Intrinsic Capacitance BW – Supply Current Tradeoff

Claudio Talarico Gonzaga University

The Culprit

- In practical circuits, the presence of capacitance prevents us from building circuits that can run "infinitely" fast
 - Sometimes inductors can be used improve the situation

$$\begin{array}{c|c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \hline & \bullet &$$

- Intuition
 - High frequency results in large dv_c/dt and large i_c
 - Capacitor becomes a "short" for high frequencies

Modeling MOSFET Capacitance (1)

- To predict the frequency response of our CS amplifier, we need to understand the capacitances associated with the MOS device
- We will first look at "intrinsic gate capacitance"
 - Intrinsic means that this capacitance is unavoidable and required for the operation of the device
- There are plenty of "extrinsic" capacitances as well
 - We'll neglect these for the time being and discuss them in detail next lecture
- To model gate capacitance, we must distinguish the MOSFET's operating regions
 - Transistor on
 - Triode and active regions
 - Transistor "off"
 - Sub-threshold operation

Transistor Off

- There is no conductive channel
 - Gate sees a capacitor to substrate, equivalent to the series combination of the gate oxide capacitor and the depletion capacitance
- If the gate voltage is taken negative, the depletion region shrinks, and the gate-substrate capacitance grows
 - With large negative bias, the capacitance approaches WLC_{OX}

Transistor in Triode Region

Electrons respond to gate via the S and D; this effectively "short out" the effects of C_{CB} (Bulk charge is not changing with VGB: any increment in gate charge is mirrored in the inversion layer)

- Gate terminal and conductive channel form a parallel plate capacitor across gate oxide C_{GC} = WL ε_{ox}/t_{ox} = WLC_{ox}
 - We can approximately model this using lumped capacitors of $^{\circ}$ size $^{1\!\!/_2}C_{GC}$ each from gate-source and gate-drain
 - Changing either voltage will change the channel charge
- The depletion capacitance C_{CB} adds extra capacitance from drain and source to substrate
 - Usually negligible (see above comment)

Transistor in Saturation Region

- Assuming a long channel model, if we change the source voltage
 - The voltage difference between the gate and channel at the drain end remains at V_t, but the voltage at the source end changes
 - This means that the "bottom plate" of the capacitor does not change uniformly
- Detailed analysis shows that in this case C_{gs}=²/₃WLC_{ox}
 - For your amusement you can derive this; write Q(V(y)) and integrate from 0 to L
- In the long channel model for active operation, the drain voltage does not affect the channel charge
 - This means C_{qd} =0 in the saturation region!
 - Neglecting second order effects and extrinsic caps, of course

Fall 2014 - Intrinsic Capacitance; BW - Supply Current Tradeoff

Intrinsic MOS Capacitor Summary

source: B. Murmann

	Subthreshold	Triode	Saturation
C _{gs}	0	$\frac{1}{2}$ WLC _{ox}	$^{2}/_{3}WLC_{ox}$
C _{gd}	0	$\frac{1}{2} WLC_{ox}$	0
C _{gb}	$\left(\frac{1}{C_{CB}} + \frac{1}{WLC_{ox}}\right)^{-1}$	0	0

 $C_{CB} = \frac{\varepsilon_{Si}}{x_d} WL$ x_d is the width of the depletion region at the silicon surface

• For $V_{bi} \le V_{GB} \le V_t$

Performance Considerations (1)

Source: B. Murmann

- Suppose we want to maximize the bandwidth of our circuit
 - And keep the current consumption (I_D) as low as possible
- Further assume that R_i, R and A_{v0} are fixed
 - Fixed by the particular application in which the circuit is used
- For the bandwidth, we can write

Fall 2014 – Intrinsic Capacitance; BW – Supply Current Tradeoff

Performance Considerations (2)

Source: B. Murmann

For the current we can write

- Observations
 - Larger V_{OV} means larger bandwidth
 - Unfortunately larger V_{OV} also results in larger I_D
- Part of your job as an analog designer is to choose $V_{\rm OV}$ such that you get sufficient bandwidth while using as little current as possible

Performance Considerations (3)

- Even though we've come to this observation using a very simple example, this tradeoff tends to hold in general
 - Of course, additional considerations and second order dependencies will factor in as you learn more about analog circuit design...
- The reasons behind this tradeoff lie in the fundamental properties of the transistor itself
- To see this, think about what we really want from the MOSFET
 - Large g_m without investing much current
 - I.e. large g_m/I_D
 - Large g_m without having large C_{gs}
 - I.e. large g_m/C_{gs}

g_m/I_D and g_m/C_{gs}

	V _{ov} small	V _{ov} large
g _m /I _D	Large 🕐	Small
g _m /C _{gs}	Small	Large 🕐

Source: B. Murmann

 In cases where we want to get the "best of both worlds", it is interesting to look at the product of our two figures of merit

 $\frac{g_m}{I_D} \cdot \frac{g_m}{C_{gs}} = \frac{3\mu}{L^2}$

- While this result looks boring, it shows that using smaller channel lengths improves circuit performance
 - Either or both speed and current efficiency

Scaling Impact

- Thanks to "Moore's Law" feature sizes and thus the available minimum channel length has been shrinking continuously
 - L_{min} has decreased roughly 2x every 5 years
 - L_{min} =10mm in 1970, L_{min} =45nm in 2007
- From the above discussion, it is clear that we can exploit technology scaling in different ways
 - Build faster circuits (higher g_m/C_{gs}), while keeping power efficiency constant (g_m/I_D)
 - E.g. A/D converter for a disk drive want to maximize bandwidth/ throughput
 - Build more <u>efficient</u> circuits (higher g_m/I_D), while keeping the bandwidth constant (g_m/C_{gs})
 - E.g. A/D converter for video signals bandwidth fixed by a certain standard

Aside: g_m/I_D of a "Real Transistor"

- Long channel predication (2/V_{OV}) is fairly close to "real device" for V_{OV} > 150mV
- Unfortunately g_m/I_D does not approach infinity for $V_{OV} \rightarrow 0$
 - In this course limit V_{OV} >= 150mV in to avoid non-physical design outcomes

Aside: Transit Frequency (ω_T)

Source: B. Murmann

 The transit frequency of a transistor has "historically" been defined as the frequency where the magnitude of the common source current gain (|i_o/i_i|) falls to unity

• Ignoring extrinsic capacitance, it follows that

$$\omega_T = \frac{g_m}{C_{gs}} = \frac{3}{2} \frac{\mu V_{OV}}{L^2}$$

 Incidentally, this metric is identical to the figure of merit we considered on the previous slides

Aside: Transit Frequency Interpretation

- The transit frequency is only useful as a figure of merit in the sense that it quantifies g_m/C_{qs}
- It does not accurately predict up to which frequency you can use the device
 - At high frequencies, many assumptions in our "lumped" transistor model become invalid
 - Rule of thumb: lumped model is good up to about $\omega_T/5$
- At higher frequencies, device modeling becomes more challenging and many effects depend on how exactly you layout and connect the device