
SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 1/19

VHDL GUIDELINES FOR SYNTHESIS

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 2/19

BASICS

VHDL
VHDL (Very high speed integrated circuit Hardware Description Language) is a hardware description
language that allows a designer to model a circuit at different levels of abstraction, ranging from the gate
level, RTL (Register Transfer Level) level, behavioral level to the algorithmic level.
Thus a circuit can de described in many different ways, not all of which may be synthesizable.

SYNTHESIS
Synthesis is the process of constructing a gate level netlist from a model of a circuit described in VHDL.

LATCH VS. FLIP-FLOP
A latch is a storage element level triggered while a flip flop is a storage element edge triggered.
If not absolutely necessary avoid the use of latches.

generic
technology

VHDL
model

unoptimized
gate level netlist

Area and timing
constraints

Target
technology

optimized
gate level
netlist

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 3/19

MAPPING STATEMENTS TO GATES

BASIC STATEMENTS
� if statement

if a > b then
z := a;
else
 z := b;
end if;

If a signal or a variable is not assigned a value in all possible branches of an if statement, a latch is inferred.
If the intention is not to infer a latch, then the signal or variable must be assigned a value explicitly in all
branches of the statement.

� case statement

case opc is
 when add =>
 z <= a + b;
when sub =>
 z <= a - b;
when mul =>
 z <= a * b;
when div =>
 z <= a / b;
when others =>
 null;
end case;

If a signal or a variable is not assigned a value in all possible branches of a case statement, a latch is
inferred. If the intention is not to infer a latch, then the signal or variable must be assigned a value
explicitly in all branches of the statement.

� Null statements

A null statement means that no action is required.

� Loop statement

There are three kinds of loop statement in VHDL:

• while-loop
• for-loop
• loop

The only loop supported for synthesis is the for-loop.

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 4/19

� Wait statement

There are three forms of the wait statement:

wait for time;
wait until condition;
wait on signal-list;

The wait-until form is the only one supported for synthesis. If used the wait statement must be the first
statement and the only wait statement present in the process. Furthermore the condition in the wait
statement must be a clock expressions that indicates a falling or a rising clock edge.

wait until clock_name = clock_value;
wait until clock_name = clock_value and clock_name’event;
wait until clock_name = clock_value and not clock_name’stable;

Statements that follow a wait statement refer to a statement that executes synchronously with the clock
edge. A variable or a signal assigned a value following the wait statement is synthesized as a flip-flop.

architecture rtl of incr is
begin
 process
 begin
 wait until clk = ‘1’;
 count <= count + 1;
 end process;
end rtl;

Recommendation: avoid the use of wait statements for synthesis (see next section)

MODELING FLIP-FLOPS
We saw that it is possible to infer flip-flops from signals and variables when they are assigned values
within a process that contains a wait statement as the first statement. A better way is to use a special if
statement in a process. The syntax is of the form:

if clock expression then
 sequential-statements
end if;

where a clock-expression is one of the following:

clock_name = clock_value and clock_name’event;
clock_name = clock_value and not clock_name’stable;

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 5/19

Example:

library ieee
use ieee.std_logic_1164.all

entity cnt4 is
 port (clk, load, updown : in std_logic; -- clock
 value: in std_logic_vector(1 downto 0); -- value to be loaded
 dout: out std_logic_vector(1 downto 0)) -- data out
end cnt4;

architecture rtl of cnt4 is
 signal cnt: unsigned (1 downto 0);
begin
 process (clk,load,updown,value)
 begin
 if (clk = ‘1’ and clk’event) then
 if load = ‘1’ then
 cnt <= value;
 else
 if updown = ‘1’ then
 cnt <= cnt + 1;
 else
 cnt <= cnt –1;
 end if;
 end if;
 end if;
 dout <= cnt;
 end process;
end rtl;

The difference between the if statement style and the wait statement style is that in the if statement style
more than one clock can be modeled in a single process. More importantly, the description of
combinational logic and sequential logic can be lumped into one process, and the code is more readable.

Recommendation: DO NOT USE the wait statement in code that is going to be synthesized.

� Flip-Flops with asynchronous preset and reset.

if condition-1 then
 asynchronous-logic-1
elsif condition-2 then
 asynchronous-logic-2
– any number of elsif
…
elsif clock-expression then
.. synchronous-logic
end if;

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 6/19

Example:
…
async_registers: process (clk, preset, reset)
begin – async_registers
 if (preset = ‘1’) then
 ff <= ‘1’;
 elsif (reset = ‘1’) then
 ff <= ‘0’;
 elsif (clk=’1’ and clk’event) then
 ff <= ff_d;
 endif;
end process async_registers;
…

� Flip-Flops with synchronous preset and reset.

