ee303: Handout
Example: Solving circuits by physical Intuition

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{z_{2}}{Z_{1}+Z_{2}}=\frac{R_{2}+1 / s C_{2}}{R_{1}+1 / s C_{1}+R_{2}+1 / s C_{2}}= \\
&= \frac{\left(s R_{2} C_{2}+1\right) / s C_{2}}{\frac{s R_{1} C_{1} C_{2}+C_{2}+s R_{2} C_{1} C_{2}+C_{1}}{s C_{1} C_{2}}}= \\
&= \frac{s R_{2} C_{2}+1}{\frac{s R_{1} C_{1} C_{2}+C_{2}+s R_{2} C_{1} C_{2}+C_{1}}{C_{1}}}= \\
&= \frac{s R_{2} C_{2}+1}{s R_{1} C_{2}+\frac{C_{2}}{C_{1}}+s R_{2} C_{2}+1}=\left(1+C_{2} / C_{1}\right) \\
&= \frac{s R_{2} C_{2}+1}{s C_{2}\left(R_{1}+R_{2}\right)+1+\frac{C_{2}}{C_{1}}}= \\
&= \frac{\left(1+C_{2} / C_{1}\right)}{\left.s R_{2} C_{2}+1\right) /\left(1+C_{2} / C_{1}\right)} \\
&=\frac{s C_{2}\left(R_{1}+R_{2}\right)}{1+C_{2} / C_{1}}+1
\end{aligned}=
$$

$$
\text { pole }=-\frac{1}{\left(R_{1}+R_{2}\right) \cdot C_{12}} \quad \text { (root denominator) }
$$

$$
\text { zero }=-\frac{1}{R_{2} C_{2}} \quad \text { (rootnumerator) } \quad \text { (rot }
$$

THIS IS TOO MUCH WORK THERE'S TO BE A BETTER WAY!!

$$
\begin{aligned}
& =\frac{\left(S R_{2} C_{2}+1\right) / \frac{C_{1}+C_{2}}{C_{1}}}{\frac{S C_{2}\left(R_{1}+R_{2}\right)}{\frac{C_{2}+C_{1}}{C_{1}}}+1}= \\
& =\frac{\left(S R_{2} C_{2}+1\right) / \frac{C_{1}+C_{2}}{C_{1}}}{S \underbrace{}_{\begin{array}{l}
C_{1} \text { series } C_{2} \\
C_{1}+C_{2} \\
\\
=c_{12}
\end{array}}=}= \\
& =\frac{\frac{s R_{2} C_{2}+1}{C_{1}+C_{2}} \cdot C_{1}}{s C_{12}\left(R_{1}+R_{2}\right)+1}= \\
& =\frac{S R_{2} C_{12}+\frac{C_{1}}{C_{1}+C_{2}}}{S C_{12}\left(R_{1}+R_{2}\right)+1}=\frac{S R_{2} C_{12}+\frac{C_{12}}{C_{2}}}{S C_{12}\left(R_{1}+R_{2}\right)+1} \\
& \text { DC gain }=\frac{C_{12}}{C_{2}}=\frac{C_{1}}{C_{1}+C_{2}} \quad(\text { let } s \rightarrow 0)
\end{aligned}
$$

let's look at the circuit:
at $s \rightarrow 0$, the uipedance of c_{1} and C_{2} are \gg than R_{1} and R_{2}
the circuit is a copacitive divider

$$
\frac{\operatorname{Vout}}{\operatorname{Vin}}(s=0)=\frac{c_{1}}{c_{1}+c_{2}}
$$

at $s \rightarrow \infty, C_{1}$ and C_{2} are 2 shorts the circuit is

$$
\frac{V_{\text {out }}}{V_{\text {in }}}(s \rightarrow \infty)=\frac{R_{2}}{R_{1}+R_{2}}
$$ a resistive divider match the algebra!

The circuit has one pole (null andepentent sources)
 poles do not depends on the sources, are a "natural" characteristic of the circuit
C_{1} and C_{2} appears in series (they are not indep. of each other
\rightarrow their state (ie. voltage
How much is the resistance seen by C12? across them) is not indep.

$$
\begin{gathered}
\leadsto\left(R_{1}+R_{2}\right) \\
\text { apple }=\frac{1}{\tau}=\frac{1}{\left(R_{1}+R_{2}\right) G_{2}}
\end{gathered}
$$

The circuit has one zero:
for $s \rightarrow \infty$ Vout is not zero (the order of nam. and denom must be the same \rightarrow ipole implies one zero)

$$
\underset{\hat{\jmath}}{V \text { Vat }}=0=R_{2} \cdot I_{2}+V_{c_{2}}
$$

$$
w_{z} \equiv \text { frequency for which Vout }=0
$$

$$
\begin{aligned}
& C_{2} R_{2} s V_{C_{2}}+V_{C 2}=0 \rightarrow V_{C 2}\left(1+s R_{2} C_{2}\right)=0 \\
& S_{z}=-\frac{1}{R_{2} C_{2}} \quad\left(\omega_{z}=\frac{1}{R_{2} C_{2}}\right)
\end{aligned}
$$

We could have avoided even the little algebra we just did: once we know wp we can infer wz using geometry!

