Common Gate Stage Cascode Stage

Claudio Talarico, Gonzaga University

Common Gate Stage

Assume R_i is large: (very reasonable for a reverse biased photodiode)

$$I_{B} \cong I_{D} = \frac{1}{2} \mu C_{OX} \frac{W}{L} (V_{GS} - V_{t})^{2} \qquad V_{t} = V_{t0} + \gamma \left(\sqrt{PHI + V_{SB}} - \sqrt{PHI}\right)$$

$$V_{OUT} = V_{DD} - R_{D}I_{B} \qquad V_{SB} = V_{S}$$

$$V_{GS} = V_{t} + \sqrt{\frac{I_{B}}{0.5\mu C_{OX}W/L}}$$
A precise solution requires

$$V_{S} = V_{B} - V_{GS} = V_{B} - V_{t} - \sqrt{\frac{I_{B}}{0.5\mu C_{OX}W/L}}$$

A precise solution requires numerical iterations. Since the dependency of V_t on V_s is weak a few iterations are satisfactory for hand calculation

Once V_{S} is computed we can check that $\,$ M1 operates in saturation:

 $V_{DS} = V_{OUT} - V_S > V_{Dsat} = V_{GS} - V_t$

Example:

 $V_{DD} = 5V; V_B = 2.5V; I_B = 400 \mu A; R_D = 3K\Omega; W = 100 \mu m; L = 1 \mu m; V_{t0} = 0.5V$

```
* CG stage
* filename: cgbias.sp
* C. Talarico, Fall 2014
*** device model
.model simple nmos nmos kp=50u vto=0.5 lambda=0.1 cox=2.3e-3 capop=2
+ cqdo=0.5n cqso=0.5n cj=0.1m cjsw=0.5n pb=0.95 mj=0.5 mjsw=0.95
+ acm=3 cjgate=0 hdif=1.5u gamma=0.6 PHI=0.8
*** useful options
.option post brief nomod accurate
*** circuit
VDD vdd 0 5
* IB vi 0 dc 400u
VS vi 0 dc 1.3077 *** value for .op analysis
VB vb 0 dc 2.5
*** d
       g s b
mn1 vo vb vi 0 simple nmos w=100u l=1u
Rd vdd vo 3k
*** calculate operating point
• OD
*** large signal analysis (sweep Vi)
.dc VS 0 5 0.01
.end
```

element	0:mn1
model	0:simple_n
region	Saturati
id	400 . 0000u
ibs	-13 . 0770f
ibd	-38 . 0000f
vgs	1.1923
vds	2.4923
vbs	-1 . 3077
vth	834 . 4189m
vdsat	357 . 8811m
vod	357 . 8811m
beta	6 . 2462m
gam eff	600 . 0000m
gm	2 . 2354m
gds	32 . 0197u
gmb	461 . 9214u
cdtot	75 . 6690f
cgtot	256 . 1831f
cstot	246 . 0823f
cbtot	69 . 7376f
cgs	203.3341f
cgd	50.7643f

CG biasing (2)

 The I/O characteristic is flipped w.r.t. the CS stage (small signal voltage gain A_V = dV_{out}/dV_{in} is positive !)

EE 303 – Common Gate Stage

CG small signal model

- Depending on how the CG is used the output variable of interest may be:
 - The current that flows into the output (Current Buffer)
 - The voltage at the output (Transresistance Amplifier)

CG input impedance (1)

First pass:

 Z_{S} in || to v_{test} so let's temporarily "remove" it

CG input impedance (2)

Final Pass: Let's bring back Z_s:

CG input impedance: Summary (1)

$$Z_{in} \approx \frac{r_o + \left(R_D \parallel \frac{1}{sC_D}\right)}{g'_m r_o} \parallel \frac{1}{sC_S} \parallel R_S$$

At low frequency:

$$A: \quad R_{in} \cong \frac{r_o + R_D}{g'_m r_o} \parallel R_S$$

• Two interesting cases:

 $R_{in} \cong \frac{1}{g'_{m}} \parallel R_{S}$ If not most of the driving current instead of going to the MOS is lost !!

Well known result !

-
$$R_D$$
 is not << r_o

This happen quite often !! (example: R_D is a current source load) Not so Well known ...

