Common Drain Stage (Source Follower)

Claudio Talarico, Gonzaga University

Common Drain Stage

• Assume $V_B = V_{OUT}$, so $I_D = I_B$

$$V_{oUT} = V_{IN} - V_{GS}$$

$$V_{GS} = V_T + \sqrt{\frac{I_D}{0.5C_{oX}W/L}}$$

$$V_T = V_{T0} + \gamma \left(\sqrt{PHI + V_{OUT}} - \sqrt{PHI}\right)$$

$$V_{DS} = V_{DD} - V_{OUT} = V_{DD} - V_{IN} + V_{GS}$$

• For M₁ to be in saturation

$$V_{DS} > V_{OV} = V_{GS} + V_T$$

$$(1)$$

$$V_{DD} - V_{IN} + V_{GS} > V_{GS} + V_T$$

$$(1)$$

$$V_{IN} < V_{DD} + V_T \iff This is almost always the case in practical realizations$$

EE 303 – Common Drain Stage

I/O DC characteristic (1)

EE 303 - Common Drain Stage

I/O DC characteristic (2)

EE 303 – Common Drain Stage

Low Frequency Gain

$$a_{v0} = \frac{g_m}{g_m + \frac{1}{R_{Ltot}}} \qquad R_{Ltot} = R_L || \frac{1}{g_{mb}} || r_o$$

Interesting cases

 $a_{v0} = 1$

- Ideal current source; PMOS with source tied to body; no load resistor; $R_L = \infty$, $r_o = \infty$, $g_{mb} = 0$

- Ideal current source; NMOS; no load resistor; $R_{L} = \infty, r_{o} = \infty, g_{mb} \neq 0$ $a_{v0} = \frac{g_{m}}{g_{m} + g_{mb}}$ (typically ≈ 0.8)
 - Ideal current source, PMOS with source tied to body; load resistor $r_0 = \infty$, $g_{mb} = 0$, R_L finite g_m

EE 303 - Common Drain Stage

 $a_{v0} = \frac{g_m}{g_m + \frac{1}{R_L}}$

7

Low frequency input and output resistances

• $R_{out} = r_o || (1/g'_m)$

High Frequency Gain

 g_m

 R_{L}

p =

 g_m +

 R_{Ltot}

 $C_{gs} + C_{Ltot}$

|a|

EE 303 – Common Drain Stage

The presence of a

CD Input Impedance

By inspection:

Consistent with insight from Miller Theorem

$$Y_{in} = sC_{gd} + sC_{gs}\left(1 - a_{v}(s)\right)$$

- Gain term $a_v(s)$ is real and close to unity up to fairly high frequencies
- Hence, up to moderate frequencies, we see a capacitor looking into the input
 - A fairly small one, C_{gd} , plus a fraction of C_{gs}

CD input impedance for PMOS stage (with Body-source tie)

- g_{mb} generator inactive
 - Low frequency gain very close to unity $g_m r_o >> 1$ $a_{v0} = \frac{g_m}{g_m + \frac{1}{r_c}} \cong 1$
- Very small input capacitance

$$Y_{in} = sC_{gd} + sC_{gs} (1 - a_v(s))$$

$$Y_{in} \cong sC_{gd}$$
for a_v=1 (V_{out}=V_{in})
no current flows
through C_{gs}(perfect
bootstrap)

 The well-body capacitance C_{bsub} can be large and may significantly affect the 3-db bandwidth

CD Output Impedance (1)

- Let's first look at an analytically simple case
 - Input driven by ideal voltage source

Now include finite source resistance

EE 303 – Common Drain Stage

CD Output Impedance (3)

Equivalent Circuit for $R_i > 1/g_m$

- This circuit is prone to ringing!
 - L forms an LC tank with any capacitance at the output
 - If the circuit drives a large capacitance the response to step-like signals will result in ringing

Inclusion of Parasitic Input Capacitance*

What happens to the output impedance if we don't neglect $C_i = C_{ad}$?

Applications of the Common Drain Stage

- Level Shifter
- Voltage Buffer
- Load Device

Application 1: Level Shifter

- Output quiescent point is roughly V_t+V_{ov} lower than input quiescent point
- Adjusting the W/L ratio allows to "tune" Vov (= the desired shifting level)

Why is lowering the DC level useful ?

 When building cascades of CS and CG amplifiers, as we move along the DC level moves up

• A CD stage is a way to buffer the signal, and moving down the DC level

Application 2: Buffer

- Low frequency voltage gain of the above circuit is ~g_mR_{big}
 - Would be $\sim g_m(R_{small}||R_{big}) \sim g_m R_{small}$ without CD buffer stage
- Disadvantage - Reduced swing $\begin{bmatrix}
 V_{out}(\max) = V_{DD} - V_{OV1} \\
 V_{out}(\min) = V_{OV2}
 \end{bmatrix}$

EE 303 – Common Drain Stage

Buffer Design Considerations

- Without the buffer the minimum allowable value of V_x for M_x to remain in saturation is: V_x > V_{GSX} - V_{thx}
- With the buffer for M₂ to remain in sat. it must be:

 $V_X > V_{GS1} + V_{GS2} - V_{th2}$

Assuming the overdrive of M_x and M₂ are comparable this means that the allowable swing at X is reduced by V_{GS1} which is a significant amount (V_{GS1}=V_{OV1} +V_{th1})

Application 3: Load Device

Looks familiar ? CS stage with diode connected load"

$$a_{v0} = \frac{g_{m1}}{g_{m2} + g_{mb2}}$$

- Advantages compared to resistor load
 "Ratiometric"
 - Gain depends on ratio of similar parameters
 - Reduced process and temperature variations
 - First order cancellation of nonlinearities
- Disadvantage
 - Reduced swing

 $V_{out}(\max) = V_{DD} - V_{th2}$

$$V_{out}(\min) = V_{IN} - V_{th1} = V_{OV1}$$

- Several sources of nonlinearity
 - V_t is a function of V_o (NMOS, without S to B connection)

$$V_{t} = V_{t0} + \gamma \left(\sqrt{PHI + V_{o}} - \sqrt{PHI} \right)$$

- $~I_{\rm D}$ and thus $V_{\rm ov}$ changes with $V_{\rm o}$
 - Gets worse with small R_L

$$I_D = \frac{1}{2} \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_t \right)^2$$

If we worry about distortion we need to keep $\Delta V_{in}/2V_{OV}$ small (\rightarrow we need large V_{OV} , and this affect adversely signal swing). If R_L is small, things are even worse because to obtain the desired ΔV_{out} we need more ΔV_{in} (and so even more V_{OV})

- Reduced input and output voltage swing
 - Consider e.g. $V_{DD}=1V$, $V_t=0.3V$, $V_{OV}=0.2V$ ($V_{GS}=V_t+V_{ov}=0.5V$)
 - CD buffer stage consumes 50% of supply headroom!
 - In low V_{DD} applications that require large output swing, using a CD buffer is often not possible
 - CD buffers are more frequently used when the required swing is small
 - E.g. pre-amplifiers or LNAs that turn μV into mV at the output

Summary – Elementary Transistor Stages

- Common source
 - VCCS, makes a good voltage amplifier when terminated with a high impedance
- Common gate
 - Typically low input impedance, high output impedance
 - Can be used to improve the intrinsic voltage gain of a common source stage
 - "Cascode" stage
- Common drain
 - Typically high input impedance, low output impedance
 - Great for shifting the DC operating point of signals
 - Useful as a voltage buffer when swing and nonlinearity are not an issue

CD Voltage Transfer Revisited (1)

- This model resembles the model of the CS stage
 - The main difference is in the polarity of the controlled source
 - This difference has profound impact on the Miller amplification of the capacitance coupling input and output

CD Voltage Transfer Revisited (2)

$$\frac{v_{out}}{v_{s}} = a_{v0} \cdot \frac{1 + s \frac{C_{gs}}{g_{m}}}{1 + b_{1}s + b_{2}s^{2}}$$

$$a_{v0} = g_m R_{tot}$$

$$b_1 = R_s C_{gs} (1 - a_{v0}) + R_s C_{gd} + R_{tot} C_{gs} + R_{tot} C_{tot}$$

$$b_2 = R_s R_{tot} (C_{gs} C_{gd} + C_{gs} C_{tot} + C_{gd} C_{tot})$$

- The zero in the transfer function is on the LHP and it occurs at approximately ω_{T}
- Unfortunately the high frequency analysis can become quite involved. A dominant real pole does not always exist, in fact poles can be complex. In the case the poles are complex a designer should be careful that the circuit does not exhibit too much overshoot and ringing.

$$\frac{v_{out}}{v_s} = a_{v0} \cdot \frac{1 + s \frac{C_{gs}}{g_m}}{1 + b_1 s + b_2 s^2} = a_{v0} \cdot \frac{1 + s \frac{C_{gs}}{g_m}}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}}$$

Interesting cases:

- A dominant pole condition exist
$$\longrightarrow \omega_{3dB} \cong \frac{1}{b_1} \quad (b_1 = \sum \tau_j)$$

- Poles are complex

EE 303 – Common Drain Stage

Poles Location

Roots of the denominator of the transfer function:

$$1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} = 0$$

 Complex Conjugate poles (overshooting in step response)

for
$$Q > 0.5 \implies s_{1,2} = -\frac{\omega_0}{2Q} \left(1 \pm j\sqrt{4Q^2 - 1}\right)$$

- For Q = 0.707 (ϕ =45°), the -3dB frequency is ω_0 (Maximally Flat Magnitude or Butterworth Response)
- For Q > 0.707 the frequency response has peaking
- Real poles (no overshoot in the step response)

for
$$Q \le 0.5 \Rightarrow s_{1,2} = -\frac{\omega_0}{2Q} \left(1 \pm \sqrt{1 - 4Q^2}\right)$$

Carusone

Frequency Response

Step Response

- Ringing for Q > 0.5
- The case Q=0.5 is called maximally damped response (fastest settling without any overshoot)