Chapter 5

Electronics I-
 Diode Circuits

Fall 2017

Diode Circuits

- Applications:
- Rectifiers
- Limiting Circuits (a.k.a. clippers)
- Detectors
- Level Shifters (a.k.a. clampers)
- Regulators
- Voltage doublers
- Switches

Warm-up examples

Example \#1: diode and resistor in series

Side note:

1. When the diode is forward biased the current though the diode is $\approx V_{\text {in }} / R$: we cannot make make $V_{\text {in }}$ get so large that $V_{\text {in }} / R>I_{\text {F,peak }}$ otherwise the diode "melts"
2. When the diode is reverse biased the voltage across the diode is $\approx-$ Vin: we cannot make Vin get so small that $\left|-V_{\text {in }}\right|>V_{R, \text { peak }}$ otherwise the diode "breaks" $\mathrm{V}_{\mathrm{R}, \text { peak }}$ is a.k.a. PIV (Peak Inverse Voltage)

The input/output characteristics with ideal and constant-voltage models yields two different break points. Applying an inappropriate diode's model can be misleading !

Warm-up examples

Example \#2: diode and resistor in series (half-wave rectifier)
source: Razavi

Warm-up examples

Example \#3: diode implementation of OR gate
source: Razavi

VA (V)	VB (V)	Vout (V)	D1	D2
0	0	0	OFF	OFF
0	5	≈ 5	OFF	ON
5	0	≈ 5	ON	OFF
5	5	≈ 5	ON	ON

Let's try a few cases:
$V_{A}=5 \mathrm{~V}$ and $V_{B}=4 \mathrm{~V}$
Let's guess D_{1} is $\mathrm{ON} \Rightarrow V_{\text {out }}(A-$ side $)=V_{A}-V_{\gamma}=4.3 \mathrm{~V}$
Let's guess D_{2} is $\mathrm{ON} \Rightarrow V_{\text {out }}(B-$ side $)=V_{B}-V_{\gamma}=3.7 V \Rightarrow B A D$ GUESS !!
$\mathrm{V}_{\text {out }}$ (A-side) must be the same as $\mathrm{V}_{\text {out }}$ (B-side) otherwise we violate $\mathrm{KVL}!!\Rightarrow \mathrm{D}_{2}$ is OFF
$V_{A}=3 \mathrm{~V}$ and $V_{B}=0 \mathrm{~V}$
Let's guess D_{1} is $\mathrm{ON} \Rightarrow V_{\text {out }}=V_{A}-V_{\gamma}=2.3 \mathrm{~V}$
Let's guess D_{2} is OFF
$V_{A}=0.6 \mathrm{~V}$ and $V_{B}=0 \mathrm{~V}$
$\left.\begin{array}{l}\text { Let's guess } \mathrm{D}_{1} \text { is } O F F \\ \text { Let's guess } \mathrm{D}_{2} \text { is } \mathrm{OFF}\end{array}\right] \Rightarrow V_{\text {out }}=0 V$

CONSISTENCY METHOD:

It is sometime difficult to correctly predict the region of operation of each diode by inspection. In such cases, we may simply make an "educated" guess proceed with the analysis, and eventually determine if the final result agrees or conflicts with the original guess.

Warm-up examples

Example \#4:

source: Razavi

When the diode is ON we can model the circuit as follow:

From the model of the circuit is easy to see that if $\mathrm{V}_{\text {in }}<\mathrm{V}_{\mathrm{D}, \text { on }}$ we cannot have current flowing through the diode $=>$ the diode must be OFF \longrightarrow $V_{\text {ou }}$
slope
$V_{\text {out }}=\frac{V_{\text {in }}-V_{D, \text { on }}}{R_{1}+R_{2}} R_{2}+V_{D, \text { on }}=\frac{R_{2}}{R_{1}+R_{2}} V_{\text {in }}+V_{D, \text { on }} \frac{R_{1}}{R_{1}+R_{2}}$

$$
@ V_{\text {in }}=V_{D, \text { on }} \Rightarrow V_{\text {out }}=V_{D, \text { on }}
$$

If we prefer to use the ideal diode model all we have to do is to assume $V_{D, o n}=0$ rather than $\mathrm{V}_{\mathrm{D}, \mathrm{on}}=0.7 \mathrm{~V}$. We do not need a lot of deep thinking to get the associated I/O characteristic

Warm-up examples

Example \#5:

source: Razavi

When the diode is OFF we can model the circuit as a resistive divider:

$$
V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}} V_{\text {in }}
$$

When the diode goes $\mathrm{ON}=>\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{D}, \text { on }}=>$
=> so the turn on point is $V_{D, \text { on }}=\frac{R_{2}}{R_{1}+R_{2}} V_{i n} \Rightarrow V_{i n}=V_{D, o n} \frac{R_{1}+R_{2}}{R_{2}}$

Warm-up examples

Example \#6:

source: Hambley

2. D_{1} is $O N$ and D_{2} is OFF

$$
I_{D 1}=I_{R}=\frac{10}{4 k+6 k}=1 \mathrm{~mA}
$$

$$
V_{R}=I_{R} \times R=1 \mathrm{~m} \times 6 \mathrm{k}=6 \mathrm{~V}
$$

$$
V_{D 2}=3 V-6 V=-3 V
$$

Warm-up examples

Example \#7:

source: Razavi

For $\mathrm{V}_{\text {in }}<0$ the diode is definitely ON .

