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Miller’s Theorem

WWelcome to the sixth article in the 
“Circuit Intuitions” column series. 
As the title suggests, each article 
provides insights and intuitions 
into circuit design and analysis. 
These articles are aimed at under-
graduate students but may serve 
the interests of other readers as 
well. I would appreciate your com-
ments and feedback, as well as your 
requests and suggestions for future 
articles in this series. Please e-mail 
your comments to me at: ali@ece.
utoronto.ca.

In the first article in this series, 
we said “looking into a node” we see 
Thevenin or Norton equivalent cir-
cuits of that node with respect to 
ground. In this article, we will intro-
duce Miller’s theorem to find the 
equivalent circuit of an impedance 
( )Z  that is connected between the 
input and output nodes of an ampli-
fier, as shown in Figure 1. Miller’s 
theorem states that, as far as the 
input and the output nodes are con-
cerned, the impedance can be broken 
into Z1   (connected from the input 
node to ground) and Z2  (connected 
from the output node to ground). A 
simple proof for this theorem can be 
found in many textbooks, such as [1] 
and [2]. Here, we provide a proof fol-
lowed by some intuitions. 

As far as the input node is con-
cerned, the current drawn by Z  is 
equal to
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If we were to find an equivalent 
impedance from the input node to 

ground ( )Z1  that draws the same 
current from ,V1  we would have
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Therefore, comparing the two 
equations, we can write

 .Z A
Z

11 = -
 (1)

Similarly, if we write an expres-
sion for the current drawn by Z  
from the output node and equate it 
to the current being drawn by ,Z2  
we can write

 / .Z
A

Z
1 12 =
-

 (2)

Note that Z  is typically a resistor 
or a capacitor, although it can be any 
impedance in general. For simplicity, 
we assume Z  to be a resistor ( )Z R=  
in the remainder of this article. 

If A  is negative (such as in any 
inverting amplifier), then the above 
equations tell us that both R1  and 
R2  will be positive. To see this 
intuitively, imagine Nodes 1 and 2 are 
electrically connected via a resis-
tive string whose total resistance 
is ,R  as shown in Figure 2(a). Since 
one side of this string (Node 1) is 
connected to a positive voltage 
and the other side (Node 2) is con-
nected to a negative voltage, there 
must be a location along the string 
where the voltage is zero. If we 
actually ground this location, as in 
Figure 2(b), we will not disturb the 
circuit, as no current will be drawn 
from this location to ground. This 
is simply because the current that 
flows through the left branch ( )R1  
flows directly to the right branch 
( ) .R2  The ground location naturally 

Figure 2: (a) R  is displayed as a resistive  
string. (b) If A  is negative, R  can be bro-
ken into positive R1  and R2  such that the 
 common node is at ,OV  and ,R R R1 2+ =   
(c) voltage along the resistive string.
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Figure 1: (a) Impedance Z  is connected 
between the input and output nodes of a 
voltage amplifier with the gain of A  and  
(b) Miller’s equivalent circuit.
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splits the total resistance R  into 
R1  and ,R2  which are the string 
resistances from Nodes 1 and 2 to 
the 0 V location, respectively. This 
is shown pictorially in Figure 2(c), 
where we have assumed V1  to be 
a positive voltage and AVV 12 =  to 
be a negative voltage. The voltage 
along the resistive string decreases 
linearly from V1  (at Node 1) to AV1  
(at Node 2). The intersection of this 
line with the resistance axis breaks 
the resistor into two pieces, R1  and 

.R2  One can easily verify through 
the two similar triangles that the 
ratio of R2  to R1  is .| |A  Given this 

and the fact that ,R R R1 2+ =  we will 
arrive at the same equations as in 
(1) and (2). 

It would be interesting to use this 
graphical approach to gain intuition 
in the case when A  is positive and 
greater than one. In this case, both 
ends of the resistive string have volt-
ages of the same sign, and hence 

there exists no intermediate location 
with 0 V. This is shown in  Figure 3 
for the case where both nodes have 
positive voltages. If we connect V1  
and V2  via a line, we will find that 
the location with 0 V lies outside the 
[ ]R0  region at a negative resistance 
( )R1  with respect to Node 1 and at a 
positive resistance ( )R2  with respect 
to Node 2. This makes intuitive sense 
because if we apply a positive voltage 
to Node 1, given ,V V>2 1  there will 
be a current moving toward Node 1 
(not leaving Node 1 as we expect with 
a positive resistance). For this reason, 

Node 1 experiences a negative resis-
tance ( ) .R1  From the perspective of 
Node 2, the current always leaves the 
node (when V2  is positive) indicating 
a positive resistance. The resistance, 
however, between this node and 
ground ( )R2  is now larger than R as 
indicated in Figure 3. Similar to the 
previous case, given the two similar 
triangles in this figure, we can verify 
that | / |R R A2 1 =  and R R R1 2+ =  to 
arrive at the same equations as (1) and 
(2). In other words, we can still split 
R  into R1  and R2  but with R1  being 
negative for the common node of the 
two resistors to be at 0 V.

To summarize, in applying Mill-
er’s theorem, we are essentially 
splitting the resistor between two 
nodes as two resistors in series 
such that their common node will 
have 0 V! If the two node voltages 
have opposite signs, we will end up 
with two positive resistors. If they 
have the same sign, we will end up 
with one negative and one positive 
resistor. In either case, the sum of 
the two resistances in series is equal 
to the original resistance.
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Figure 3: When ,A 1>  R  can be split into 
one negative ( )R1  and one positive resis-
tance ( )R2  such that .R R R1 2= +  
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