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(From the CS atom toward the 

differential pair atom) 
 

Should Change the “numbers” 
and the examples and use the 
180 nm technology 
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Voltage Biasing Considerations 

§  In addition to bias currents, building a complete analog circuit requires 
the generation of various bias voltages 

§  The CS stage is very sensitive to variations in its input bias voltage 
–  In the majority of practical cases CS circuits are embedded in 

feedback networks that regulate the input bias voltage to the proper 
value, therefore absorbing process variations and mismatch effects 
(CMFB)  

–  This complication typically does not exist for CG stages and CD 
stages 
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Assumptions so far …  

§  So far we have implicitly assumed 
–  We have nearly ideal current and voltage sources available to set up 

the transistors’ bias points 
–  Transistor parameters and supply voltage do not vary 

§  As we move toward the practical implementation of transistor stages we 
we must 
–  Focus on biasing schemes that are insensitive to variations 

commonly seen in IC technology 
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Overview 

Iref
»»

VDD VDD

VBIAS1

VBIAS2

Supply 
Independent 
Bias Circuit

VDD

Process, Voltage and Temperature Variations, Device mismatch 

Current Mirrors 

Biasing 
Considerations 

Supply 
Independent 
Bias Circuits 

source: R. Dutton, B. Murmann 
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Variations 

§  Process-Voltage-Temperature (PVT) variations 
–  global variations à they affect the devices on a chip uniformly 

§  Device mismatches 
–  Local variations à Typically follows Gaussian distribution 

§  Process Corners: slow, nominal fast 

§  PVT corners       
-  slow-slow   
-  nom-nom 
-  fast-fast 

NMOS PMOS 

µ ∝T −3/2 ⇔ T ↑ → µ ↓

I ∝V 2 ⇔ V ↑ → I ↑ [ more voltage = more current =  
  less time to charge/discharge caps. ] 

[ more temperature = more collisions =  
                                   less mobility ] 

slow = Pslow , V ↓, T ↑

fast = Pfast , V ↑, T ↓

nominal = P, V , T
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PVT Variations 

§  PROCESS 
–  Variations between production lots 
–  "Slow, Nominal and Fast" corners 

§  VOLTAGE 
–  VDD is usually specified only within ±10% 
–  E.g. VDD= 4.5…5.5 V 

§  TEMPERATURE 
–  Ambient temperature variations 
–  0…70°C (or −40…+125 °C)  

source: R. Dutton, B. Murmann 



            EE 303 – Voltage Biasing Considerations    7
       

Process Variations 

Parameter “Slow” “Nominal” “Fast” 
VT 0.65V 0.5V 0.35V 
µCox (NMOS) 40 µA/V2 50 µA/V2 60 µA/V2 

µCox (PMOS) 20 µA/V2 25 µA/V2 30 µA/V2 

Rpoly2 60Ω/□ 50Ω/□ 40Ω/□ 
Rnwell 1.4 kΩ/□ 1 kΩ/□ 0.6 kΩ/□ 
Cpoly-poly2 1.15 fF/µm2 1 fF/µm2 0.85 fF/µm2 

Wafer made yesterday 
All NMOS are “slow” 
All PMOS are “nominal” 
All R are nominal 
All C are “fast” 

Wafer made today 
All NMOS are “fast” 
All PMOS are “fast” 
All R are nominal 
All C are “slow” 

source: R. Dutton, B. Murmann 
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Temperature Coefficients 

Parameter Approximate TC 
VT -1.2 mV/°C 
µCox (NMOS) -0.33 %/°C 
µCox (PMOS) -0.33 %/°C 
Rpoly2 +0.2 %/°C 
Rnwell +1 %/°C 
Cpoly-poly2 -30 ppm/°C 

* The default temperature in Spice is 25 degrees Celsius 

* The following command sets the temperature to 100 degrees Celsius 

.temp 100 

Mostly due to  
the dependence  
on T of mobility 

Temperature expands  
and contracts dielectric  
thickness 

T ↓ ⇔ t ↓ ⇔ C ↑

Mostly due to the  
dependence on T  
of the surface  
potential ΦS  
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Aside: VT dependence on temperature 

 

§  Both VT0 and ΔVT depends on ΦS 

 

 

§  The dependence on temperature  
of ni is stronger than the linear  
dependence in the thermal voltage  
term (KT/q) 
–  As a result: for T ↑ ⇔ VT ↓

Source: Muller and Kamins 
VT =VT 0 + ΔVT =VT 0 + γ Φs −VBS − Φs( )

VT 0 ∝ΦS

The higher the doping Nbulk the more voltage is required to produce  
an inversion layer: Nbulk goes up à VT goes up  
If Cox = εox/tox is higher (= tox thinner) the less voltage is required  
to produce an inversion layer (Q=CV): Cox goes up à VT goes down 
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Voltage Biasing for a CS stage 

§  CS stage revisited 

§  Nominal conditions: KP=50µA/V2, VT0= 0.5V, TEMP=25°C 

§  Fast conditions: KP=60µA/V2, VT0= 0.35V, TEMP=−20°C 

vi

VI

Ri

“Transducer” Vo

VB

RIB
Example: 
 
VB = 2.5V  
VI = 1.394V 
IB = 500µA 
W/L = 20µm/1µm 
R = 5kΩ 
Ri = 50kΩ 

source: R. Dutton, B. Murmann 
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HSPICE .OP output 

*** .op output (fast, -20degC) 

element  0:mn1      

region       Linear 

  id       817.8268u 

  vgs        1.3940  

  vds      910.8661m 

  vth      402.0530m 

  vod      991.9470m 

  beta       1.6735m 

  gm         1.5243m 

  gds      210.6442u 

... 

