_clock_uncertainty
	set_clock_groups
	Quick tip for writing set_clock_groups constraint


	I/O Timing
	Step 1) Use create_clock to add a virtual clock for the I/O interface
	Step 2)  Add set_input_delay or set_output_delay on the I/O port/s
	Step 3)  Determine the default setup and hold relationship between the FPGA clock and virtual clock
	Step 4)  Add multicycles
	Step 5) Modify the -max and -min delays to account for external delays.

	Analyzing Results
	The Iterative Methodology
	A diving tool
	report_timing
	Correlating Constraints to the Timing Report


	Section 2:  Timing Analysis Basics
	Basics of Setup, Hold, Recovery and Removal
	Default Relationships
	Determining Default Setup and Hold Relationships in Three Steps
	Points of Interest for Default Relationships
	Falling Edge Analysis
	Periodicity
	Relationships between Unrelated Clocks
	Phase-Shift Affect on Setup and Hold


	Multicycles
	Determining Multicycle Relationships in Five Steps
	Multicycles - Two Common Cases
	Case 1 - Opening the Window
	Case 2 - Shifting the Window


	Max and Min Delays
	The Dangers of set_max_delay and set_min_delay
	Using set_max_delay and set_min_delay for Tsu, Th, Tco, Min Tco and Tpd

	Recovery and Removal

	Section 3: SDC Constraints
	create_clock
	create_generated_clock
	How Generated Clocks are Analyzed

	derive_pll_clocks
	derive_clock_uncertainty
	derive_clocks
	set_clock_groups
	set_multicycle_path
	get_fanouts
	set_max_delay/set_min_delay
	set_false_path
	set_clock_uncertainty
	set_clock_latency
	set_input_delay/set_output_delay
	set_max_skew
	Constraint Priority
	Priority between Different Constraints
	Priority between Equal Constraints
	Priority between Multiple Assignments to the Same Node
	Priority between Derived Assignments and User Assignments


	Section 4: The TimeQuest GUI
	Entering SDC Constraints from the GUI
	Getting Started - Timing Netlists and SDCs
	Major Reports
	Device Specific Reports
	Report TCCS
	Report RSKM
	Report DDR
	Report Metastability

	report_timing - If you only know one command…
	TQ_Analysis.tcl
	-false_path
	Path Filters

	Datasheet Reports
	Report Fmax
	Report Datasheet

	Diagnostic
	report_clocks
	report_clock_transfers
	Report Unconstrained Paths - report_ucp
	report_sdc
	Report Ignored Constraints - “report_sdc -ignored”
	check_timing
	report_partitions

	Custom Reports
	Report Timing
	Report Minimum Pulse Width
	Report False Path
	Report Path/Report Net
	Report Exceptions
	Report Skew and Report Max Skew
	Report Bottlenecks
	Create Slack Histogram

	Macros
	Report All Summaries
	Report Top Failing Paths
	Report All I/O Timings
	Report All Core Timing
	Create All Clock Histograms


	Section 5: Timing Models
	Why Timing Models are Important
	Timing Models
	Uncertainty
	Rise/Fall Variation
	Unateness
	On-Die Variation
	Common Clock Path Pessimism

	Section 6: Quartus II and Timing Constriants
	Section 7:  Tcl Syntax for SDC and Analysis Scripts
	Section 8: Common Structures and Circuits
	PLLs
	Transceivers
	LVDS
	Memory Interfaces
	Clock Muxes
	Ripple Clocks
	Clock Enables

	Section 9: Examples
	Section 10: Miscellaneous
	Strategies for False Paths
	Analyzing Paths
	Comparing set_input_delay/set_output_delay to Tsu/Th/Tco and min Tco