CG input impedance: Summary (2)

$$Z_{in} \approx \frac{r_o + \left(R_D \parallel \frac{1}{sC_D}\right)}{g'_m r_o} \parallel \frac{1}{sC_S} \parallel R_S$$

At high frequency

CG output impedance (1)

• At low frequency

Aside: if
$$g'_m r_o$$
 is not >> 1

$$R_{out} = \frac{V_{test}}{i_{test}} = R_s + r_o (1 + g'_m R_s)$$

w.r.t.
$$(g'_m r_o \gg 1)$$

 $i_{test} = \frac{v_{test}}{r_o} - \frac{v_s}{r_o} - g'_m v_s$
 $v_s = R_s \cdot i_{test}$
 $R_{out} = \frac{v_{test}}{i_{test}} \cong r_o (1 + g'_m R_s)$
(Very high if $g'_m R_s \gg 1$)

$$R_{out} = \frac{v_{test}}{i_{test}} \stackrel{\checkmark}{=} r_o g'_m R_s$$

EE 303 – Common Gate Stage

CG output impedance (2)

• At high frequency

CG current transfer (1)

CG current transfer (2)

CG stage model valid for: g'_mr_o >> 1 and r_o >> R_D

• At low frequency:

- for
$$g'_m r_o >> 1$$
 and $r_o >> R_D$)

$$\frac{i_{out}}{i_s} = \frac{i_{out}}{i_i} \frac{i_{in}}{i_s} \cong \frac{R_s}{\frac{1}{g'_m} + R_s} \cong 1$$
This is a current buffer !!!
$$A_{10} \cong 1, R_{in} \text{ small}, R_{out} \text{ large}$$
Typically g'_mR_s >>1

CG current transfer (3)

• At high frequency:

- for
$$g'_m r_o \gg 1$$
 and $r_o \gg R_D \left(\sin ce R_D > R_D \| \frac{1}{sC_D}, r_o \gg R_D \text{ implies } r_o \gg Z_D \right)$

$$\frac{i_o}{i_s} \approx \frac{g'_m v_s}{\left(\frac{1}{R_s} + sC_s + g'_m\right)v_s} = \frac{g'_m R_s}{1 + sR_s C_s + g'_m R_s} = \frac{A_{I0}}{1 - \frac{s}{p_1}} = \frac{g'_m R_s}{1 + g'_m R_s} \cdot \frac{1}{1 + s\frac{C_s}{g'_m} + \frac{1}{R_s}}$$

CG current transfer (4)

CG Input-Output RC Time Constants

- For this specific configuration and assumptions ($r_o >> R_D$ and $g'_m r_o >>1$) input and output are decoupled \rightarrow "RC time constants" are = 1/poles
 - Input RC: $\sim C_{S}(1/g'_{m})$ (R_S>>1/g'_m)
 - Output RC: $R_D C_D$

CG Frequency Response

 $A_{v0_{CS}} \cong -g_m R_D$

EE 303 – Common Gate Stage

CG Summary

- Current gain is about unity up to very high frequencies
 - The CG stage absorbs most of the current from the input source and it passes the current to the output terminal
- The CG does not contain a FB capacitance between input and output (no Miller effect)
 - The effect of large values of R_D on the frequency response in much less than in CS stage (for a desired BW we can extract more gain out of the CG stage)
- Input impedance is "typically" very low $(R_{in} \cong 1/g'_m)$
 - At least when the output is terminated with some reasonable impedance (R $_{\rm D}$ $^{<<} r_{\rm o})$
- Can achieve very high output resistance $(R_{out} \approx r_o g'_m R_S)$
- In summary, a common gate stage is ideal for turning a decent current source into a much better one
 - Seems like this is something we can use to improve our common source stage
 - Which is indeed nothing but a decent (voltage controlled) current source

"Aside"

 If we cannot assume r_o>>R_D, the unilateral model used for the CG stage falls apart. Computing the current transfer gain is a little harder.

• The poles of the circuit are no longer isolated. However, computing the bandwidth using ZVTC is not too difficult.

$$\tau 1 = C_{s} \left[\left(\frac{1 + \frac{R_{D}}{r_{o}}}{g'_{m} + \frac{1}{r_{o}}} \right) \parallel R_{s} \right] \qquad and \qquad \tau 2 = C_{D} \left[\left(R_{s} + r_{o} (1 + g'_{m} R_{s}) \right) \parallel R_{D} \right]$$

Cascode Stage (CS + CG)

- One of the "most important" application of the CG.
- M_1 is a transconductor $(i_1 = g_{m1}v_{in})$ and M_2 buffers the current fed by M_1 $(i_2 \approx i_1)$

Low Frequency Benefits

- Output resistance very high ($\approx g_m r_o^2$)
 - The cascode device "shields" the input device from voltage variations at the output node V_o

- application: precision current source/mirror
- Intrinsic gain very high (g_mr_o)²
 - application: OTA/OA
- Input resistance of CS stage (R_{in} ≈ ∞)