When the diode is ON:
$V_{\text {out }}=V_{\text {in }}+V_{D, \text { on }} \quad$ (straight line with slope 1 and crossing x axis at $-\mathrm{V}_{\mathrm{D}, \text { on }}$)
When the diode is OFF, the circuit can be modeled as a voltage divider:
$V_{\text {out }}=\frac{R_{1}}{R_{1}+R_{2}} V_{\text {in }} \quad$ (straight line passing through the origin and with slope $\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)$
The break point between ON and OFF is when $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}+\mathrm{V}_{\mathrm{D}, \text { on }}$
$V_{\text {in }}+V_{D, \text { on }}=\frac{R_{2}}{R_{1}+R_{2}} V_{i n} \Rightarrow V_{D, \text { on }}=-\frac{R_{2}}{R_{1}+R_{2}} V_{i n} \Rightarrow V_{\text {in }}=-V_{D, \text { on }} \frac{R_{1}+R_{2}}{R_{2}}$

Warm-up examples

Example \#8:

```
source: Razavi
```


For $\mathrm{V}_{\text {in }}<0$ the diode is definitely ON .

When the diode is ON:
$V_{\text {out }}=V_{\text {in }}+V_{D, \text { on }} \quad$ (straight line with slope 1 and crossing x axis at $-\mathrm{V}_{\mathrm{D}, \text { on }}$)
When the diode is OFF, the circuit can be modeled as a voltage divider:
$V_{\text {out }}=\frac{R_{1}}{R_{1}+R_{2}} V_{\text {in }} \quad$ (straight line passing through the origin and with slope $\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)$
The break point between ON and OFF is when $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}+\mathrm{V}_{\mathrm{D}, \text { on }}$
$V_{i n}+V_{D, \text { on }}=\frac{R_{2}}{R_{1}+R_{2}} V_{i n} \Rightarrow V_{D, \text { on }}=-\frac{R_{2}}{R_{1}+R_{2}} V_{i n} \Rightarrow V_{i n}=-V_{D, \text { on }} \frac{R_{1}+R_{2}}{R_{2}}$

Half-wave rectifiers

Half wave rectifier as a signal strength indicator

$$
\begin{aligned}
& V_{\text {out }}(t)= \begin{cases}V_{p} \sin \omega t & \text { for } 0 \leq \mathrm{t} \leq \mathrm{T} / 2 \\
0 & \text { for } \mathrm{T} / 2 \leq \mathrm{t} \leq \mathrm{T}\end{cases} \\
& V_{\text {out,urg }}=\frac{1}{T} \int_{0}^{T} V_{\text {out }}(t) d t=\frac{1}{T} \int_{0}^{T / 2} V_{p} \sin \omega t d t=\frac{1}{T} \frac{V_{p}}{\omega}[-\cos \omega t]_{0}^{T / 2}=\frac{V_{p}}{\pi} \\
& V_{\text {out }, r m s}=\frac{V_{P}}{2 \sqrt{2}}
\end{aligned}
$$

Half wave rectifier as a battery charger

source: Neamen

$$
V_{S}>V_{B, \text { nominal }}+V_{\gamma}
$$

(b)

(a)

- if $\mathrm{V}_{\mathrm{B}}<\mathrm{V}_{\mathrm{B}, \text { nominal }}$ the battery get recharged (diode is ON from t1 to t2)
- otherwise the battery is left alone (the diode is OFF all period T)

Precision half-wave rectifier

(a)

- If $v_{1}>0$ the diode is ON. With the diode ON the circuit becomes a follower.

$$
\begin{aligned}
& P I V=-V_{S S} \\
& I_{F, \text { max }}=\frac{V_{O, \text { max }}}{R_{L}}=\frac{V_{I, \text { max }}}{R_{L}}
\end{aligned}
$$

(b)

- If $\mathrm{v}_{1}<0$ the diode is OFF with the diode OFF the load is at ground
- For the o.a. to start to operate and turn-on the diode, v_{1} has to exceed only a negligibly small voltage equal to $\mathrm{V}_{p} / \mathrm{A}_{\mathrm{d}}$

Full-wave rectifiers

Diode-bridge full wave rectifier

a.k.a. Grätz bridge

(a) when v_{S} is positive, D_{1} and D_{2} are turned ON
(b) when v_{S} is negative, D_{3} and D_{4} are turned ON

In either case current flows
through R in the same
direction

(b)
source: Neamen

$$
\left\{\begin{array}{ll}
v_{D 4}=v_{s}-v_{D 1} \\
v_{D 3}=v_{D 1}+v_{O} \\
v_{O}=v_{s}-2 v_{v}
\end{array} \quad \begin{array}{l}
I_{D, \text { max }}=\frac{V_{s}-2 V_{\gamma}}{R} \cong \frac{V_{S}}{R} \\
R
\end{array}\right.
$$

Clippers (a.k.a. Limiters)

- The idea behind clippers is quite simple. We have already built one in the past

- All we have to do to shift the clipping threshold to a different value is to add a battery

Positive-cycle limiting circuit

Negative-cycle clipping

Positive and negative cycle clipping

A very common clipper's application

- Protection circuitry: keep the signals below certain thresholds

CMOS IC

"Unconventional" clippers

source: Millman

Clippers with the battery in series

Assuming ideal diode model

source: Neamen

(b)

Non-idealities in limiting circuits

source: Razavi

The clipping region is not exactly flat since as Vin increases, the currents through diodes change, and so does the voltage drop.