*** .op output (nominal) 

element  0:mn1   

region     Saturati 

  id       499.6020u 

  vgs        1.3940  

  vds        2.5020  

  vth      500.0000m 

  vod      894.0000m 

  beta       1.2502m 

  gm         1.1177m 

  gds       39.9618u 

... 

source: R. Dutton, B. Murmann 
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The Problem with This Circuit 

§  Process and temperature variations cause large changes in VT and 
mobility (µ)
–  But VI is kept constant, causing large changes in ID, forcing the 

device into the triode region 

§  First cut idea 
–  Use another MOSFET to “compute” VI such that ID stays roughly 

constant and tracks process and temperature 
–  Note that the same “trick” is used in a current mirror  

source: R. Dutton, B. Murmann 
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First Cut Solution 

§  What we expect to see 
in simulation 
–  VI (=VGS1=VGS2) 

changes with process 
and temperature 

–  But ID1 and VO stay 
roughly constant 

M1

vi VoVI

IB IB

VB

R

M2
Ri

source: R. Dutton, B. Murmann 
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HSPICE .OP Output 

*** .op output (fast, -20degC) 

 element    0:m1       0:m2 

 region     Saturati   Saturati 

  id       548.8001u  500.0000u 

  vgs        1.1662     1.1662  

  vds        2.2560     1.1662  

  vth      402.0530m  402.0530m 

  beta       1.8798m    1.7127m 

  gm         1.4364m    1.3087m 

  gds       44.7781u   44.7781u 

... 

*** .op output (nominal) 

 element   0:m1       0:m2      

 region     Saturati   Saturati 

  id       538.2075u  500.0000u 

  vgs        1.4351     1.4351  

  vds        2.3090     1.4351  

  vth      500.0000m  500.0000m 

  beta       1.2309m    1.1435m 

  gm         1.1511m    1.0694m 

  gds       43.7248u   43.7248u 

... 
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Remaining Issue with first cut solution 

§  What if we do not have access to the “−” node of the input transducer? 
–  Consider e.g. a sensor or another amplifier that produces a ground 

referenced signal with “arbitrary” quiescent voltage    

IB

VB
5V

2.5V

Sensor

2.5V

source: R. Dutton, B. Murmann 
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Second Attempt: Replica Biasing with AC Coupling 

§  Issues 
–  Don’t like Rlarge, Clarge in 

integrated circuits 
–  Ri and Rlarge(+1/gm2) form 

a resistive divider 
•  Problematic if Ri is 

large M1
Vo

IB IB

VB

R

M2

vi

Ri

Rlarge

Clarge

VI

The signal comes  
from a sensor and  
it has some  
superimposed DC 
VI 

1/gm2 

We need Rlarge to  
avoid the signal  
to be shorted by  
1/gm2 

-  Clarge keeps the DC  
VI from reaching  
the gate of M1  

-  it also makes possible  
to do not waste DC  
power on Ri  
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Another Idea: Third Attempt 
§  Draw IB out of M1 source 

–  Quiescent point voltage at node X changes over process, 
temperature, but M1 current stays roughly constant (thanks to the M3-
M2 mirror) 
•  The DC voltage at the node G1 can move around without causing 

an issue as long as the moving around of VG1 is absorbed by VX 
(=VDS2) 

–  Make Clarge large enough to essentially provide a “short” to ground at 
minimum desired input frequency   

M1

Vo

IB

VB

R

VDD

M2M3

IB

Clarge

vi

Ri

VI

X

§  Issue: Don’t like Clarge … 
(but without we would kill  
the gain: 
 |AV| ~ gm1R/(1+g’m1ro2) 
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Yet Another Idea (A really good one): Forth Attempt 

§  Instead of AC shorting node X with a cap. why not use another MOSFET 
(M1*) to provide low impedance at node X. 

§  As before, circuit is insensitive to changes in VI and transistor VT 

–  No large caps or resistors needed to accomplish this! 

