

Source: Hu

- For a given I_D we want to understand how the diode voltage V_D varies with temperature
- The diode's I/V equation contains temperature in two places: V_T = KT/q and I_s

$$
I_D = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right) \qquad \text{where: } I_S = q A n_i^2 \left(\frac{D_p}{L_p N_d} + \frac{D_n}{L_n N_a} \right) = q A n_i^2 \left(\frac{\mu_p V_r}{L_p N_d} + \frac{\mu_n V_r}{L_n N_a} \right)
$$

• Inside the expression of I_s the terms n_i and μ also depends on temperature:

$$
\mu \propto T^{-3/2} \qquad \qquad n_i^2 = N_C N_V e^{\frac{-E_G}{KT}} = A_C A_V T^3 e^{\frac{-E_G}{KT}}
$$

 N_{v} and N_{c} are respectively the effective density of energy states in valence band and conduction band

$$
N_C = A_C T^{3/2}
$$
 and $N_V = A_V T^{3/2}$

If for simplicity we ignore the weak temperature dependence of the effective mass density of the conduction band electrons (m_n^*) and the valence band holes (m_p^{*}) the values of A_c and A_v are about constant (sources: Pierret p. 51):

$$
n_i^2 = A_C A_V T^3 e^{\frac{-E_G}{KT}} \text{ with :}
$$
\n
$$
A_C = 2 \left[\frac{m_n^* k}{2 \pi \hbar^2} \right]^{3/2} \approx 6.2 \times 10^{15} \text{ cm}^{-3} \text{K}^{-3/2}
$$
\n
$$
n_i^2 = A_C A_V \times T^3 e^{\frac{-E_G}{KT}}
$$
\n
$$
\text{if}
$$
\n
$$
n_i = \sqrt{A_C A_V} \times T^{3/2} e^{\frac{-E_G}{2KT}} = B \times T^{3/2} e^{\frac{-E_G}{2KT}}
$$

- k = Boltzmann's constant = 8.62×10^{-5} eV/K = 1.38×10^{-23} Joule/K
- \hbar = Reduced Planck's constant = 1.055×10⁻³⁴ Joule-sec
- $m_n^* = 1.18 \times m_0$
- $m_p^* = 0.81 \times m_0$
- m_0 = electron rest mass = 9.11×10⁻³¹ Kg

- Therefore≈: $n_i = B \times T^{3/2} e$ −*EG* $2\overline{KT}$ *with* $B \cong 5 \times 10^{15}$ $cm^{-3}K^{-3/2}$
- If for simplicity we ignore the weak temperature dependence of the band gap energy:

source: Plummer
$$
E_G = E_{G0} - \frac{4.73 \times 10^{-4} \times T^2}{T + 636} \approx 1.16 - 3 \times 10^{-3} \times T
$$

where E_{GO} is the band gap energy at OK ($E_{GO} \approx 1.17$ eV) and the temperature T is expressed in K

We can finally write I_s as follows:

$$
I_{S} = qAB^{2}T^{3}e^{\frac{-E_{G}}{kT}}\left(\frac{\kappa_{\mu,p}T^{-1.5}kT/q}{L_{p}N_{d}} + \frac{\kappa_{\mu,n}T^{-1.5}kT/q}{L_{n}N_{a}}\right) = S \cdot T^{2.5} \cdot e^{\frac{-E_{G}}{kT}}
$$

First pass:

$$
I_{S} = qAB^{2}T^{3}e^{\frac{-E_{G}}{kT}}\left(\frac{\kappa_{\mu,p}T^{-1.5}kT/q}{L_{p}N_{d}} + \frac{\kappa_{\mu,n}T^{-1.5}kT/q}{L_{n}N_{a}}\right) = \varsigma \cdot T^{2.5} \cdot e^{\frac{-E_{G}}{kT}}
$$

the temperature dependence caused by the polynomial term is weak compared to the one caused by the exponential term, so we will ignore it

$$
I_S = \zeta \cdot T^{2.5} \cdot e^{\frac{-E_G}{kT}} = \zeta \cdot e^{\frac{-E_G}{kT}}
$$