Zener diode

source: Sedra \& Smith

Often is convenient to model the breakdown region with a piece-wise linear model:

Zener diode

- A zener diode is a diode specifically manufactured to be be used in breakdown region. The zener's I-V curve in breakdown region is very steep (more than usual)
- Diode breakdown is normally not destructive, provided the power dissipated in the diode is limited to a safe level
- The fact that the diode I/V characteristic in breakdown is almost a vertical line (just like a battery) enables it to be used in voltage regulation (more to come soon !)
- There are two mechanism causing the behavior we have in breakdown region (... despite the mechanism the end result is the same)
- Avalanche: occurs when the minority carriers swept by the electric field in depletion region have enough kinetic energy to be able to break covalent bonds in atoms with which they collide
- Zener: occurs when the electric field in the depletion region increases to the point that it can tear out a bound electron from its covalent bond

Zener diode: data sheet example

On Semiconductor:
Zener Voltage Regulator with $\mathrm{V}_{\mathrm{Z}, \mathrm{nom}}=2.4 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted,
$\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V}$ Max. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for all types)

Symbol	Parameter
V_{Z}	Reverse Zener Voltage @ I_{ZT}
I_{ZT}	Reverse Current
Z_{ZT}	Maximum Zener Impedance @ I_{ZT}
I_{ZK}	Reverse Current
Z_{ZK}	Maximum Zener Impedance @ I_{ZK}
I_{R}	Reverse Leakage Current @ V_{R}
V_{R}	Reverse Voltage
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}
$\Theta \mathrm{V}_{\mathrm{Z}}$	Maximum Temperature Coefficient of V_{Z}
C	Max. Capacitance @ $\mathrm{V}_{\mathrm{R}}=0$ and $\mathrm{f}=1 \mathrm{MHz}$

Zener diode: data sheet example

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{Max}$ @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for all types)							$\boldsymbol{O} V_{Z}$				
	Device Marking	Test Current Izt mA	Zener Voltage VZ		$\begin{aligned} & \mathrm{Z}_{\mathrm{zk}} \mathrm{I}_{\mathrm{z}} \\ & =0.5 \\ & \mathrm{~mA} \Omega \\ & \operatorname{Max} \end{aligned}$	$\begin{gathered} \mathrm{Z}_{\mathrm{ZT}} \\ \mathrm{I}_{\mathrm{Z}}=\mathrm{IZT} \\ @ 10 \% \\ \operatorname{Mod} \Omega \\ \operatorname{Max} \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { IR@ VR } \end{gathered}$		$\mathrm{d}_{\mathrm{VZ}} / \mathrm{dt}(\mathrm{mV} / \mathrm{k})$ $@ \mathrm{I}_{\mathrm{ZT} 1}=5 \mathrm{~mA}$		$\begin{gathered} \text { C pF Max @ } \\ V_{R}=0 \\ f=1 \mathrm{MHz} \end{gathered}$
Device*			Min	Max			$\mu \mathrm{A}$	V	Min	Max	
MM3Z2V4ST1G	T2	5.0	2.29	2.51	1000	100	50	1.0	-3.5	0	450

$$
\mathrm{V}_{\mathrm{Z}, \mathrm{nom}}=2.4 \mathrm{~V}
$$

The impedance of a reference diode is normally specified at the test current (I_{ZT}). It is determined by measuring the ac voltage drop across the device when a 60 Hz ac current with an rms value equal to 10% of the dc zener current is superimposed on the zener current $\left(\mathrm{I}_{\mathrm{ZT}}\right)$.

Zener diode: data sheet example

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Total Device Dissipation FR-4 Board, (Note 1) @ $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}		
Thermal Resistance from Junction-to-Ambient		300	mW
Junction and Storage Temperature Range	$\mathrm{R}_{\theta J \mathrm{~A}}$	4.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 printed circuit board, single-sided copper, mounting pad $1 \mathrm{~cm}^{2}$.