…
sync_registers: process (clk)
begin – sync_registers
 if (clk=’1’ and clk’event) then
 if (preset = ‘1’) then
 ff <= ‘1’;
 elsif (reset = ‘1’) then
 ff <= ‘0’;
 else
 ff <= ff_d;
 endif;
 endif;
end process sync_registers;
…

SEQUENTIAL SIGNAL ASSIGNMENT STATEMENT

Functions
A function call represents combinational logic.

Procedures
A procedure call can represent either combinational logic or sequential logic depending on the context
under which the procedure call occurs.

Generics
Generics provide a mechanism in VHDL to model parameterized designs.

library ieee
use ieee.std_logic-1164.all

entity generic_and is
 generic (size: integer);
 port (a: in std_logic_vector(0 to size-1); z: out std_logic);
end generic_and;

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 7/19

architecture example of generic_and is
begin
 process (a)
 variable res: std_logic;
 begin
 res := ‘1’;

 for k in a’range loop
 res := res and a(k);
 end loop;

 z <= res;
 end process;
end example;

The entity generic_and cannot be synthesized by itself since the value of size is not yet specified. Such an
entity is synthesized when it is instantiated within other entities.

Using predefined blocks
Component instantiation statements are used when a designer is not satisfied with the quality of circuits
produced by a synthesis tool.

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 8/19

MODEL OPTIMIZATIONS

Synthesize consist in minimize certain cost functions. The initial point of the optimization process is the
vhdl code. To get good quality designs (meet the expected timing and area goals) it is very important how
the code is written. If the quality of the code is poor the optimization process won’t converge towards the
expected results. In most cases if the synthesis tool has a hard time to converge on the desired result, rather
than increasing the tool optimization effort (with considerable increase of the run time), it is better to
rewrite the code.

RESOURCE ALLOCATION
Resource allocation refers to the process of sharing an operator under mutually exclusive conditions.

 if sel = ‘1’ then
 sum := a +b;
 else
 sum := c+d;
 end if

In timing critical designs, it may be better if no resource sharing is performed. Operators that are usually
shared are:

• relational operator (comparator)
• addition
• subtraction
• multiplication
• division

A CB D

SEL

SUM

A C B D

SEL

SUM

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 9/19

CONVERSION FUNCTIONS
Since conversion functions do not represent hardware, it is important to find out the built-in conversion
functions provided by a synthesis tool and only use these where necessary. In such cases, no extra logic is
synthesized for the conversion functions.

TYPE INTEGER
The VHDL predefined type INTEGER represent a minimum of 32bits in hardware (since the minimum
defined range of type integer is –(231 –1) to +(231– 1). In many modeling situations, it is not necessary to
model an integer as 32 bits.
The recommendation is to use the unbounded type integer only where necessary. In most of the cases, it
would be better to specify a range constraint with the type integer.

COMMON SUB-EXPRESSIONS
It’s very useful in practice to identify common sub-expressions and to reuse computed values where
possible.

…
run <= r1 + r2;
…
stop <= r3 – (r1 + r2);
…

If the synthesis tool doesn’t identify common sub-expression, two adders would be generated, each
computing the same result, that of r1 + r2.
Therefore it is useful to identify common sub-expression and to reuse the computed values.

…
tmp := r1 + r2;
…
run <= tmp;
…
stop <= r3 – tmp;

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 10/19

MOVING CODE

Typically a synthesis tool handles a for-loop by unrolling the loop the specified number of times. In such a
case, redundant code is introduced for the expression whose value is independent of the loop index.

hot :=
…
for count in 1 to 5 loop
…
 tip := hot – 6;
 -- assumption: hot is not assigned a new value within the loop
…

end loop;

The best way to handle this case is to move the loop independent expression out of the loop. This also
improves simulation efficiency.

hot := …
…
tmp := hot – 6; -- a temporary variable is introduced
for count in 1 to 5 loop
…
 tip := tmp;
 -- assumption: hot is not assigned a new value within the loop
…

end loop;

COMMON FACTORING
Common factoring is the extraction of common sub-expressions in mutually exclusive branches of an if or
a case statement.
By performing this common factoring, less logic is synthesized so that a logic optimizer may concentrate
on optimizing more critical areas.

COMMUTATIVITY AND ASSOCIATIVITY
In certain cases, it might necessary to perform commutative and/or associative operations.

val_a := a + b+ c;
val_b := c +a –b;

A better way to code may be:

tmp := c+a;
val_a := tmp +b;
val_b := tmp –b;

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 11/19

OTHER OPTIMIZATIONS
• Dead code elimination
• Constant folding

Dead code elimination deletes code that never gets executed.
Constant folding implies to compute constant expressions during compile time as opposed to implementing
logic and then letting a logic optimizer try getting rid of the logic.

constant fact: integer := 4;
…
z := 2** fact;

constant folding computes the value of the right-hand side expression during compile time and assign the
value to Z. No hardware need to be generated. This leads to savings in logic optimization time.

z := 2**4 -- worse solution than defining a constant.