High Frequency Benefits

$$\frac{v_x}{v_i} = -g_{m1} \left(Z_x \parallel r_{o1} \right) \cong -g_{m1} \left[\left(\frac{1}{g'_{m2}} \left(1 + \frac{R}{r_{o2}} \right) \right) \parallel r_{o1} \right]$$

g'_{m2}r_{o2} >> 1

- For moderate value of R: v_x/v_i very close to -1
- Mitigates Miller effect ($C_{in} \approx C_{gs1} + 2C_{gd1}$)
- Even if R is large, there is often a load capacitance that provides a low impedance termination to help maintain t his feature (R is AC shorted by the load capacitance)
- For not so moderate values of R (R ≈ r_{o2}): v_x/v_i very close to -2
 - Still mitigate Miller effect quite a bit (C_{in}≈ C_{gs1}+3C_{gd1})
- Additional benefit
 - Cascode mitigates direct forward coupling from V_i to V_o at high frequencies (RHP zero at z=+g_{m1}/C_{qd1})

$$I_{Cgd1} = sC_{gd1} \cdot (V_i - V_x)$$

if we could make $V_i \approx V_x \longrightarrow I_{Cgd1} \approx 0$ which would be the same as cancelling the zero !!

Example Revisited

$$\begin{split} V_{\rm B} &= 0.9 \text{V}; \ \text{V}_{\rm I} = 0.627 \text{V}; \ \text{V}_{\rm DD} = 1.8 \text{V}; \\ V_{\rm BCAS} &= 1.077 \text{V}; \ \text{I}_{\rm B} = 400 \mu\text{A}; \ \text{R} = 2 \text{k} \Omega; \\ \text{R}_{\rm i} &= 10 \text{k} \Omega; \ \text{W/L} = 21.34 \ \mu\text{m}/0.18 \ \mu\text{m} \end{split}$$

- What we expect to see after adding the cascode device
 - Bandwidth should increase (reduction of Miller effect)
 - Easy to compute using a ZVTC analysis
 - Non-dominant pole around some fraction of f_T of cascode device
 - Drain current of MN1 runs into a current divider between $1/g'_{mc}$ and total capacitance at this node (dominated by C_{gs} of MNC)

Simulated Frequency Response

|gain_cs| = 17.84 dB; |gain_cas| = 18.40 dB

EE 303 – Common Gate Stage

Supply Headroom Issue (1)

- Even if we adjust V_{BCAS} such that V_{DS1} is small, adding a cascode reduces the available signal swing
- This can be a big issue when designing circuits with V_{DD}≅1V
 - Typically need each
 V_{DS}>~0.2V

Supply Headroom Issue (2)

- Is the issue really as "bad" as it sounds ?
- For a given bias current, let's compare the "price" of increasing gain using cascoding vs. the "price" of increasing gain augmenting the transistor's length in a CS stage

Source: Razavi Example: let's quadruple L (if we quadruple L, to maintain the same I_D we need to double V_{OV})

- Very Interesting result:
 - By quadruplicating L we consume an extra V_{OV} of headroom, (we consume 4x more area), and we get a 2x increase in the intrinsic gain (≈2g_mr_o)
 - By cascoding we also consume and extra V_{OV} of headroom, (we consume only 2x more area), but we get a significant better intrinsic gain (≈g_mr_o)²

Cascode Bias Analysis

•
$$M_1$$
 saturation: $V_x > V_{in} - V_{T1}$
 $V_x = V_B - V_{GS2} > V_{in} - V_{T1} \iff V_B > V_{in} - V_{T1} + V_{GS2}$
• M_2 saturation: $V_{out} - V_x > V_{GS2} - V_{T2}$
 $V_{out} > V_B - V_{OS2} + V_{OS2} - V_{T2} \implies V_{out} > V_{in} - V_{T1} + V_{GS2} - V_{T2}$
 $= V_x$
 $V_{out} = V_{OV1} = V_{OV2}$

The minimum output DC level for which both transistors operate in saturation is:

 $V_{out}(min) = V_{OV1} + V_{OV2}$

V_{DD}

⊸ V_{out}

≨*R*₀

I/O DC characteristic of cascode stage

- As V_{in} assumes sufficiently large values
 - V_x drops below V_{in} by V_{T1} forcing M_1 into triode
 - V_{out} drops below V_B by V_{T2} forcing M_2 into triode
- Depending of the device dimensions and the values of R_D and V_B one effect may occur before the other

Detailed Transistors operation

EE 303 – Common Gate Stage