If the current exceed a certain limit the power dissipated $P_{D}=V_{D} \times I_{D}$ rises the junction temperature too much (> $150^{\circ} \mathrm{C}$ in our case) and the device may get damaged
$T_{J}=T_{A}+P_{D} \times R_{\Theta J A}$
A device may get damaged also in the case the junction temperature becomes too small ($<-65^{\circ} \mathrm{C}$ in our case)

The max power rating of the diode ($\mathrm{P}_{\mathrm{D}, \max }=300 \mathrm{~mW}$)
 goes down of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for temperatures above $25^{\circ} \mathrm{C}$

Figure 1. Steady State Power Derating

Clipping with Zener diodes

Basic idea:

Replacing
batteries with
Zener diodes

(a)

(b)

Copyright © The McGraw-Hill Companies, Inc.
Permission required for reproduction or display

More clipping with Zener diodes

- For large positive v_{1} the diode $D_{z 1}$ is forward biased and $D_{z 2}$ is biased in zener region $\left(\mathrm{v}_{1}>\mathrm{V}_{\mathrm{z2}}+0.7\right)$
- For large negative v_{1} the diode $D_{z 1}$ is biased in zener region and $D_{z 2}$ is forward biased $\left(v_{1}<-\mathrm{V}_{\mathrm{Z1}}-0.7\right)$
- In the range $-\left(\mathrm{V}_{\mathrm{Z1}}+0.7\right)<\mathrm{v}_{1}<\mathrm{V}_{\mathrm{Z2}}+0.7$ one of the diodes is in forward region and the other one in reverse region (therefore $v_{0}=v_{1}$)

Another application of clippers: soft limiters

source: Razavi

cell phone far from base station
source: Hambley

Detectors

source: Sedra \& Smith

Dissecting the peak detector a little more

source: Razavi

(b)

Note: the voltage across the diode ($V_{D 1}$) is just like Vin, only shifted down

Detectors: AM demodulator

AM Demodulator

(a)

(b)

Detector circuit
RC $\gg \mathrm{T}_{\mathrm{C}}$ period carrier

Demodulated output signal

Clampers (a.k.a. level shifters)

- Clampers shift the entire signal applied at the input by a DC level.
- In steady state, the output signal is an exact replica of the input waveform, but the output signal is shifted by a DC value
- Common application:
- Suppose there is a stage (e.g. an amplifier) that does not operate properly with the DC level provided at its input, the issue can be solved by putting a level shifter in front of the stage

Positive Peaks Clamper

$$
v_{O}=v_{I}-v_{C}
$$

Assuming $r_{f} \cong 0 \Omega$
and $V_{V}=0 \mathrm{~V}$

This is the "same" circuit of the peak detector, but now we take the output across the diode!

Positive peaks clamper

PWL(0-6 9.999n-6 10n $419.999 n 420 n-629.999 n-630 n 439.999 n 440 n-649.999 n-650 n 4)$

The positive peaks of the output voltage are clamped at 0 V

Negative DC Level Shifter

Positive peaks clamper with Battery

source: Neamen

(a)
Copyight © The McGraw-Hill Companies. Inc.
Pemission required for reproduction or display
Superposition of

$$
\begin{gathered}
\underline{Z} \\
\bar{T} \\
-
\end{gathered}
$$

Positive peaks clamper with battery

- If we take the circuit we just analyzed, and reverse the polarity of the battery we clamp the positive peaks of the signal to a negative voltage value.
- This is no surprise: we still clamp the positive peaks to V_{B} (but now V_{B} happens to be negative)
source: Hambley
NOTE:
when $v_{\text {in }}$ is at +5 V the diode is ON and the cap is charged to $\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}$

(a) Circuit diagram

(b) Output waveform for $v_{\mathrm{in}}=5 \sin (\omega t)$

Negative peaks clamper

Level shifter with peak at $+2 \mathrm{~V}_{\mathrm{p}}$

Negative peaks clamper

Positive DC level shifter: effect of load

- In practice the clamper will be driving a load.

- we need to make sure that $R_{1} C_{1} \gg T / 2$, otherwise when D_{1} is OFF the cap. C_{1} loses too much charge on the load

Example showing the effect of having $R_{1} C_{1}$ too small ($\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{T} / 2$)

Negative peaks clamper with battery

- Example: This circuit clamps the negative peaks of an AC signal to +6 V

source: Hambley

$$
\begin{aligned}
& V_{B}=6 \text { if we assume: } V_{V} \approx 0 V \\
& \text { or } \\
& V_{B}=6.7 \text { if we assume: } V_{V} \approx 0.7 \mathrm{~V}
\end{aligned}
$$

Negative peaks clamper with battery

clamper_npeaksWithR\&B.raw

- 1 (1) な

- © clamper_npeaksWithR\&B.raw
(1) © $x=0.592 \mathrm{~ms} y=1.82 \mathrm{~V}$

What about replacing batteries with Zeners ?

- It kind of works, but we need to keep in mind that (differently from what happened with the limiters) here the zener must work in zener region at all time. So it must be biased in zener region at all time !!
source: Hambley

Circuit that clamps the negative peaks to -5 V

If we take off the -15 V bias voltage and return R directly to ground the diode never turns ON and the circuit doesn't work

(b) Output for $v_{\text {in }}=2 \sin (\omega t)$

Replacing batteries with Zeners

- Example of circuit for clamping positive peaks

source: Hambley

Circuit that clamps the positive peaks to +6 V

Example: another clamper

source: Millman

(a)

(b)

Fig. 4-28 (a) A circuit which clamps to the voltage V_{R}. (b) The output voltage v_{o} for a sinusoidal input v_{i}.

