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Miller’s Approximation

WWelcome to the seventh article in 
this column series. As the title sug-
gests, each article provides insights 
and intuitions into circuit design 
and analysis. These articles are 
aimed at undergraduate students 
but may serve the interests of other 
readers as well. If you read this arti-
cle, I would appreciate your com-
ments and feedback, as well as your 
requests and suggestions for future 
articles in this series. Please e-mail 
your comments to me at: ali@ece.
utoronto.ca. 

In the previous article, we pre-
sented an intuitive view of Miller’s 
theorem, especially as it applies to 
resistors. In this article, we use Mill-
er’s theorem to estimate the band-
width of an amplifier with a capacitor 
between its input and output nodes. 

Figure 1 shows an ideal voltage 
amplifier (i.e., one with infinite input 
impedance and zero output imped-
ance) with a constant voltage gain of 
“ A0- ” and a capacitor C12  between 
its input and output nodes. Miller’s 
theorem says that we can replace C12  
with two capacitors, C M1  and ,C M2

connected from the input and output 
node, respectively, to ground, where,

 ( )C C A1M1 12 0= +  (1)
 ( / ).C C A1 1M2 12 0= +  (2)

If we assume ,A 10 &  then Miller’s 
theorem tells us that the capacitor 
between the two nodes appears as 
much larger at the input  node (by a fac-
tor of )A0+  but as the same capacitor 
(by a factor of )1+  at the output node. 
This makes intuitive sense because a 

small voltage increment at the input 
results in a much larger decrement 
at the output, which in turn attracts a 
large amount of charge on the capaci-
tor plates, as if the capacitor were 
much larger! From the perspective of 
the output node, however, a change 
in the output voltage corresponds to 
a much smaller change at the input. 
We can then simply assume the input 
node is grounded. This is equivalent 
to saying the capacitor seen from the 
output is the same as .C12

When the amplifier is ideal but its 
gain ( )A  is frequency dependent (i.e., 
not constant) or when the amplifier 
is nonideal (e.g., has a finite output 
impedance), there may be confusion 
as how to apply Miller’s theorem or 
how useful it may be. We focus on 
this in the remainder of this article. 

First, let us examine a slightly 
generalized case where the ampli-
fier is ideal but it has a frequency-
dependent gain ( ),A jv ~  instead of 
constant ,A0-  with a single pole fre-
quency, .fp  In other words, assume
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Note that since this is an ideal 
amplifier, adding C12  across it will 
not change the voltage transfer 
function. We can therefore apply 
Miller’s theorem (1), to arrive at the 
following equation:
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This equation simply states that 
C M1  is now frequency dependent. At 

low frequencies (below ),fp  C12  is 
simply multiplied by the dc gain of the 
amplifier. At midfrequencies (between 
fp  and ),A fp0+  when the voltage 
gain drops, C M1  drops also. Beyond 
the amplifier’s unity-gain frequency 
(i.e., ),A fp0  C M1  approaches .C12  This 
makes intuitive sense because, at 
very high frequencies, the gain of the 
amplifier will approach zero and the 
output node becomes grounded, pro-
ducing C12  at the input node. 

We do not need to derive an equa-
tion for the output node capacitance 
( )C M2  in this case because C M2  will 
have no impact on ,V2  given that the 
amplifier is assumed to have zero 
output impedance. 
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Figure 1: Miller’s theorem: (a) capacitance 
C12  is connected between the input and 
output nodes of an ideal voltage amplifier 
with a constant gain of ,A0-   and (b) Miller’s 
equivalent circuit.
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To summarize, a C12  across a fre-
quency-dependent ideal amplifier 
may only impact the capacitive load 
seen at the input node of the ampli-
fier but will have no impact on the 
output node of the amplifier. 

Now, let us consider a more general 
case where the amplifier is nonideal 
(i.e., it has a finite input impedance 
and a nonzero output impedance). 
We further assume this amplifier is 
driven by another nonideal amplifier 
as shown in Figure 2(a). 

Let us denote by ( )A jv1 ~  and 
( )A jv2 ~  the voltage transfer func-

tions of the two stages without the 
presence of .C12  A linear model for  
this two-stage amplifier along with 
the added C12  is shown in Figure 2(b). 
In this figure, R1  and C1  represent 
the total resistance and capacitance 
of node 1, respectively, and g1  rep-
resents the transconductance of the 
first stage. ,R2  ,C2  and g2  are the 
corresponding parameters of the 
 second stage. 

An important observation in this 
case is that the addition of C12  will 
change ( )A jv2 ~  to ( ),A jv2 ~l  which 
is unknown and needs to be deter-
mined. However, to replace C12  with 
its Miller’s equivalents, as shown in 
Figure 2(c), we need ( )A jv2 ~l  in the 
first place. What can we do? 

