

Source: Hu

- For a given $\rm I_D$ we want to understand how the diode voltage $\rm V_D$ varies with temperature
- The diode's I/V equation contains temperature in two places: $V_T = KT/q$ and I_s

$$I_D = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right) \qquad \text{where: } I_S = qAn_i^2 \left(\frac{D_p}{L_p N_d} + \frac{D_n}{L_n N_a} \right) = qAn_i^2 \left(\frac{\mu_p V_T}{L_p N_d} + \frac{\mu_n V_T}{L_n N_a} \right)$$

- Inside the expression of ${\sf I}_{\sf S}$ the terms ${\sf n}_{\sf i}$ and μ also depends on temperature:

$$\mu \propto T^{-3/2}$$
 $n_i^2 = N_C N_V e^{\frac{-E_G}{KT}} = A_C A_V T^3 e^{\frac{-E_G}{KT}}$

- $N_{\rm v}$ and $N_{\rm c}$ are respectively the effective density of energy states in valence band and conduction band

$$N_C = A_C T^{3/2}$$
 and $N_V = A_V T^{3/2}$

If for simplicity we ignore the weak temperature dependence of the effective mass density of the conduction band electrons (m_n^{*}) and the valence band holes (m_p^{*}) the values of A_c and A_v are about constant (sources: Pierret p. 51):

- k = Boltzmann's constant = 8.62×10^{-5} eV/K = 1.38×10^{-23} Joule/K
- \hbar = Reduced Planck's constant = 1.055×10⁻³⁴ Joule-sec
- $m_n^* = 1.18 \times m_0$
- $m_p^* = 0.81 \times m_0$
- $m_0 = electron rest mass = 9.11 \times 10^{-31} Kg$

- Therefore \approx : $n_i = B \times T^{3/2} e^{\frac{-E_G}{2KT}}$ with $B \approx 5 \times 10^{15} \, cm^{-3} K^{-3/2}$
- If for simplicity we ignore the weak temperature dependence of the band gap energy:

source: Plummer

$$E_G = E_{G0} - \frac{4.73 \times 10^{-4} \times T^2}{T + 636} \approx 1.16 - 3 \times 10^{-3} \times T$$

where E_{G0} is the band gap energy at OK ($E_{G0} \approx 1.17 \text{ eV}$) and the temperature T is expressed in K

• We can finally write I_s as follows:

$$I_{S} = qAB^{2}T^{3}e^{\frac{-E_{G}}{kT}} \left(\frac{\kappa_{\mu,p}T^{-1.5}kT / q}{L_{p}N_{d}} + \frac{\kappa_{\mu,n}T^{-1.5}kT / q}{L_{n}N_{a}}\right) \equiv \varsigma \cdot T^{2.5} \cdot e^{\frac{-E_{G}}{kT}}$$

• First pass:

$$I_{S} = qAB^{2}T^{3}e^{\frac{-E_{G}}{kT}} \left(\frac{\kappa_{\mu,p}T^{-1.5}kT/q}{L_{p}N_{d}} + \frac{\kappa_{\mu,n}T^{-1.5}kT/q}{L_{n}N_{a}}\right) \equiv \varsigma \cdot T^{2.5} \cdot e^{\frac{-E_{G}}{kT}}$$

• the temperature dependence caused by the polynomial term is weak compared to the one caused by the exponential term, so we will ignore it

$$I_{S} = \zeta \cdot T^{2.5} \cdot e^{\frac{-E_{G}}{kT}} = \zeta \cdot e^{\frac{-E_{G}}{kT}}$$
$$= \zeta$$

• Let's get back to our objective: given a fixed value of current I_D we want to find out the voltage variation occurring ΔV_D when there is a temperature variation ΔT occurring

$$TC = \frac{dV_D}{dT}\Big|_{@I_D = const}$$

• Let's assume *forward bias* and flip the I/V eq.:

$$I_D \approx I_S \left(e^{\frac{V_D}{V_T}} \right) \Rightarrow \frac{I_D}{I_S} = e^{\frac{V_D}{V_T}} \Rightarrow V_D \approx V_T \ln \frac{I_D}{I_S} = \frac{kT}{q} \ln \left(\frac{I_D}{I_S} \right)$$

$$\frac{dV_D}{dT} = \frac{d}{dT} \left[\frac{kT}{q} \ln \left(\frac{I_D}{I_S} \right) \right] = \frac{k}{q} \ln \left(\frac{I_D}{I_S} \right) + \frac{kT}{q} \frac{d}{dT} \left(\ln I_D - \ln I_S \right) \cong$$
$$\cong \frac{k}{q} \cdot \frac{V_D}{kT} + \frac{kT}{q} \frac{d}{dT} \left(\ln I_D - \ln \zeta + \frac{E_G}{kT} \right) \cong \frac{V_D}{T} + \frac{kT}{q} \frac{d}{dT} \left(\frac{E_G}{kT} \right) \cong$$

constant

constant

q

 $\cong \frac{V_D}{T} - \frac{E_G}{qT}$

And let's keep in mind a couple of useful math rules: $\frac{d(uv)}{dx} = v\frac{du}{dx} + u\frac{du}{dx}$ $\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$ $\frac{d}{dx}(x^{N}) = N \cdot x^{N-1}$