$$
= \zeta
$$

Let's get back to our objective: given a fixed value of current I_D we want to find out the voltage variation occurring ΔV_{D} when there is a temperature variation ΔT occurring

$$
TC \equiv \frac{dV_D}{dT}\Big|_{\text{w1}_D = const}
$$

• Let's assume *forward bias* and flip the I/V eq.:

$$
I_D \approx I_S \left(e^{\frac{V_D}{V_T}} \right) \Rightarrow \frac{I_D}{I_S} = e^{\frac{V_D}{V_T}} \Rightarrow V_D \approx V_T \ln \frac{I_D}{I_S} = \frac{kT}{q} \ln \left(\frac{I_D}{I_S} \right)
$$

$$
\frac{dV_D}{dT} = \frac{d}{dT} \left[\frac{kT}{q} \ln \left(\frac{I_D}{I_S} \right) \right] = \frac{k}{q} \ln \left(\frac{I_D}{I_S} \right) + \frac{kT}{q} \frac{d}{dT} \left(\ln I_D - \ln I_S \right) \approx
$$
\n
$$
\approx \frac{k}{q} \cdot \frac{V_D}{kT} + \frac{kT}{q} \frac{d}{dT} \left(\ln I_D - \ln \zeta + \frac{E_G}{kT} \right) \approx \frac{V_D}{T} + \frac{kT}{q} \frac{d}{dT} \left(\frac{E_G}{kT} \right) \approx
$$

constant

⎠

T

 $\begin{pmatrix} 1 & k \\ k & k \end{pmatrix}$

constant

q

≅

q

 $\frac{V_D}{T} - \frac{E_G}{qT}$

q dT

 \vert \vert $d(uv)$ $\frac{v^{(u)}(x)}{dx} = v$ *du dx* + *u du dx d dx* $(\ln u) = \frac{1}{u}$ *u du dx d dx* $(x^N) = N \cdot x^{N-1}$ And let's keep in mind a couple of useful math rules:

 E_G and k are constants take them out of the derivative

q dT

 $\setminus kT$

⎠

$$
TC \equiv \frac{dV_D}{dT} \approx \frac{V_D}{T} - \frac{E_G / q}{T}
$$

- Assuming V_D =0.5V and T=300K: $TC = \frac{0.5 1.12}{200}$ $\frac{300}{ }$ = -2.1 mV/K = -2.1 mV/degree 0.5-*1.12*
- At room temperature, a diode's forward voltage-drop has a thermal coefficient of about -2mV per degree

$$
V_{\text{diode}} \left(\frac{T_1 > T_0}{\int_{D} \sqrt{\frac{T_1}{T_0}}}\right) \Delta V / \Delta T = (V_{D1} - V_{D0}) / (T_1 - T_0) = -2 \text{mV/degree}
$$

If we know the diode voltage at some reference temperature T_0 we can estimate the diode voltage at any other temperature T as follows:

 $V_p(T) \cong V_p(T_0) - 2mV/d$ egree × $(T - T_0) = V_p(T_0) + TC \times (T - T_0)$

Aside: second pass

• If we want to consider also the temperature dependence caused by the polynomial term, all we have to do is a little more work taking the derivative:

$$
\frac{dV_D}{dT} = \frac{d}{dT} \left[\frac{kT}{q} \ln \left(\frac{I_D}{I_S} \right) \right] = \frac{k}{q} \ln \left(\frac{I_D}{I_S} \right) + \frac{kT}{q} \frac{d}{dT} \left(\ln I_D - \ln I_S \right) \approx
$$
\n
$$
\approx \frac{V_D}{T} + \frac{kT}{q} \frac{d}{dT} \left(\ln I_D - \ln \zeta - \ln T^{2.5} + \frac{E_G}{kT} \right) \approx
$$
\n
$$
\approx \frac{V_D}{T} - \frac{2.5V_T}{T} - \frac{E_G / q}{T}
$$
\n
$$
\approx \frac{d}{dT} \left(\ln T^{m} \right) = \frac{1}{T^{m}} \frac{d}{dT} \left(T^{m} \right) = \frac{m}{T^{m}} T^{m-1} = \frac{m}{T}
$$