 In Miller’s approximation, we 
simply use the dc gain of the second 
stage ( )Av20  in (1) and (2) to find an 
estimate of C M1  and .C M2  We then 
proceed to write an expression for 

( )A jv1 ~l  and ( ) .A jv2 ~l

How valid is this approximation? 
( ) ( ( ) ( ))A j A j A jv v v1 2~ ~ ~=l l l  has two 

poles corresponding to the two capac-
itive nodes in the circuit and a zero 

due to .C12  We do not know the ex-
act locations of the poles, but we do 
know that in the vicinity of the first 
pole (i.e., the dominant pole) ( )A jv2 ~l  
can be approximated by the dc gain of 

( ),A jv2 ~  .Av20  The actual gain at the 
dominant pole frequency is 3 dB low-
er, but we accept this approximation. 
Therefore, in calculating the location 
of the first pole, Miller’s approxima-
tion does provide a reasonable esti-
mate, as follows:

 ( ( )) .f
R C C A2 1
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At the frequency of the second 
pole, however, the gain has already 
dropped substantially from the dc 
gain, and hence Miller’s approxima-
tion does not yield a good estimate 
for ,C M2  and consequently for .fp2  In 
fact, if ,f fp p2 1&  our estimate of fp2  
may be off by an order of magnitude. 

Miller’s approximation also miss-
es the zero that exists in the circuit 
of Figure 2(b). A quick inspection 
of this circuit reveals that a zero 
lies at a frequency where the cur-
rent through C12  becomes equal to 

.g V2 1  When this occurs, the current 
through the parallel combination of 
C2  and R2  becomes zero, creating a 
zero in the transfer function. In oth-
er words, we can write

 .f C
g

2z
12

2

r
=

The existence of the zero makes 
intuitive sense because, as we 
increase the frequency, there will 
be a point where the impedances of 
C12  and C2  will be much smaller 
than .R2  At these frequencies, the 
transfer function of the second stage 

becomes that of a capacitive divider, 
which has a constant gain and does 
not drop with increasing frequency, a 
clear sign of the existence of a zero. 

But none of these points should 
imply that Miller’s theorem is inac-
curate; they only tell us the limita-
tion of Miller’s approximation. In 
fact, one can show that if we use the 
proper frequency-dependent gain in 
calculating C M1  and C M2  (as we did 
in the case of an ideal amplifier), 
we can accurately find the original 
poles. But this will defeat the pur-
pose of using Miller’s theorem for a 
simple, quick estimation of the cir-
cuit bandwidth. 

If Miller’s approximation cannot 
be used to derive an expression for 
the second pole of the circuit in Fig-
ure 2(b), what can we do instead? The 
answer will actually depend on the rel-
ative ratios of the capacitors. Here, we 
provide a quick and intuitive method 
for the case when C C12 1&  and .C2

In this case, ,C12  which is referred to 
as the Miller compensation capacitor, 
improves the circuit stability when 
placed in a feedback loop [1], [2].

Given C C12 1&  and ,C2  as we 
increase frequency, C12  will short 
the two nodes together, creating a 
total capacitance of C C1 2+  in par-
allel with a total resistance / ,g1 2  
where we have assumed /g1 2  is 
much smaller than R1  and .R2  
Therefore, we can write an expres-
sion for the second pole as follows: 

 ( ) .f
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g

2p2
1 2
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Figure 2: Miller’s approximation: (a) a two-stage amplifier with a Miller capacitance across the second stage, (b) a small-signal equivalent 
circuit for (a), and (c) a small-signal equivalent circuit where C12  is replaced by C M1  and C M2  according to Miller’s theorem.

(Continued on p. 13)
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small-signal bandwidth must 
be far greater than the input 
frequency. 

2) To which node(s) should the  
n -wells of M3  and M8  in Figure 10 
be connected? 

They should be connected to 
node P  to ensure the source and 
drain junctions of these transis-
tors are not forward biased. 

3) How high can VX  in Figure 10 go 
to avoid stressing ?M14  

When M14  is off, its source 
voltage reaches approximately 

.V VDD TH-  For the source-drain 

potential difference to remain 
less than ,VDD  VX  must not 
exceed .V V2 DD TH-
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 ■ Willy Sansen, in “Minimum Power in Analog Ampli-
fying Blocks: Presenting a Design Procedure,” 
answers questions he received from his 2015 ISSCC 
plenary talk.

 ■ Behzad Razavi continues his column series “A Cir-
cuit for All Seasons” by providing an article that dis-
cusses the bridged T-coil. This article fits well into 
this issue’s feature of wireline communications due 
to the use of the T-coil for extending the bandwidth 
of a circuit.

 ■ Ali Sheikholeslami provides another piece in his well-re-
ceived series, “Circuit Intuitions.” In this issue, he contin-
ues discussing Miller’s theorem, its uses and shortcom-
ings when analyzing circuits. As usual (and the e-mail we 
receive would support this), the article provides useful 
insight into circuit analysis and design.

 ■ Finally, Marcel Pelgrom discusses “The Next Hype” 
in his column, which is always an entertaining arti-
cle that provokes thought. It’s one of my favorite 
reads in each magazine issue. I hope you agree!

We hope you enjoy reading IEEE Solid-State Circuits Mag-
azine. Please send comments to me at  rjacobbaker@
gmail.com. 

This equation, along with equations for fp1  and ,fz  
can now be used to form the equation for the overall 
voltage transfer function of the two-stage amplifier.

It is worth noting that as we increase ,C12  fp1  and 
fp2  (as found by their respective equations) will move 
farther apart, a phenomenon referred to as pole split-
ting [1], [2]. 

In summary, Miller’s approximation uses the dc gain 
of the amplifier to provide a relatively accurate estima-
tion of its dominant pole (i.e., the circuit bandwidth). 
This approximation, however, becomes inaccurate 
when determining the second pole of the amplifier; 
other intuitive methods exist for this purpose. 

For further discussions and intuition into Miller’s 
theorem, we refer the readers to [3].
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