
circuit intuitions

Ali Sheikholeslami

   IEEE SOLID-STATE CIRCUITS MAGAZINE Winter 20 17  7

WWelcome to the 12th article in the 
“Circuit Intuitions” column series. 
As the title suggests, each article 
provides insights and intuitions into 
circuit design and analysis. These 
articles are aimed at undergraduate 
students but may serve the interests 
of other readers as well. If you read 
this article, I would appreciate your 
comments and feedback, as well as 
your requests and suggestions for 
future columns in this series. Please 
e-mail your comments to me at ali@
ece.utoronto.ca 

In the previous two articles in this 
series, “A Capacitor Analogy, Part 1” 
and “A Capacitor Analogy, Part 2,” 
we described how a glass of water 
with cross-section area C and water 
height V is analogous to a capacitor 
with capacitance C and voltage V 
across the capacitor. At the end of 
Part 2, we asked readers to contem-
plate the process of charge sharing 
between two capacitors, as shown 
in Figure 1, when the switch is ideal 
(i.e., has zero resistance) to see if 
the energy wasted in this process 
is still half the initial stored energy. 
Also, we asked if the water sharing 
between two glasses follows the  
same process, i.e., has a similar solu-
tion. This article focuses on provid-
ing answers to these questions and 
exploring a similar problem in our 
glass of water analogy.

An ideal switch is characterized 
by the following equations:
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Because the switch is either open 
or closed, it appears that either the 
current through the switch or the 
voltage across it is always zero. Con-
sequently, it may be concluded that 
the power consumed by the switch 
is always zero! 

This is, indeed, true for t 01  
(when the switch is open) and for t 02  
(when the switch is closed), but not 
for t 0=  (when we turn the switch on). 
To see this, let us begin by identifying 
an equation for the voltage across the 
switch as a function of time ( ) .v ts  For 

,t 01  we already know that ( ) .v t vs =  
For ,t 02  ( )v t 0s =  because the switch 
is closed. If we assume ( )v ts  is half-
way between these voltages at ,t 0=  
then we can write an equation for 

( )v ts  as follows:

( ) ( ( )),v t tV
2 1 sgns = -

where ( )tsgn  is defined as

( ) .t

t

t

t

1 0

0 0

1 0

sgn

1

2

=

-

=

+

Z

[

\

]]

]]

Given ( ),v ts  we can now write an 
equation for the current through the 
switch. Because the switch is placed 
in series with the two series ca-
pacitors (with an equivalent capaci-
tance C/2), its current is the same as 
those of the two capacitors. Thus, we 
can write

( ) ( ),i t
dt

Cdv C V t2 2
s d=- =

where ( )td  represents the Dirac delta 
function. We can now write an expres-
sion for the instantaneous power con-
sumption of the switch ( ), ( ) ( ),p t v t i ts  
as follows:

( ) ( ( )) ( ) .p t C V t t4 1 sgn2 d= -

This power is clearly zero for any 
time before and after zero, but it is 
infinity at t 0= . However, the inte-
gral of this power, which provides 
the energy consumption of the ideal 
switch in this circuit, is well defined. 
We can write

( ) .E p t dt CV4
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This equation confirms that an ideal 
switch consumes half of the energy 
initially stored in the capacitor.

Let us now return to our analogy 
and see what happens if we use an 
ideal pipe and valve in water shar-
ing between the two glasses. First, 
we need to imagine ways to reduce 
the friction, perhaps by using pol-
ished glasses with no surface rough-
ness and by increasing the pipe 
diameter. One way to do this would 
be to replace the valve and pipe with 
a wall between two polished glasses 
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Figure 1: A capacitor charged to initial 
voltage V shares its charge with a dis-
charged capacitor of equal capacitance via 
a switch with zero resistance.
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and to assume that this wall can be 
removed instantly, corresponding 
to turning the valve on. 

As shown in Figure 2, water is ini-
tially trapped on the left side of the 
wall. When we instantly remove the 
wall, the water rushes from left to 
right, gaining kinetic energy while 
losing some of its potential energy 
on the path, then losing the kinetic 
energy to the potential energy again 
and moving back to the left, then to 
right, and so on. In fact, if there is 
no resistance in the path of water 
motion that turns kinetic energy to 
heat, we would expect the energy 
to oscillate back and forth between 
potential energy and kinetic energy. 

Readers can verify experimentally at 
home that this behavior is not lim-
ited to the ideal situation we have 
imagined. In fact, even with a simple 
U-tube and a valve, as shown in Fig-
ure 3, turning the valve on quickly will 
create oscillations in the water level, 
albeit damped because we could not 
remove friction completely.

Why is there such a difference in 
behavior? Why can we not observe 
a similar behavior in capacitors? Or 
can we? Readers are encouraged to 
ponder these questions before con-
sidering the answers that follow.

The energy stored in the two 
glasses can take the form of either 
potential energy (when the water 
is still) or kinetic energy (when the 
water is moving). The stored energy 
changes form as we open the valve 
and allow water to move (i.e., store 
energy in kinetic form). However, 
at any moment in time, part of the 
stored energy is in kinetic form, and 
part is in potential form. After the 
water settles, due to friction, only 
potential energy will be left in the 
two glasses. 