In steady state the cap is charged to $\mathrm{V}_{\mathrm{m}}-\mathrm{V}_{\mathrm{R}}$

Example: another clamper

Circuit's elements:
$C=1 n F$
$R=100 K \Omega$
Ideal diode

$V_{R}=11 \mathrm{~V}$
… clamper_pmillman.raw
(4. (1) な

$$
V_{R}=2 \mathrm{~V}
$$

clamper_pmillman.raw

Alternative ways of clamping

- Inside CMOS ICs DC level shifting is usually achieved using current sources (i.e. MOS transistors) and cascade of diodes (or diode connected MOS transistors)

Assumption:

the current pulled by the next stage is negligible (or at least constant), so that the current through the diode establish a drop of $\mathrm{V}_{\mathrm{D}, \text { on }}$ across the diode

Alternative ways of clamping

- Inside CMOS ICs, another common way of a achieving DC level shifting is by using a Common Drain stage
$V_{i}=V_{G S}+V_{\text {。 }}$

- Output quiescent point is roughly $\mathrm{V}_{\mathrm{t}}+\mathrm{V}_{\text {ov }}$ lower than input quiescent point
- Adjusting the W/L ratio allows to "tune" Vov (= the desired shifting level)

Application: DC Power supply

- Let's take a look at how to build a DC power supply (AC-DC power converter)
source: Sedra \& Smith

Figure 4.22 Block diagram of a dc power supply.

Rectifier + Filter Capacitor + Load

The following circuit (peak rectifier or peak detector) provides a DC voltage equal to the peak of the input sine wave

source: Sedra \& Smith

(b)

So at a first glance it would seem a reasonable solution to use it as a DC power supply to drive a load.

However, once we connect the load if we look at the circuit a little harder we realize it presents some issues

Rectifier + Filter Capacitor + Load

Waveforms for half-rectifier with smoothing capacitor

Ripple for different capacitor values

source: Razavi

$$
V_{D}=V_{\text {in }}-V_{\text {out }}
$$

$$
P I V \approx 2 \times V_{M}
$$

- The amplitude of the ripple is given by the decaying exponential
- For $\mathrm{V}_{\text {out }}$ to have small ripple we need large C

Ripple and $\mathrm{I}_{\mathrm{D}, \max }$

The current supplied to RL is almost constant and is bounded by $\mathrm{V}_{\mathrm{m}} / \mathrm{RL}$

The diode's current is max at the beginning of the conduction interval and it goes down as the diode tends to turns off

This is also when the current through the cap. is max (this is because the slope of Vout is max)

$$
I_{D, \max }=\left.C \frac{d V_{o u t}}{d t}\right|_{t=-\Delta t}+\frac{V_{m}}{R_{L}}
$$

We need to find $\mathrm{I}_{\mathrm{C}, \max }$!

Ripple and $I_{D, \max }$

$$
I_{C, \text { max }}=\left.C \frac{d V_{\text {out }}}{d t}\right|_{t=-\Delta t}=\left.C \frac{d}{d t}\left(V_{m} \cos \omega t\right)\right|_{t=-\Delta t}=C V_{m} \omega[-\sin (-\omega \Delta t)]=C V_{m} \omega \sin \omega \Delta t
$$

The diode conducts current only a small portion of the period ($\Delta \mathrm{t} / \mathrm{T} \ll 1$) therefore $\omega \Delta \mathrm{t}$ is a small angle and $\sin (\omega \Delta \mathrm{t}) \approx \omega \Delta \mathrm{t}$

$$
I_{C, \text { max }} \approx \omega C V_{m}(\omega \Delta t)
$$

Looking at the "geometry" of $V_{\text {out }}$ we see that:
$V_{m} \cos (-\omega \Delta t)=V_{m} \cos \omega \Delta t=V_{m}-V_{r} \Rightarrow \cos \omega \Delta t=1-\frac{V_{r}}{V_{m}}$
Taylor for small angles

$$
\cos \omega \Delta t \approx 1-\frac{1}{2}(\omega \Delta t)^{2}
$$

Ripple and $I_{D, \max }$

$$
\begin{aligned}
& I_{D, \text { max }}=\frac{2 \pi}{T} C V_{m} \sqrt{\frac{2 V_{r}}{V_{m}}}+\frac{V_{m}}{R_{L}}=\frac{V_{m}}{R_{L}}\left(1+2 \pi \frac{C R_{L}}{T} \sqrt{\frac{2 V_{r}}{V_{m}}}\right) \approx \underset{\sim}{R_{L}}\left(1+2 \pi \sqrt{\frac{2 V_{m}}{V_{r}}}\right) \\
& \frac{V_{m}}{R_{L} C} \cong \frac{V_{r}}{T} \leftarrow \text { slope of exponential decay at } \mathrm{t}=0
\end{aligned}
$$