M1

Vo

IB
VB

R

VDD

M3

IB

vi

Ri

VI

X
M1' M1

R

1/gm1'

vo

Ri

vi

ac
 equivalent

M1* 

“recycle” VI to bias the gate of M1* 
Current source to keep the DC  
current through M1* roughly constant 

M1=M1* 
gm1’=gm1+gmb1 

AV ≅ − gm1
2
R

The price is we lost 0.5gm  
(Not too bad given the  
alternative: a circuit that  
doesn’t work ! ) 
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Comments on the “Improved CS” Solution 

§  The structure we arrived to “improve” the CS is so good that it has its 
own name: Differential Pair 

§  The Differential Pair main feature is to evaluate the difference between 
two voltages 
–  In our “improved CS” the two voltages are VI and VI+vi 

–  To first order changes in VI and process and temperature do not 
affect the output voltage 
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Differential Pair vs. “Improved CS” stage 

ITAIL

Id1

Vip

Id2

Vim

§  Differences: 
–  We do not necessarily need  

the second bottom transistor 

–  We usually put signal both at  
the gate of M1 and at the gate 
of M1* 

Differential Pair 

“Improved CS” 

M1* 

MTAIL 

IM1=IM1*=ITAIL/2 
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Voltage Biasing for a CG stage (1) 

§  Compared to a CS stage, setting up the bias voltage for the gate of a 
CG stage is usually less intricate 

Example 1 – Cascode Stage  

m = 5 à VDS1 = 1.45 VOV  

Isn’t this kind of a bad example ?  
The CG is easy to bias but the CS  
still has all its troubles ? Am I missing  
something ? Are the variations that upset  
M1 absorbed by M2 ? Should try to SPICE  
It I do not see it !! 

Source: B. Murmann Textbook p. 137 
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Voltage Biasing for a CG stage (2) 

Example 2 – CG stage interfacing a Photodiode Source: B. Murmann Textbook p. 137 

§  In this circuit the output swing  
is usually not very large, and  
thus the bias voltage VG2 is  
not tightly constrained by  
voltage swing requirements. 

§  Typically, VG2 is set such that 
the photodiode is biased at a  
suitable reverse bias. This is  
accomplished by sizing R1 and  
R2 properly. 

R1 and R2 are AC shorted (G2 is at AC ground)  
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Voltage Biasing for a CD stage (1) 

§  In a CD stage the  input and output voltage bias are directly coupled 

§  Proper voltage biasing in a CD stage boils down to making sure that the 
input and output bias voltages are compatible with the circuits that are 
connecting to. 

IB

vIN

VDD

vOUT
VGS = VTn + Vov

VIN

VOUT

Source: B. Murmann Textbook p. 138 
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Voltage Biasing for a CD stage (2) 

§  In some application, the shift between the input and output bias is 
undesired. In this case a p-MOS CD stage can be used to provide a 
shift in the opposite direction 

§  M1 can be sized such that the bias voltages VIN and VOUT are 
approximately the same 

When a CD is employed primarily  
to shift bias points the circuit is  
called a level shifter. Level shifters  
are generally useful to interface two  
stages that are otherwise incompatible  
in terms of their bias input/output  
voltages. 

IB2

VDD

vOUT
VOUT

vIN VTn+Vov2
VIN M1

IB1 M2

|VTp|+Vov1

Source: B. Murmann Textbook p. 139 
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The Challenge for Circuit Designers 

§  Making sure that the circuit is biased properly across all possible 
conditions 
–  And also maintain a set of performance specs (gain, bandwidth, 

power dissipation, …) in presence of parameter variations 

[source Razavi, p. 599] 
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Mismatch 

§  Upon closer inspection, device parameters not only vary from lot-to-lot 
or wafer-to-wafer, but there are also differences between closely 
spaced, nominally identical devices on the same chip (local variations) 
–  These differences are called mismatch  

M1 M2

C1 C2

VT1 −VT 2 = ΔVT

µCox
W
L

⎛
⎝⎜

⎞
⎠⎟ 1
− µCox

W
L

⎛
⎝⎜

⎞
⎠⎟ 2

= Δβ

C1 −C2 = ΔC

source: R. Dutton, B. Murmann 
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Statistical Model 

§  Experiments over the past decades have shown that mismatches in 
device parameters (ΔVT, ΔC, …) are typically “random” and well-
described by a Gaussian distribution 
–  With zero mean and a standard deviation that depends on the 

process and the size of the device 

§  Empirically, the standard deviation of the mismatch between two closely 
spaced devices can be modeled using the following expression 

WL
AX

X =σΔ

 where WL represents the area of the device, and X is the device 
parameter under consideration 

source: R. Dutton, B. Murmann 
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Example of Coefficients for 1 µm Technology 

Parameter Value 

AVt 20 mV-µm 

AΔβ/β 2 %-µm 

AΔC/C  (Poly-Poly2 capacitor) 2.5 %-µm 

AΔR/R   (Poly2 resistor) 10 %-µm 

source: R. Dutton, B. Murmann 
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Example 

§  Example: MOSFET with W= 20µm, L=1µm 

%.%mV.mV
tV

450
20
254

20
20

==σ==σ
β
βΔΔ

http://en.wikipedia.org/wiki/Image:Standard_deviation_diagram.svg 

%.

mV.
tV

3513

5133

=σ

=σ

β
βΔ

Δ

source: R. Dutton, B. Murmann 


