Voltage Biasing Considerations (From the CS atom toward the differential pair atom)

Claudio Talarico, Gonzaga University

Voltage Biasing Considerations

- In addition to bias currents, building a complete analog circuit requires the generation of various bias voltages
- The CS stage is very sensitive to variations in its input bias voltage
 - In the majority of practical cases CS circuits are embedded in feedback networks that regulate the input bias voltage to the proper value, therefore absorbing process variations and mismatch effects (CMFB)
 - This complication typically does not exist for CG stages and CD stages

Assumptions so far ...

- So far we have implicitly assumed
 - We have nearly ideal current and voltage sources available to set up the transistors' bias points
 - Transistor parameters and supply voltage do not vary
- As we move toward the <u>practical</u> implementation of transistor stages we we must
 - Focus on biasing schemes that are insensitive to variations commonly seen in IC technology

Overview

source: R. Dutton, B. Murmann

EE 303 – Voltage Biasing Considerations

Variations

- Process-Voltage-Temperature (PVT) variations
 - global variations \rightarrow they affect the devices on a chip uniformly
- Device mismatches
 - Local variations \rightarrow Typically follows Gaussian distribution
- Process Corners: slow, nominal fast

 $\mu \propto T^{-3/2} \Leftrightarrow T \uparrow \to \mu \downarrow$ $I \propto V^2 \quad \Leftrightarrow V \uparrow \to I \uparrow$

nominal =
$$P, V, T$$

slow = $P_{slow}, V \downarrow, T \uparrow$
fast = $P_{fast}, V \uparrow, T \downarrow$

[more temperature = more collisions = less mobility]

[more voltage = more current = less time to charge/discharge caps.]

PVT Variations

PROCESS

- Variations between production lots
- "Slow, Nominal and Fast" corners
- VOLTAGE
 - V_{DD} is usually specified only within ±10%
 - E.g. V_{DD}= 4.5...5.5 V
- TEMPERATURE
 - Ambient temperature variations
 - 0...70°C (or −40...+125 °C)

Process Variations

Wafer made yesterday All NMOS are "slow" All PMOS are "nominal" All R are nominal All C are "fast"

Wafer made today All NMOS are "fast" All PMOS are "fast" All R are nominal All C are "slow"

Parameter	"Slow"	"Nominal"	"Fast"
V _T	0.65V	0.5V	0.35V
μC_{ox} (NMOS)	40 μA/V ²	50 μA/V²	60 μA/V²
μC_{ox} (PMOS)	20 μΑ/V²	25 μΑ/V²	30 μA/V²
R _{poly2}	60 Ω/□	50 Ω/□	40 Ω/□
R _{nwell}	1.4 kΩ/□	1 kΩ/□	0.6 kΩ/□
C _{poly-poly2}	1.15 fF/μm²	1 fF/μm²	0.85 fF/μm²

Temperature Coefficients

* The default temperature in Spice is 25 degrees Celsius

* The following command sets the temperature to 100 degrees Celsius

.temp 100

EE 303 – Voltage Biasing Considerations

$$V_{T} = V_{T0} + \Delta V_{T} = V_{T0} + \gamma \left(\sqrt{\Phi_{s} - V_{BS}} - \sqrt{\Phi_{s}} \right)$$

• Both V_{T0} and ΔV_{T} depends on Φ_{S}

$$V_{T0} \propto \Phi_{S}$$

$$\Phi_{S} = \frac{2KT}{q} \ln \frac{N_{bulk}}{n_{i}} = Surface \ Potential = PHI$$

$$\gamma = \frac{\sqrt{2q\epsilon_{S}N_{bulk}}}{\epsilon_{ox}/t_{ox}} = Body \ Effect \ Coefficient = GAMMA$$

The higher the doping N_{bulk} the more voltage is required to produce
an inversion layer: N_{bulk} goes up $\Rightarrow V_{T}$ goes up
If $C_{ox} = \epsilon_{ox}/t_{ox}$ is higher (= t_{ox} thinner) the less voltage is required to produce
to produce an inversion layer (Q=CV): C_{ox} goes up $\Rightarrow V_{T}$ goes down

- The dependence on temperature of n_i is stronger than the linear dependence in the thermal voltage term (KT/q)
 - As a result: for $T \uparrow \Leftrightarrow V_T \downarrow$

FIGURE 2.10 The intrinsic carrier density n_i in silicon between 300 and 1200°C [10].

EE 303 – Voltage Biasing Considerations

CS stage revisited

- Nominal conditions: KP=50µA/V², VT0= 0.5V, TEMP=25°C
- Fast conditions: KP=60µA/V², VT0= 0.35V, TEMP=-20°C

HSPICE .OP output

*** .op	output (nominal)
element	0:mn1
region	<u>Saturati</u>
id	499.6020u
vgs	1.3940
vds	<u>2.5020</u>
vth	500.0000m
vod	894.0000m
beta	1.2502m
gm	1.1177m
gds	39.9618u

*** .op	output (fast,	-20degC)
element	0:mn1	
region	Linear	
id	817.8268u	
vgs	1.3940	
vds	<u>910.8661m</u>	
vth	402.0530m	
vod	991.9470m	
beta	1.6735m	
gm	1.5243m	
gds	210.6442u	

The Problem with This Circuit

- Process and temperature variations cause large changes in V_T and mobility (µ)
 - But V_1 is kept constant, causing large changes in I_D , forcing the device into the triode region
- First cut idea
 - Use another MOSFET to "compute" V_I such that I_D stays roughly constant and tracks process and temperature
 - Note that the same "trick" is used in a current mirror

First Cut Solution

- What we expect to see in simulation
 - V_I (=V_{GS1}=V_{GS2})
 changes with process and temperature
 - But I_{D1} and V_O stay roughly constant