$$
\left.\xrightarrow[\text { area triangle }]{I_{D, a r g}} \approx \frac{1}{T} \times \frac{V_{m}}{R_{L}}\left(1+2 \pi \sqrt{\frac{2 V_{m}}{V_{r}}}\right) \times \frac{\Delta t}{2}=\frac{1}{2} \times \frac{V_{m}}{R_{L}} \times \frac{\Delta t}{T}\left(1+2 \pi \sqrt{\frac{2 V_{m}}{V_{r}}}\right) \cong \xlongequal\left[{\left(\frac{V_{m}}{R_{L}} \times\left(\frac{1}{4 \pi} \sqrt{\frac{2 V_{r}}{V_{m}}}+1\right.\right.}\right)\right]{\longrightarrow \frac{\Delta t}{T} \approx \frac{1}{2 \pi} \sqrt{\frac{2 V_{r}}{V_{m}}}}
$$

Can we further reduce the ripple?

- Yes it is. Instead of using a simple diode rectifier we can use a bridge

- Since C discharges only for $1 / 2$ period, the ripple voltage is decreased by a factor of 2
- Also each diode is approximately subjected to only one V_{m} reverse bias drop (versus the $2 \mathrm{~V}_{\mathrm{m}}$ we had with the half-wave rectifier).

Reverse Bias $\approx V_{m}$

$$
V_{A B}=V_{D, \text { on }}+V_{\text {out }}
$$

Bridge Rectifier + Filter Capacitor + Load

$$
I_{D, \max } \cong \frac{V_{m}}{R_{L}} \times\left(1+\pi \sqrt{\frac{2 V_{m}}{V_{r}}}\right)
$$

\% of time the diode is ON

$$
\frac{\Delta t}{T} \simeq \frac{1}{\pi} \sqrt{\frac{2 V_{r}}{V_{m}}}
$$

$$
I_{D, a v g} \approx \frac{V_{m}}{R_{L}} \times\left(\frac{1}{\pi} \sqrt{\frac{V_{r}}{2 V_{m}}}+1\right)
$$

Voltage Regulator

source: Razavi

- The ripple created by the rectifier can be unacceptable to sensitive loads. Therefore, a regulator is required to obtain a more stable output.
source: Hambley

Variable source

Voltage Regulator

source: Razavi

- As long as $r_{d} \ll R_{1}$, the use of a Zener diode provides a relatively constant output despite input variations

Example: $r_{d}=5 \Omega, R_{1}=1 \mathrm{~K}$
changes in $\mathrm{V}_{\text {ss }}$ are attenuated by about 200 times at the output

Voltage Regulation with Zener Diode

- Example

Design a voltage regulator to power a car radio at $\mathrm{V}_{\text {out }}=9 \mathrm{~V}$ from an automobile battery whose voltage may vary between 11 V and 13.6 V .
The current in the radio will vary between 0 (off) to 100 mA (full volume).
source: Neamen

$$
V_{s s, n o m}=12 \mathrm{~V}, \quad V_{s s, \text { middle }}=12.3 \mathrm{~V}
$$

Initially, we need to find out the proper input resistance R_{i}.

- The resistance R_{i} limits the current through the zener diode and drops the "excess" voltage between $\mathrm{V}_{\text {ss }}$ and the nominal voltage we want on the load $V_{\text {out,nom }}=V_{Z, T}=V_{Z, \text { nom }}$ (in other words it sets the diode operating point Q_{T})

Voltage Regulation with Zener Diode

Initially, assume ideal diode:

$$
\begin{aligned}
& R_{i}=\frac{V_{S S, \text { nom }}-V_{Z, n o m}}{I_{Z, n o m}+I_{L, n o m}} \\
& I_{L, n o m}=\frac{V_{Z, \text { nom }}}{R_{L, n o m}}
\end{aligned}
$$

More thoroughly, for the circuit to work properly, the diode must remain in zener region and the power dissipation of the diode must not exceed its rated value (P_{D}). In other words:

- The current in the diode is a minimum $I_{Z, \min }$ when the load current is a maximum $I_{L, \text { max }}$ and the source voltage is a minimum $\mathrm{V}_{\mathrm{ss}, \text { min }}$
- The current in the diode is a maximum $\mathrm{I}_{\mathrm{Z}, \max }$, when the load current is a minimum $\mathrm{I}_{\mathrm{L}, \min }$ and the source voltage is a maximum $\mathrm{V}_{\mathrm{ss}, \max }$

Therefore we can impose the two following constraints: $\quad R_{i}=\frac{V_{S S, \text { min }}-V_{Z, n o m}}{I_{Z, \text { min }}+I_{L, \text { max }}}$ and $\quad R_{i}=\frac{V_{S S, \text { max }}-V_{Z, \text { nom }}}{I_{Z, \text { max }}+I_{L, \text { min }}}$

Voltage Regulation with Zener Diode

$$
R_{i}=\frac{V_{S S, \min }-V_{Z, \text { nom }}}{I_{Z, \min }+I_{L, \max }} \quad R_{i}=\frac{V_{S S, \max }-V_{Z, n o m}}{I_{Z, \max }+I_{L, \min }}
$$

Reasonably, we can assume that we know the range of input voltage, the range of output load current, and the Zener voltage. Further, it is reasonable to set the minimum zener current to be $I_{z, \min } \approx 0.1 \times I_{z, \text { max }}$ More stringent design requirements may require the minimum zener diode current to be 20 or 30 percent of the maximum value.
The important point in setting $\mathrm{I}_{\mathrm{z} \text { min }}$ is to make sure is far enough from the knee !!