The term V_D/T results from the temperature dependence on V_T . The negative terms results from the temperature dependence of I_s , and does not depend on the voltage across the diode

• Assuming V_D=0.5V and T=300K:
$$
TC = \frac{0.5 - 2.5 \times 26 \times 10^{-3} - 1.12}{300} = -2.3 \text{ mV/degree}
$$

• So for conservative design it is common to assume: $TC = \frac{dV_D}{dT}$ *dT* $= -2.5$ mV/degree

In *reverse bias* we find out that the variation of I_s with T is about 14.6% percent/degree:

Recalling:
\n
$$
\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}
$$
\n
$$
\frac{d}{dT}(\ln I_s) = \frac{1}{I_s}\frac{dI_s}{dT} \implies \frac{dI_s}{dT} = I_s \cdot \frac{d(\ln I_s)}{dT}
$$

$$
\frac{d}{dT} \left[\ln \left(g \cdot T^{2.5} \cdot e^{\frac{-E_G}{kT}} \right) \right] = \frac{d}{dT} \left(\ln g + \ln T^{2.5} - \frac{E_G}{kT} \right) = \frac{2.5}{T} + \frac{E_G}{kT^2} = \frac{2.5}{T} + \frac{E_G}{kT^2} \frac{q}{q} = \frac{2.5}{T} + \frac{E_G/q}{T \cdot V_T}
$$

 dI_{S} $\frac{dI_S}{dT} = I_S$ 2.5 *T* $+\frac{E_G/q}{T}$ $T \cdot V_T$ $\sqrt{2}$ ⎝ $\left(\frac{2.5}{T}+\frac{E_G/q}{T_{\rm N}}\right)$ ⎠ $\frac{1}{2}$

At room temperature:

$$
\frac{dI_s}{dT} = I_s \left(\frac{2.5}{300} + \frac{1.12}{300 \cdot 26 \cdot 10^{-3}} \right) = I_s \times \frac{15.2}{100} \cdot \text{A/degree}
$$

Since $(1.152)^5 \approx 2$ we conclude that the saturation current approximately doubles for every 5 degrees rise in temperature

In *reverse bias:*

- Although still quite small, real diodes exhibit reverse currents that are much larger than I_s . A large part of the reverse current is due to leakage effects. These leakage effects are proportional to the junction area A just as I_S is.
- As a rule of thumb I_R doubles for every 10 degree rise in temperature $I_R(T) = I_R(T_0) \times 2^{(T-T_0)/10}$

Figure 5–23 Streetman

talarico@gonzaga.edu 12 approximations of junction diode characteristics: (a) the ideal diode; (b) ideal diode with an offset voltage; (c) ideal diode with an offset voltage and a resistance to account for slope in the forward characteristic.

Ideal diode with voltage offset

- Constant voltage model:
	- $-$ the constant voltage is called cut-in voltage, turn-on voltage, or threshold voltage and is usually denoted as $V_{D,on}$ or V_{v}
- This model is based on the observation that a forward-conducting diode has a voltage drop that varies in a relatively narrow range (e.g. 0.6 to 0.8). We'll assume $V_v \approx 0.7V$
- Below V_v the current is very small (less than 1% of the maximum rated value).

*f*or $T > 25$ °C $\Rightarrow P_{D,\text{max}} = 500 - 1.68 \times (T - 25)$ [*mW*]

 $T_I = T_A + R_{QIA} \times P_D$

Ideal diode with voltage offset

source: Neamen

I/V characteristic of a theoretical diode with I_s =10⁻¹⁴A = 10 fA

Forward-bias part of the characteristics with current plotted on a log scale

current maybe 1nA (still small and negligible in most cases) 14 NOTE: real diodes exhibit reverse currents that are considerably larger than I_s (this is mainly due to holes and electrons being generated within the space charge region). A typical value of reverse-bias

Is the model good enough ?