In our capacitor example, how-
ever, we have only considered 
potential energy, and that is the 
energy stored in the capacitor. How 
about the kinetic energy? What is 
the equivalent of kinetic energy in 
our capacitor example? The answer 
is the magnetic energy in an induc-
tance that we have totally ignored so 
far in our capacitor circuit. A more 

accurate representation of our cir-
cuit must include an inductance L 
in series with the resistance R, as 
shown in Figure 4. Once we con-

sider L, we can see that L stores the 
equivalent of kinetic energy (which 
is the energy stored in the magnetic 
field), and this gives the possibility 
of oscillation similar to the case of 
the two glasses. Let us now revisit 
the two-capacitor problem and see 
what happens when R approaches 
zero, while we assume a nonzero L 
in the circuit.

When the switch is open, all the 
energy is stored in the capacitor 
on the left. There is zero current in 
the circuit; therefore, there is zero 
energy stored in the inductor. As 
we turn on the switch, there will be 
a current in the circuit. Note that, 
initially, the inductor impedes the 
rise of the current and will force the 
current waveform to be continuous. 
However, as the current begins to 
increase, there will be more energy 
stored in the inductor, and some 
energy is wasted in the resistor. If 
the resistance is small enough, cor-
responding to an under-damped 
behavior ( / ),R L C2 21  the stored 
energy will oscillate back and forth 
between the capacitor and the induc-
tor until the current goes to zero, 
storing the remaining energy in the 
capacitor. Again, during this process, 
half the initial stored energy is lost 
to heat in the resistor, no matter how 
small the resistor is or how fast the 
oscillations settle. In case the resistor 
is large enough ( / ),R L C2 2$  there 
will be no oscillation, corresponding 
to either an over-damped or a criti-
cally damped behavior. In this case, 
a portion of the energy does move to 
the inductor, but it will be wasted in 
the process in the resistor, never to 
return to the capacitor. In this case, 
too, half the initial energy is wasted 
in the resistor

Finally, we reconsider the ques-
tion of what happens when R is 
exactly zero, while we have a non-
zero inductance in the circuit. In 
this case, the energy stored initially 
in the capacitor will swing back and 
forth between the capacitor and the 
inductor and, because it will have 
no place to be consumed, will result 

Valve Is
Closed

Valve Is
Open

t < 0 t ≥ 0

Figure 3: Upon opening the valve, water 
will oscillate between the two branches of 
a frictionless tube.
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Figure 2: (a) An imaginary wall (in red) 
separates two glasses. At time zero, the 
wall disappears instantly, allowing the  
water to move to the right glass without 
much resistance. (b) After some time, the 
water level settles to V/2.
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Figure 4: Inductance L is included as part 
of the charge-sharing circuit between two 
capacitors.

(continued on p. 51)
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companies in Silicon Valley attended 
the talk, and some Maxim employees  
watched the live broadcast online. The 
speaker arranged the seminar as a com-

prehensive and interactive short course 
format, with the attendees engaged in 
learning. He covered many aspects of 
time-varying linear systems from top-

level intuition to detailed mathematical 
equations as well as many interesting 
real-life design examples. This seminar 
will also be available as an SSCS webi-
nar in the spring of 2017. Please feel 
free to attend the webinar and ask your 
long-time design questions live online 
from Prof. Pavan after the webinar in 
the dedicated Q&A session.

Abstract
An analog/mixed-signal designer en -
counters time-varying circuits every-
where—sample-and-holds, chopper 
stabilized amplifiers, mixers, switched-
capacitor amplifiers and filters, dis-
crete and continuous-time delta-sigma 
modulators, and N-path filters. The 
analysis of signals and noise in these 
circuits is often associated with messy 
mathematics and algebra.

This talk aims to demystify linear 
(periodically) time-varying circuits. 
Starting from first principles, intu-
ition behind various aspects of time-
varying circuits and systems will 
be given. This intuition is illustrated 
with case studies of practical circuits 
and systems, like chopper-stabilized 
amplifiers and continuous-time delta-
sigma modulators.

—Mojtaba Sharifzadeh
Chapter Vice Chair 

Silicon Valley SSCS Chapter
 

The speaker, David Robertson, receiving a certificate of appreciation from the Silicon Valley 
Chapter and the SSCS Society webinar program (from left): Haitao Li, David Robertson, 
Michael Perrott, and Mojtaba Sharifzadeh.

Prof. Shanthi Pavan from IIT-Madras and Silicon Valley Chapter officers and seminar 
attendees at Maxim Inc. in San Jose. 

in a sustained oscillation. This is, 
indeed, the situation in an LC oscil-
lator, where the inherent resistance 
in the inductance and wiring is com-
pensated for by a negative resis-
tance, so as to yield a zero effective 
resistance in the circuit.

In summary, we provided two 
answers for the question of charge 

sharing between two capacitors 
when separated by an ideal switch. If 
we assume R 0=  and ,L 0=  as shown  
in Figure 4, we expect the voltages 
across the capacitors to settle to their 
final values instantly. In this process, 
one half of the initial stored energy is 
consumed in the ideal switch, and the 
other half remains in the capacitors. 

If we assume R 0=  but ,L 0!  there 
will be no waste of energy in turn-
ing on the switch. The initial energy 
in the capacitor will remain indefi-
nitely in the system, swinging back 
and forth between the capacitor and 
the inductor.
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