By equating the constrains on R_{i} and setting $I_{z, \min } \approx 0.1 \times I_{z, \max }$ we can write:
$I_{Z, \text { max }}=\frac{I_{L, \text { max }} \cdot\left(V_{s s, \text { max }}-V_{Z, \text { nom }}\right)-I_{L, \text { min }} \cdot\left(V_{s s, \text { min }}-V_{Z, \text { nom }}\right)}{V_{s s, \text { min }}-0.9 \times V_{Z, \text { nom }}-0.1 \times V_{s s, \text { max }}}$
The maximum power dissipated in the Zener diode is approximately:

$\Delta V=\Delta I r_{z}$
$P_{Z, \text { max }} \approx I_{Z, \text { max }} \times V_{Z, \text { nom }}$
Therefore: $\quad R_{i}=\frac{V_{s s, \max }-V_{Z, \text { nom }}}{I_{Z, \max }+I_{L, \text { min }}} \quad$ and $\quad I_{Z, \text { min }}=\frac{V_{s s, \text { min }}-V_{Z, \text { nom }}}{R_{i}}-I_{L, \text { max }}$

Voltage Regulation with Zener Diode

... and finally make sure $\mathrm{P}_{\mathrm{Z}, \max }<\mathrm{P}_{\mathrm{D}}$ and $\mathrm{I}_{\mathrm{Z}, \min }<\mathrm{I}_{\mathrm{ZK}}$

Let's now go back to the example and plug in some numbers:

source: Neamen
$I_{Z, \text { max }}=\frac{I_{L, \text { max }} \cdot\left(V_{s s, \max }-V_{Z, \text { nom }}\right)-I_{L, \text { min }} \cdot\left(V_{s s, \min }-V_{Z, \text { nom }}\right)}{V_{s s, \text { min }}-0.9 \times V_{Z, \text { nom }}-0.1 \times V_{s s, \max }}=\frac{100 \cdot(13.6-9)-0}{11-0.9 \cdot 9-0.1 \cdot 13.6} \cong 300 \mathrm{~mA}$
$P_{Z, \text { max }} \approx I_{L, \text { max }} \times V_{Z, \text { nom }}=300 \mathrm{~mA} \times 9 \mathrm{~V}=2.7 \mathrm{~W} \quad R_{i}=\frac{V_{s s, \text { max }}-V_{Z, \text { nom }}}{I_{Z, \text { max }}+I_{L, \min }}=\frac{13.6-9}{300 \mathrm{~m}+0} \cong 15.3 \Omega$
$I_{Z, \min }=0.1 \times I_{Z, \max } \cong 30 \mathrm{~mA}$
$P_{R i, \max }=\frac{\left(V_{s s, \max }-V_{Z, \text { nom }}\right)^{2}}{R_{i}}=\frac{(13.6-9)^{2}}{15.3} \cong 1.4 \mathrm{~W}$

Regulator's figures of merit

- In reality the zener is not ideal. It has some non zero resistance, therefore if the source voltage or the load current fluctuates, so does the $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{Z}}$

source: Neamen

Source regulation (a.k.a. line regulation)
It is a measure of how much the output voltage changes as the source voltage change (assuming no-load condition $\mathrm{R}_{\mathrm{L}}=\infty$)

$$
\text { source regulation } \equiv \frac{\Delta \mathrm{V}_{\text {out }}}{\Delta \mathrm{V}_{\mathrm{ss}}} \times 100 \%
$$

ability to maintain a constant output voltage level on the output despite changes to the input voltage level

Line regulation example

Example:

Find the line regulation for the previous example, assuming $r_{z}=2 \Omega$

$$
\begin{array}{ll}
\text { For } \mathrm{V}_{\mathrm{ss}}=13.6 \mathrm{~V}: & I_{Z}=\frac{V_{s s}-V_{Z}}{R_{1}+r_{Z}}=\frac{13.6-9}{15.3+2} \cong 265.9 \mathrm{~mA} \Rightarrow V_{\text {out }}=I_{Z} \times r_{Z}+V_{Z}=9.532 \mathrm{~V} \\
\text { For } \mathrm{V}_{\mathrm{ss}}=11 \mathrm{~V}: & I_{Z}=\frac{V_{s s}-V_{Z}}{R_{1}+r_{Z}}=\frac{11-9}{15.3+2} \cong 115.61 \mathrm{~mA} \Rightarrow V_{\text {out }}=I_{Z} \times r_{Z}+V_{Z}=9.231 \mathrm{~V}
\end{array}
$$

source: Neamen

$$
\frac{\Delta V_{\text {out }}}{\Delta V_{\text {in }}}=\frac{9.532-9.231}{13.6-11} \cong 15.6 \%
$$