DESIGN SIZE
Small designs synthesize faster. Synthesis run times are exponential with design size. A reasonable block
size is between 2000 and 5000 gates.

MACROS AS STRUCTURE
Synthesis is not the right mechanism to build a memory such as a ROM or a RAM. Those are usually
predefined in a technology library. When a component such as a RAM or a ROM is required, it is better to
treat this as a component, instantiate this in the code, and then synthesize.
Similar actions may be necessary if a designer has a statement of the form:
z := x*y; -- 16 bit arguments
and expect the synthesis tool to implement an efficient multiplier. The designer may have a better designed
multiplier. So, again in this case it is better to instantiate a multiplier as a component, rather than expressing
the multiplication operator.

USING PARENTHESIS
When writing VHDL the designer must be aware of the logic structure being generated. One important
point is the use of parenthesis. Here is an example:

z := a + b – c – d

 z

 d

c

a b

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 12/19

A better alternative is to use parenthesis:

z:= (a + b) – (c+d)

Recommendation: use parenthesis to control the structure of the synthesized logic.

z

 a b c d

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 13/19

VERIFICATION

Having synthesized a VHDL model into a netlist, it is important to verify the functionality of the
synthesized netlist to ensure it still matches the intended functionality.

A test bench is a model written in VHDL that applies stimulus, compares the output responses, and reports
any simulation mismatches.

SIGNALS VS. VARIABLES
If a signal is used instead of a variable to hold a temporary value in a set of sequential assignment (within a
process), simulation mismatches can occur.

process (clk)
begin
 if (clk = ‘1’ and clk’event) then
 zt <= a;
 end if;
 z <= zt
end process;

A mismatch will occur since changes to signal zt do not propagate to z at the same time.

Recommendation: check to see if there are any signals that are being assigned a value and then later on read
in to the process. To prevent mismatches, it is better to model such temporaries as variables.

DELAYS
Delays are ignored by synthesis tools. This may cause a mismatch in simulation results.

…
z <= ‘1’ after 3ns;
if cond then
 z <= ‘0’ after 5ns;
…

Recommendation: avoid inserting delays into a model that is to be synthesized.

RESOLUTION FUNCTIONS
A synthesis tool may treat a resolution function in a different way than expected.
Recommendation: avoid having two or more drivers for a signal, thus removing the need for a resolution
function.

vhdl
model

vhdl
structure

synthesis

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 14/19

SENSITIVITY LIST
A process with an incomplete sensitivity list causes simulation mismatches.
Recommendation: include all signals read in the process in the sensitivity list of the process.

INITIALIZATION
Synthesis tools ignore initial values specified for a variable or a signal in its declaration. This can cause a
mismatch in simulation results.

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 15/19

VHDL STYLE GUIDELINES

SIMPLIFIED OVERVIEW OF THE DESIGN METHODOLOGY:

• Specify system requirements in a document
• Design top-down using block capture tools
• Fill out and simulate the leaf VHDL modules using RTL code
• Start validating larger and larger chunks, bottom-up style
• Synthesize in parallel with validation
• Use synthesizer’s timing and gate count reports to judge synthesis results
• If needed, re-code VHDL
• Work on synthesis constraint files
• Simulate chips and system
• Run static timing analyzer on post-layout net-list
• Run system simulation regression on post layout net-list

PARTITIONING AN ASIC FOR SYNTHESIS: 2 GUIDING RULES
There are two important rules that a designer must keep in mind when blocking out a design for synthesis:

• Keep the leaf modules reasonably sized
• Limit the number of separate modules that a timing path can traverse

By limiting module size, a designer gains in both the synthesizer runtimes and the quality of the synthesis
results.

By limiting the number of separate modules that a timing path can traverse, a designer can improve
synthesis results in both timing and area. The synthesizer does much better on logic that is contained within
one entity. If a certain timing path travels though 4 separate modules, the synthesizer will make its best
effort within each of the modules, but the overall results won’t be as good as the case where the whole path
is in a single module.

Notice that there is a trade off between the two rules of partitioning. The synthesizer always does better on
smaller sized modules, however it also does better when all of a path’s logic is contained within one
module.

THINKING IN HARDWARE
Writing synthesizable RTL is not like writing software. RTL describes real hardware. RTL means “register
transfer level” – if registers aren’t clearly inferred, the code is not RTL.

The main idea of “thinking in hardware” is to always have a good idea of what the lines of code really
represent in terms of hardware. You must know it when you lay down an adder. You must be aware of the
cost of a magnitude comparator. You must be conscious of the relative timing of different signals with
respect to the clock edge. After writing a sequence of RTL, one should be able to sketch out a quick block
diagram of what the code physically represents.

