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WWelcome to the 11th article in the 
“Circuit Intuitions” column series. 
As the title suggests, each article 
provides insights and intuitions into 
circuit design and analysis. These 
articles are aimed at undergraduate 
students but may serve the interests 
of other readers as well. If you read 
this article, I would appreciate your 
comments and feedback as well as 
your requests and suggestions for 
future articles in this series. Please 
e-mail your comments to me at ali@
ece.utoronto.ca.

In the previous article in this se-
ries,  “A Capacitor Analogy, Part 1,” we 
described how a glass of water with 
cross-section area C  and water height 
V  is analogous to a capacitor with ca-
pacitance C  and voltage V  across the 
capacitor. In particular, we showed 
how the energy stored and wasted 
during the process of charging the ca-
pacitor are equal, respectively, to the 
potential energy stored and wasted 
during the process of filling the glass 
with water. In this column, we take 
this analogy one step further to see 
if it could solve a classic problem in 
charge sharing between two capaci-
tors. We state the problem first, build 
and solve its analogous problem using 
a glass of water, and then return to the 
original problem.

Consider two identical capacitors, 
one charged to V  and one charged 
to zero (fully discharged) with a 
switch between them as shown in 
Figure 1. The internal resistance of 
the switch and the wiring resistance 

are all lumped into a single resistor R. 
There are two questions (often asked 
in job interviews) that we would like 
to answer here: 1) what is the total 
energy stored in the capacitors before 
and after the switch is closed? and 2) 
where does the difference go?

To answer these questions, we first 
build an analogous problem using 
two glasses, a pipe, and a valve, as 
shown symbolically in Figure 2. Like 
a practical switch, the valve and the 
pipe represent an ideal switch and a 
series resistance, respectively. The 
valve and the pipe are assumed to hold 
no water, so as not to contribute to 
total capacitance, but allow the water 

to flow between the two glasses when 
the valve is open (similar to a switch 
being closed) and block the water flow 
when the valve is closed (similar to a 
switch being open). We will refer to 
open and closed valves as being ON 
and OFF, respectively, to be consistent 
with the terminology being used for 
an electrical switch. While the valve 
is OFF, we fill one glass with water to 
height V  while keeping the other glass 
empty. If we now turn the valve ON, 
the water will flow from the full glass 
to the empty one until the water 
level is the same in both glasses. One 
can  easily see that, in this process, 
the total amount of water is the same 
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Figure 2: A glass with a cross-section area C and water height V shares its water with an 
empty glass of same size via a pipe and a valve.
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Figure 1: A capacitor charged to initial voltage V shares its charge with a discharged 
 capacitor of equal capacitance via a switch.
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before and after we open the valve, 
but we have now created an effec-
tive glass with twice the cross-section 
area. This will result in a new water 
height that is half of the initial height 
/ .V 2  This situation is identical to that 

of two capacitors. The total amount 
of charge ( )CV  will remain the same 
before and after we close the switch. 
However, the equivalent capacitance 
is C2  after we close the switch. There-
fore, the voltage across the capacitors 
will settle to /V 2.

What about the energy before and 
after the valve is turned ON? Before 
turning the valve ON, all the poten-
tial energy is stored in the left glass. 
We can write

/ / .E C V V CV2 0 22
before # #= + =

After turning the valve ON, we 
can write

/ / / ,E C V V CV2 2 4 42
after # #= =

where Ebefore and Eafter represent the 
total potential energy stored in the 
system before and long after we turn 
on the valve. We have also assumed 
unity water density ( )t  and gravity 
( ).g  These same equations are also 
valid for the case of two capacitors. In 
both cases (see Figure 3), we lose half 
of the initial energy. The question is 
where the energy is lost. To answer 
this question, the reader is encour-
aged to think of an answer for the 
case of two glasses first and see if the 
answer can be extended to the case of 
two capacitors.

Both the glass and the pipe walls 
present friction to the flow of water 
from one glass to the other. When we 
first turn ON the valve, part of the poten-
tial energy is turned to kinetic energy, 
moving water from the left glass to the 
right one. The kinetic energy, however, 
is turned to heat as the water flow will 
have friction with the walls of the pipe 
and the glass. Once the water level is 
settled to its final value, all the kinetic 
energy is turned to heat, warming up 
the water and the glass accordingly. 
What is interesting in this case is that 
the total energy lost to heat is always 

half of the total initial energy, indepen-
dent of the pipe diameter and the glass 
surface roughness (which contributes 
to its resistance to water movement). 
If the overall resistance to water move-
ment is larger, it will take longer for the 
water to settle to its final height, but 
the energy will be lost at a lower rate. 
If the resistance is smaller, the water 
will move faster, but the rate of energy 
loss will be higher. Again, in all cases, 
exactly half of the initial energy is lost 
in the process of water sharing.

Let us now return to the case of 
two capacitors. Similar to the valve 
and the pipe, the switch and its associ-
ated resistance will impede the flow of 
charge from one capacitor to the other. 
The energy lost in this process is the 
energy dissipated as heat in the resis-
tor. To see this quantitatively, let us 
write an equation for the current flow-
ing from the left capacitor to the right. 
For ,t 02  we have

.i t R
V eR RC

t2
=

-
^ h

And hence the power being dissi-
pated in the resistor can be written as

.p t R
V eR RC

t2 4
=

-
^ h

These equations show that the low-
er the ,R  the larger the initial current 
and the initial power (proportional to 
/ ),R1  but the smaller the time constant 

(proportional to R). Since the area un-
der a decaying exponential curve is 
the product of its initial value and its 

time constant, the energy dissipated, 
which is the area under ,p tR ^ h  will be 
independent of R:

.E R
V RC CV4 4

1
R

2
2#= =

This equation confirms that the 
energy wasted in the process of 
charge sharing is independent of the  
switch resistance.

An interesting exercise to contem-
plate here is the case where R is exactly 
zero. Clearly, there will be no heat dis-
sipation in this case as there is no resis-
tance. What happens then? Will half of 
the initial stored energy be wasted again 
in the process of charge sharing? If yes, 
where is it wasted and in what form? 
The reader is encouraged to resort back 
to our analogy again and see if a similar 
case can be built in the analogous world 
and if an answer may emerge. In the 
interest of giving the readers a chance 
to explore these questions on their own, 
we will answer these questions in a 
future article.

In summary, the process of charge 
sharing of two capacitors using a switch 
is analogous to the process of water 
sharing among two adjacent glasses 
using a valve and a pipe. In both cases, 
where the two capacitors (glasses) 
have equal capacitances (cross-section 
areas), exactly half of the initial stored 
(potential) energy is lost in the process 
of charge (water) sharing. This loss is 
independent of the switch resistance 
(pipe diameter and friction).
 

Two Capacitors
(Charge Sharing) Equation

Two Glasses
(Water Sharing)

Total Charge at t < 0 CV + 0 Total Weight at t < 0

Total Charge at t > 0 CV /2 + CV /2 Total Weight at t > 0

Final Voltage at t > 0 V /2 Water Height at t > 0

Total Energy at t < 0 ½ CV2 Potential Energy at t < 0

Total Energy at t > 0 ¼ CV2 Potential Energy at t > 0

Figure 3: The equations governing the charge sharing between two capacitors are identical 
to those governing the water sharing between two glasses of water. We have assumed unity 
water density ( )t  and gravity (g) in writing these equations.