HSPICE .OP Output

*** .op output (nominal)		
element	0:m1	0:m2
region	Saturati	Saturati
id	538.2075u	500.0000u
vgs	1.4351	1.4351
vds	2.3090	1.4351
vth	500.0000m	500.0000m
beta	1.2309m	1.1435m
gm	1.1511m	1.0694m
gds	43.7248u	43.7248u
•••		

*** .op (output (fast,	-20degC)	
element	0:m1	0:m2	
region	Saturati	Saturati	
id	548.8001u	500.0000u	
vgs	1.1662	1.1662	
vds	2.2560	1.1662	
vth	402.0530m	402.0530m	
beta	1.8798m	1.7127m	
gm	1.4364m	1.3087m	
gds	44.7781u	44.7781u	
•••			

Remaining Issue with first cut solution

- What if we do not have access to the "-" node of the input transducer?
 - Consider e.g. a sensor or another amplifier that produces a ground referenced signal with "arbitrary" quiescent voltage

Second Attempt: Replica Biasing with AC Coupling

Another Idea: Third Attempt

- Draw I_B out of M₁ source
 - Quiescent point voltage at node X changes over process, temperature, but M₁ current stays roughly constant (thanks to the M₃- M_2 mirror)
 - The DC voltage at the node G1 can move around without causing an issue as long as the moving around of V_{G1} is absorbed by V_X $(=V_{DS2})$
 - Make C_{large} large enough to essentially provide a "short" to ground at minimum desired input frequency

Issue: Don't like C_{large}... (but without we would kill the gain: $|A_{V}| \sim g_{m1} R / (1 + g'_{m1} r_{o2})$

EE 303 - Voltage Biasing Considerations

Yet Another Idea (A really good one): Forth Attempt

- Instead of AC shorting node X with a cap. why not use another MOSFET (M1*) to provide low impedance at node X.
- As before, circuit is insensitive to changes in $V_{\rm I}$ and transistor $V_{\rm T}$
 - No large caps or resistors needed to accomplish this!

EE 303 – Voltage Biasing Considerations

Comments on the "Improved CS" Solution

- The structure we arrived to "improve" the CS is so good that it has its own name: Differential Pair
- The Differential Pair main feature is to evaluate the difference between two voltages
 - In our "improved CS" the two voltages are V_1 and V_1+v_1
 - To first order changes in V_1 and process and temperature do not affect the output voltage

Differential Pair vs. "Improved CS" stage

- Differences:
 - We do not necessarily need the second bottom transistor

 $I_{M1} = I_{M1*} = I_{TAIL}/2$

 We usually put signal both at the gate of M1 and at the gate of M1*

Voltage Biasing for a CG stage (1)

 Compared to a CS stage, setting up the bias voltage for the gate of a CG stage is usually less intricate

Source: B. Murmann Textbook p. 137

Voltage Biasing for a CG stage (2)

<u>Example 2 – CG stage interfacing a Photodiode</u>

Source: B. Murmann Textbook p. 137

 R_1 and R_2 are AC shorted (G_2 is at AC ground)

- In this circuit the output swing is usually not very large, and thus the bias voltage V_{G2} is not tightly constrained by voltage swing requirements.
- Typically, V_{G2} is set such that the photodiode is biased at a suitable reverse bias. This is accomplished by sizing R₁ and R₂ properly.

Voltage Biasing for a CD stage (1)

- In a CD stage the input and output voltage bias are directly coupled
- Proper voltage biasing in a CD stage boils down to making sure that the input and output bias voltages are compatible with the circuits that are connecting to.

EE 303 - Voltage Biasing Considerations

Voltage Biasing for a CD stage (2)

- In some application, the shift between the input and output bias is undesired. In this case a p-MOS CD stage can be used to provide a shift in the opposite direction
- M₁ can be sized such that the bias voltages V_{IN} and V_{OUT} are approximately the same

Source: B. Murmann Textbook p. 139

EE 303 - Voltage Biasing Considerations

The Challenge for Circuit Designers

- Making sure that the circuit is biased properly across all possible conditions
 - And also maintain a set of performance specs (gain, bandwidth, power dissipation, ...) in presence of parameter variations

Mismatch

- Upon closer inspection, device parameters not only vary from lot-to-lot or wafer-to-wafer, but there are also differences between closely spaced, nominally identical devices on the same chip (local variations)
 - These differences are called mismatch

source: R. Dutton, B. Murmann

EE 303 – Voltage Biasing Considerations

Statistical Model

- Experiments over the past decades have shown that mismatches in device parameters (ΔV_T, ΔC, ...) are typically "random" and welldescribed by a Gaussian distribution
 - With zero mean and a standard deviation that depends on the process and the size of the device
- Empirically, the standard deviation of the mismatch between two closely spaced devices can be modeled using the following expression

$$\sigma_{\Delta X} = \frac{A_X}{\sqrt{WL}}$$

where WL represents the area of the device, and X is the device parameter under consideration

Example of Coefficients for 1 µm Technology

Parameter	Value	
A _{Vt}	20 mV-µm	
$A_{\Delta\beta/\beta}$	2 %-µm	
$A_{\Delta C/C}$ (Poly-Poly2 capacitor)	2.5 %-μm	
$A_{\Delta R/R}$ (Poly2 resistor)	10 %-μm	

Example

Example: MOSFET with W= 20μm, L=1μm

$$\sigma_{\Delta V_t} = \frac{20mV}{\sqrt{20}} = 4.5mV$$
 $\sigma_{\Delta \beta} = \frac{2\%}{\sqrt{20}} = 0.45\%$

http://en.wikipedia.org/wiki/Image:Standard_deviation_diagram.svg

source: R. Dutton, B. Murmann

EE 303 – Voltage Biasing Considerations