Alternatively by considering just the variations (small signal circuit)

source: Razavi

Regulator's figures of merit

Load requlation

It is a measure of the change in output voltage with a change in load current

$$
\text { load regulation } \equiv \frac{V_{\text {out }, \text { noload }}-V_{\text {out }, \text { fulload }}}{V_{\text {out }, \text { fulload }}} \times 100 \%
$$

capability to maintain a constant voltage on the output despite changes in the load (such as a change in resistance value connected across the supply output
where:

- $\mathrm{V}_{\text {out,noload }}$ is the load voltage for zero load current
- $\mathrm{V}_{\text {out,fullload }}$ is the load voltage for the maximum rated load current

In practice, there are a couple of other ways of defining load regulation.
load regulation $\equiv \frac{V_{\text {out }, \text { noload }}-V_{\text {out }, \text { fulload }}}{V_{\text {out }, \text { nomload }}} \times 100 \%$
load regulation $\equiv\left|\frac{V_{\text {out } t \text { noload }}-V_{\text {out fulload }}}{I_{L, \text { noload }}-I_{L, \text { fulload }}}\right| \quad=\left|\frac{\Delta V_{\text {out }}}{\Delta I_{L}}\right|$

Load regulation example

Example:

Find the load regulation for the usual example. Assume $r_{z}=2 \Omega$

Note:

When measuring the load regulation the source is assumed constant. Since the full load current is reached for $\mathrm{V}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{s}, \text {, max }}$ for load regulation computations we must assume $\mathrm{V}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}, \mathrm{max}}=$ const

For $I_{L}=0 \mathrm{~A}: \quad I_{Z}=\frac{V_{\text {ss., max }}-V_{Z}}{R_{1}+r_{Z}}=\frac{13.6-9}{15.3+2} \cong 265.9 \mathrm{~mA} \Rightarrow V_{\text {out }}=I_{Z} \times r_{Z}+V_{Z}=9.532 \mathrm{~V}$
For $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}: \quad I_{Z}=\frac{V_{R 1}}{R_{1}}-I_{L}=\frac{V_{s s, \text { max }}-\left(V_{Z}+r_{Z} \times I_{Z}\right)}{R_{1}}-I_{L}$

$$
\Rightarrow I_{Z}=\frac{V_{s s, \text { max }}-V_{Z}-I_{L} \times R_{1}}{R_{1}+r_{Z}}=\frac{13.6-9-100 \mathrm{~m} \times 15.3}{15.3+2} \cong 177.46 \mathrm{~mA} \Rightarrow V_{\text {out }}=I_{Z} \times r_{Z}+V_{Z}=9.355 \mathrm{~V}
$$

$\frac{V_{\text {out }, \text { noload }}-V_{\text {out }} \text { fflllood }}{} V_{\text {out }, \text { fulload }} \quad \times 100 \%=\frac{9.532-9.355}{9.355} \times 100 \% \cong 1.89 \%$

Load regulation example

Alternatively by considering just the variations (small signal circuit)

$$
\Delta V_{\text {out }}=\left(R_{1} \| r_{Z}\right) \Delta I_{L} \Rightarrow \frac{\Delta V_{\text {out }}}{\Delta I_{L}}=\left(R_{1} \| r_{Z}\right)=15.3 \| 2 \cong 1.77 \Omega
$$

For a ΔI_{L} of 100 mA we have that $\Delta \mathrm{V}_{\text {out }} \cong 177 \mathrm{mV}$
(As expected this is the same result we got before $\Delta \mathrm{V}_{\text {out }}=9.532-9.355=177 \mathrm{mV}$)

Evolution of an AC-DC converter

source: Razavi

Ideally we want both line regulation and load regulation to be as close as possible to 0\%

Voltage doubler

If we take the clamper just designed and attach a peak detector at its output we get a voltage doubler

Voltage doubler: detailed analysis

Voltage doubler: detailed analysis

Each input cycle, the output increases by $V_{p}, V_{p} / 2, V_{p} / 4$, etc., eventually settling to $2 V_{p}$

$$
V_{\text {out }}=V_{P}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right)=V_{P} \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=V_{P} \frac{1}{1-1 / 2}=2 V_{P}
$$

Voltage doubler: detailed analysis

Diodes as Switches

A diode placed across the inductive load, will give the voltage spike a safe path to discharge, looping over-and-over through the inductor and diode until it eventually dies out.

PWL(0 0 1m 0 1.1m 5 20m 520.1 m 0)

Special Diodes

- Schottky-Barrier Diode (SBD)

- SBD are built using a metal-semiconductor junction
- current is conducted by majority carriers (electrons).

Thus SBD do not exhibit the minority carrier charge storage effect. As a result SBD can be switched from on to off and vice versa much faster

- The forward voltage drop is lower (0.3 V to 0.5 V for silicon)
- Varactors

- Photodiodes

- LEDs

The wavelength of the light emitted, and thus the color, depends on the band gap energy of the materials forming the $p-n$ junction.

Voltage doubler modeled with switches

Voltage doubler modeled with switches