E_G and k are constants take them out of the derivative

$$TC = \frac{dV_D}{dT} \cong \frac{V_D}{T} - \frac{E_G / q}{T}$$

- Assuming $V_D = 0.5V$ and T = 300K: $TC = \frac{0.5 1.12}{300} = -2.1 \ mV/K = -2.1 \ mV/degree$
- At room temperature, a diode's forward voltage-drop has a thermal coefficient of about -2mV per degree

$$I_{diode} \land T_{1} > T_{0} \land V/\Delta T = (V_{D1} - V_{D0})/(T_{1} - T_{0}) \cong -2mV/degree \rightarrow V_{diode}$$

 If we know the diode voltage at some reference temperature T₀ we can estimate the diode voltage at any other temperature T as follows:

 $V_D(T) \cong V_D(T_0) - 2mV/\text{degree} \times (T - T_0) = V_D(T_0) + TC \times (T - T_0)$

Aside: second pass

• If we want to consider also the temperature dependence caused by the polynomial term, all we have to do is a little more work taking the derivative:

$$\frac{dV_D}{dT} = \frac{d}{dT} \left[\frac{kT}{q} \ln \left(\frac{I_D}{I_S} \right) \right] = \frac{k}{q} \ln \left(\frac{I_D}{I_S} \right) + \frac{kT}{q} \frac{d}{dT} \left(\ln I_D - \ln I_S \right) \approx I_S = \varsigma \cdot T^{2.5} \cdot e^{\frac{-E_G}{kT}}$$

$$\approx \frac{V_D}{T} + \frac{kT}{q} \frac{d}{dT} \left(\ln I_D - \ln \zeta - \ln T^{2.5} + \frac{E_G}{kT} \right) \approx \int_{T} \frac{d}{dT} \left(\ln T^m \right) = \frac{1}{T^m} \frac{d}{dT} (T^m) = \frac{m}{T^m} T^{m-1} = \frac{m}{T}$$

• The term V_D/T results from the temperature dependence on V_T . The negative terms results from the temperature dependence of I_S , and does not depend on the voltage across the diode

• Assuming
$$V_D = 0.5V$$
 and $T = 300K$: $TC = \frac{0.5 - 2.5 \times 26 \times 10^{-3} - 1.12}{300} = -2.3 \text{ mV/degree}$

• So for conservative design it is common to assume: $TC = \frac{dV_D}{dT} \approx -2.5 \text{ mV/degree}$

In <u>reverse bias</u> we find out that the variation of I_s with T is about 14.6% percent/degree:

$$\frac{d}{dT} \left[\ln \left(\varsigma \cdot T^{2.5} \cdot e^{\frac{-E_G}{kT}} \right) \right] = \frac{d}{dT} \left(\ln \varsigma + \ln T^{2.5} - \frac{E_G}{kT} \right) = \frac{2.5}{T} + \frac{E_G}{kT^2} = \frac{2.5}{T} + \frac{E_G}{kT^2} \frac{q}{q} = \frac{2.5}{T} + \frac{E_G}{T} \frac{q}{T} + \frac{E_G}{T} + \frac{E_G$$

 $\frac{dI_s}{dT} = I_s \left(\frac{2.5}{T} + \frac{E_G / q}{T \cdot V_T}\right)$

• At room temperature:

$$\frac{dI_s}{dT} = I_s \left(\frac{2.5}{300} + \frac{1.12}{300 \cdot 26 \cdot 10^{-3}}\right) = I_s \times \frac{15.2}{100} \, [\text{A/degree}]$$

 Since (1.152)⁵≈2 we conclude that the saturation current approximately doubles for every 5 degrees rise in temperature

• In *reverse bias:*

- Although still quite small, real diodes exhibit reverse currents that are much larger than I_s. A large part of the reverse current is due to leakage effects. These leakage effects are proportional to the junction area A just as I_s is.
- As a rule of thumb I_R doubles for every 10 degree rise in temperature $I_R(T) = I_R(T_0) \times 2^{(T-T_0)/10}$

Figure 5–23 Streetman

approximations of junction diode characteristics: (a) the ideal diode; (b) ideal diode with an offset voltage; (c) ideal diode with an offset voltage and a resistance to account for slope in the forward characteristic.