Many traditional software design rules still apply to VHDL coding. Modularity, good style, good
comments, good test plan, and good design specs are all needed to successfully write a hardware
description.
Writing effective VHDL RTL is easy. Only a small subset of VHDL is really needed to build a chip.

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 16/19

reset
clk

RELATIVE SIGNAL TIMING
The most important part of thinking in hardware is perhaps to consider the concept of relative signal
timing. Writing RTL that does not take a signal’s timing into consideration is not useful. Signals may
stabilize at any point in the clock cycle. Different signals may have different maturity times depending on
how much combinational logic precedes them in the timing path.
VHDL take cares of gate-level complexity. It does not take care of gate level timing. It is especially easy to
make mistakes with signals arriving late from other VHDL modules. The designer must develop an
“intuition” that cannot do much with such a signal in the current clock cycle. Late arriving signals should
be run into a minimum of logic before a register stage.

DESCRIBING HARDWARE WITH VHDL PROCESS.
The fundamental unit of an RTL description is the VHDL “process”, When thinking in hardware, there are
two kinds of process: a combinational process and a register –instantiating process.
The combinational processes have sensitivity list that include all signals used in right-hand-side operations,
while registers-instantiating processes only have the clock and/or reset signal in their sensitivity list.

Note that the register processes may include some combinational logic, but all effects of that logic must end
up in the D-input of a register instantiated in the process. The inputs should not feed non-registered output
logic. If it did, the output logic wouldn’t simulate correctly, since its inputs are not in the process’s
sensitivity list.

VHDL
combinational
process
(all inputs in
sensitivity
list)

data inputs

control inputs

outputs

inputs

outputs

VHDL
register
process

(only clk
and reset in
sensitivity
list)

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 17/19

There are only 5 fundamental VHDL building blocks that need to be used inside processes:
1. If statement
2. For statement
3. Case statement
4. Signal assignment precedence
5. Use of variables for structuring

“if”, “for” and “case”
The VHDL “if” and “case” statements are used to build control logic for “multiplexer-like” structures. The
assignment operators (<=, :=) specify data inputs to the mux structures. The combinational process “control
inputs” are all built from the condition logic in VHDL if and case statement, while the data inputs are
derived from the right hand side of assignment operators. A very simple illustration of this idea is the
following 2 input mux statement.

 if (sel = ‘0’) then
 z<= a;
 else
 z<= b;
 end if;

Applying this case to the previous fig., sel is the only control input, and a and b are the data inputs while z
is the output.

SIGNAL ASSIGNMENT PRECEDENCE
VHDL signal assignment precedence, is useful for improving code readability and simplicity. The
precedence rule says “the last assignment made to a signal during process execution will override all
previous assignments”.
As an example, consider a controller:

 case (state) is
 when idle =>
 if (cond_a) then
 next_state <= state_a;
 end if;
 when state_a =>
 if (cond_a) then
 do_1 <= di_1;
 elsif (cond_b) then
 do_2 <= di_2;
 end if;
 …
 next_state <= state_b;
 …
 end case;

and suppose that the system has a shutdown signal that says to terminate all processing. It is easy to add
one to the if statement at the bottom of the process that accomplish the shutdown.

 if (cond_shutdown) then
 do_1 <= ‘0’;
 do_2 <= ‘0’;
 next_state <= idle;
 end if;

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 18/19

The alternative to this strategy would be to include “condition strategy” in many of the conditions of the
state machine’s case and if statements. VHDL signal assignment precedence provides a simpler solution,
and it usually makes the code easier to read.

USE OF VARIABLES FOR STRUCTURING
The last of the five important VHDL building blocks is the idea of using variables to help structure the
code. The synthesizer does what the code tells it to do. If the designer uses the expression (a+b) three
different places in the code, the synthesizer will allocate three adders when mapping the logic. The designer
can help the synthesizer map logic with the use of variables. To do this, a variable is usually assigned near
the top of a process, then it is used throughout the rest of the process whenever the variable’s result is
needed. Structuring can be done for all kind of resource-consuming logic: adders, comparators, complex
logical equations, etc.

SIEMENS semiconductor group Sophia-Antipolis, FRANCE

Claudio Talarico For internal use only 19/19

BIBLIOGRAPHY

Bhasker, J. - A VHDL synthesis primer - Star Galaxy Publishing - 1996
Perry D.L. - VHDL - McGraw Hill - 1993 - 2nd edition
Smith D.J. - HDL chip design - Doone Publications - 1996
Tanenbaum A.S. - Structured Computer organization - Prentice Hall - 1991 - 3rd edition.
Synopsys - RTL re-coding tricks for high performance design - 1997 -7th annual SNUG conference
Synopsys - VHDL coding guidelines for high performance - 1997
Warmke D.D.- Four white papers on VHDL design - 1993 - Integrated system design