• Should we worry about the fact that the diode has resistance?

$$
r_{diode} = \left(\frac{dI_{D}}{dV_{D}}\right)^{-1} = \frac{d}{dV_{D}} \left[I_{S}\left(e^{\frac{V_{D}}{V_{T}}} - 1\right)\right]^{-1} = \left(\frac{I_{S}}{V_{T}}e^{\frac{V_{D}}{V_{T}}}\right)^{-1} = \left(\frac{I_{S}e^{\frac{V_{D}}{V_{T}}} - I_{S} + I_{S}}{V_{T}}\right)^{-1} = \frac{V_{T}}{I_{D} + I_{S}}
$$
\n
$$
\text{Forward Region: } r_{diode} = \frac{V_{T}}{I_{D} + I_{S}} \underbrace{\frac{V_{T}}{V_{D}}}}_{I_{D} >> I_{S}} \quad \boxed{V_{T}/I_{D} \text{ is only a few } \Omega}
$$

Example:

 I_s ≈ 10 fA => I_p ≈ I_s exp(V_D/V_T) = 10⁻¹⁴exp(0.7/26m) ≈ 4.9 mA => V_T/I_D = 26/4.9 ≈ 5.3 Ω

• Reverse Region:
$$
r_{diode} = \frac{V_T}{I_D + I_S} \approx \infty
$$
 [Ω]
 $I_D \approx -I_S$

drop (0.6V-0.8V) we may neglect the diode voltage drop altogether.

Piecewise linear model

- This model is useful when there is a small varying signal superimposed to the biasing voltage
- Let's say we want to forward bias a diode so that it operates at a given value of I_D , we need to find the corresponding V_D (Q = operating point = (I_D, V_D)

 $NOTE: \ln(x) = \alpha \cdot Log(x) \rightarrow \ln(e) = 1 = \alpha \cdot Log(e) = \alpha \cdot 0.43 \rightarrow \alpha \approx 2.3$

Piecewise linear model

Example

We have V_{DD} =5V and the diode at V_{DD} =0.7V has a current of I_{DD} =1mA. We want $I_D \cong 4.3$ mA.

Let's assume $V_D \cong 0.7V$ (and iterate until we find the right value corresponding to I_D)

Piecewise linear model

We have a signal superimposed to the bias voltage V_D :

$$
v_D = V_D + v_d \implies v_d = v_D - V_D \equiv \Delta V_D \implies v_D = V_D + \Delta V_D
$$

$$
\bigcup_{D \subseteq I_S} \frac{v_D}{e^{V_T}} = I_S e^{\frac{V_D + \Delta V_D}{V_T}} = I_S e^{\frac{V_D}{V_T}} e^{\frac{\Delta V_D}{V_T}} = I_D e^{\frac{\Delta V_D}{V_T}}
$$

If the max excursion of the signal is small (that is $\Delta V_D/V_T \ll 1$):

$$
i_D = I_D e^{\frac{\Delta V_D}{V_T}} \tilde{I}_D \left(1 + \frac{\Delta V_D}{V_T} \right)
$$
\n
$$
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots
$$
\n
$$
\underbrace{\left(\frac{\Delta V_D}{V_T} \right)}_{i_D \approx I_D} = \underbrace{\left(\frac{\Delta V_D}{V_T} \right)}_{i_D \approx I_D} = \underbrace{I_D}_{i_D \approx I_D} + \underbrace{\left(\frac{\Delta V_D}{V_T} \right)}_{i_D \approx I_D} = \underbrace{I_D}_{i_D \approx I_D} + \underbrace{\left(\frac{\Delta V_D}{V_T} \right)}_{i_D \approx I_D} = \underbrace{i_d}_{i_D \approx I_D}
$$

we find out that the response of the diode is about linear and it make sense to approximate the diode characteristic with the tangent line at Q:

$$
\frac{1}{r_d} = g_d = \frac{\Delta I_D}{\Delta V_D} = \frac{i_d}{v_d} = \frac{di_D}{dv_D}\bigg|_{\omega v_D}
$$

Diode Circuits

- ... Finally let's start building some circuit
- Applications:
	- Rectifiers
	- Limiting Circuits (a.k.a. Clippers)
	- Level Shifters (a.k.a. Clampers)
	- Detectors
	- Voltage doublers
	- Regulators
	- Switches