Ideal diode with voltage offset

- Constant voltage model:
 - the constant voltage is called cut-in voltage, turn-on voltage, or threshold voltage and is usually denoted as $V_{\text{D,on}}$ or V_{γ}
- This model is based on the observation that a forward-conducting diode has a voltage drop that varies in a relatively narrow range (e.g. 0.6 to 0.8). We'll assume V_v ≈ 0.7V
- Below V_{γ} the current is very small (less than 1% of the maximum rated value).

for $T > 25 \,^{\circ}C \implies P_{D,\max} = 500 - 1.68 \times (T - 25) \,[mW]$

 $T_J = T_A + R_{\Theta JA} \times P_D$

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 1)	n	500	mW
Derate Above 25°C	PD	1.68	mW/°C
Thermal Resistance, Junction to Ambient Air (Note 1)	R _{0JA}	300	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-65 to +175	°C

Ideal diode with voltage offset

source: Neamen

• I/V characteristic of a theoretical diode with $I_s=10^{-14}A = 10 \text{ fA}$

• Forward-bias part of the characteristics with current plotted on a log scale

NOTE: real diodes exhibit reverse currents that are considerably larger than I_s (this is mainly due to holes and electrons being generated within the space charge region). A typical value of reverse-bias current maybe 1nA (still small and negligible in most cases)

Is the model good enough ?

• Should we worry about the fact that the diode has resistance ?

$$r_{diode} = \left(\frac{dI_{D}}{dV_{D}}\right)^{-1} = \frac{d}{dV_{D}} \left[I_{S}\left(e^{\frac{V_{D}}{V_{T}}} - 1\right)\right]^{-1} = \left(\frac{I_{S}}{V_{T}}e^{\frac{V_{D}}{V_{T}}}\right)^{-1} = \left(\frac{I_{S}e^{\frac{V_{D}}{V_{T}}} - I_{S} + I_{S}}{V_{T}}\right)^{-1} = \left(\frac{V_{T}}{I_{D} + I_{S}}\right)^{-1} = \left(\frac{V_{T}}{I_{D} + I_{S}}\right)^{-1} = \left(\frac{V_{T}}{V_{T}}\right)^{-1} = \left(\frac{V_{T}}{V_$$

Example:

 $I_{s} \approx 10 \text{ fA} \Rightarrow I_{D} \approx I_{s} \exp(V_{D}/V_{T}) = 10^{-14} \exp(0.7/26 \text{m}) \approx 4.9 \text{ mA} \Rightarrow V_{T}/I_{D} = 26/4.9 \approx 5.3 \Omega$

• Reverse Region:
$$r_{diode} = \frac{V_T}{I_D + I_S} \cong \infty [\Omega]$$

 $I_D \cong -I_S$

• In applications that involve voltages much greater than the diode voltage drop (0.6V-0.8V) we may neglect the diode voltage drop altogether.

Piecewise linear model

- This model is useful when there is a small varying signal superimposed to the biasing voltage
- Let's say we want to forward bias a diode so that it operates at a given value of I_D, we need to find the corresponding V_D (Q = operating point = (I_D,V_D)

NOTE: $\ln(x) = \alpha \cdot Log(x) \rightarrow \ln(e) = 1 = \alpha \cdot Log(e) = \alpha \cdot 0.43 \rightarrow \alpha \approx 2.3$

Piecewise linear model

Example

We have V_{DD} =5V and the diode at V_{D0} =0.7V has a current of I_{D0} =1mA. We want $I_D \cong 4.3$ mA.

Let's assume $V_D \cong 0.7V$ (and iterate until we find the right value corresponding to I_D)

Piecewise linear model

We have a signal superimposed to the bias voltage V_D :

$$v_{D} = V_{D} + v_{d} \Longrightarrow v_{d} = v_{D} - V_{D} \equiv \Delta V_{D} \Longrightarrow v_{D} = V_{D} + \Delta V_{D}$$

$$\bigcup_{i_{D}} = I_{S} e^{\frac{v_{D}}{V_{T}}} = I_{S} e^{\frac{V_{D} + \Delta V_{D}}{V_{T}}} = I_{S} e^{\frac{\Delta V_{D}}{V_{T}}} = I_{D} e^{\frac{\Delta V_{D}}{V_{T}}}$$

If the max excursion of the signal is small (that is $\Delta V_D/V_T <<1$):

$$i_{D} = I_{D}e^{\frac{\Delta V_{D}}{V_{T}}} \approx I_{D}\left(1 + \frac{\Delta V_{D}}{V_{T}}\right) \qquad * \qquad e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$for \ x <<1: \ e^{x} = 1 + x$$

$$for \ x <<1: \ e^{x} = 1 + x$$

$$for \ x <<1: \ e^{x} = 1 + x$$

we find out that the response of the diode is about linear and it make sense to approximate the diode characteristic with the tangent line at Q:

$$\frac{1}{r_d} = g_d = \frac{\Delta I_D}{\Delta V_D} = \frac{i_d}{v_d} = \frac{di_D}{dv_D}\Big|_{@V_D}$$

Diode Circuits

- ... Finally let's start building some circuit
- Applications:
 - Rectifiers
 - Limiting Circuits (a.k.a. Clippers)
 - Level Shifters (a.k.a. Clampers)
 - Detectors
 - Voltage doublers
 - Regulators
 - Switches