Short Channel MOSFET vs. Long Channel MOSFET

Issues with the Square Law model
Simulation (NMOS, 5/0.18μm, $V_{DS}=1.8$V)

- Two observations
 - The transistor does not abruptly turn off at some V_t
 - The current is not perfectly quadratic in $(V_{GS}-V_t)$
The square law fails miserably at predicting g_m/l_D for low V_{GS}
Additional Issues

- The current does not scale perfectly with $1/L$ ($I_D \cdot L \neq \text{const.}$)
- The threshold voltage of the device depends on the channel length
What is V_t, anyway? The device does not turn off at all, but really approaches an exponential IV law for low V_{GS}.

What determines the current at low V_{GS}?
Definition of Vt

- V_t is (roughly speaking) defined as the V_{GS} at which the number of electrons at the surface equals the number of doping atoms.

- Seems arbitrary, but makes sense in terms of surface charge control:
 - This is the point where the surface becomes inverted (no more holes to fill) and the relationship between mobile charge and gate voltage becomes linear, $Q_n \propto C_{ox}(V_{GS} - V_t)$.
 - Exactly what is assumed in the square law model.
Weak Inversion

- Before inversion occurs, the electrostatic field from the gate forward-biases the source-side pn junction at the surface
- Physics governed by the “gated diode” model

Potential at this point is higher than body potential → forward bias

Resulting Diffusion Current

\[n_p(0) = n_{p0}e^{\frac{\psi_s}{V_T}} \]

\[n_p(L) = n_{p0}e^{\frac{\psi_s - V_{DS}}{V_T}} \]

\[I_D = qAD_n \frac{n_p(L) - n_p(0)}{L} \]

\[I_D = qAD_n n_{p0}e^{\frac{\psi_s}{V_T}}(1 - e^{\frac{V_{DS}}{V_T}}) \]

- The current grows exponentially with \(\psi_s \)
- The current becomes independent of \(V_{DS} \) for \(V_{DS} > 3V_T \) (~78mV)
BJT Similarity

We have
- An NPN sandwich, mobile minority carriers in the P region

This is a BJT!
- Except that the base potential is here controlled through a capacitive divider, and not directly by an electrode
Capacitive Divider

\[
\frac{d\psi_s}{dV_{GS}} = \frac{C_{ox}}{C_{js} + C_{ox}} = \frac{1}{n}
\]

- \(n \) is called "subthreshold factor" or "nonideality factor"
- \(n \approx 1.45 \) in the EE214B technology
- After including this relationship between \(\psi_s \) and \(V_{GS} \) and after a few additional manipulations, the final expression for the drain current becomes

\[
I_D = I_{D0} e^{\frac{V_{GS} - V_t}{V_i}} \left(1 - e^{\frac{V_{DS}}{V_i}} \right)
\]

where \(I_{D0} \) depends on technology (\(I_{D0} \approx 0.43 \mu A \) for EE214B technology)
Subthreshold Transconductance

\[g_m = \frac{dI_D}{dV_{GS}} = \frac{1}{n} \frac{I_D}{V_T} \]

\[g_m = \frac{1}{I_D} \cdot \frac{1}{nV_T} \]

- Similar to BJT, but unfortunately \(n \) (\(\approx 1.5 \)) times lower

![Graph showing comparison between different transconductance models](image-url)
Combining the Weak Inversion Expression and Square Law

- Two remaining problems
 - The weak inversion expression and square law are disconnected
 - We still do not know what causes the discrepancies at high V_{GS}
We now have a better idea now about the maximum possible g_m/l_D, but this does not help in the transistor region between the two IV laws.
Moderate Inversion

- In the transition region between weak and strong inversion, the drain current consists of both drift and diffusion currents.

- One can show that the ratio of drift/diffusion current in moderate inversion and beyond is approximately $(V_{GS}-V_t)/(kT/q)$.

- This means that the square law equation (which assumes 100% drift current) does not work unless the gate overdrive is several kT/q.
 - Recall that in EE214A, you used the square law model only for $V_{GS}-V_t > 150mV \approx 6.25kT/q$.

Moderate Inversion

- In the transition region between subthreshold and strong inversion, we have two different current mechanisms:

 Drift (MOS) \[v = \mu E \]

 Diffusion (BJT) \[v = D \frac{dn}{dx} = \frac{kT}{q} \mu \frac{dn}{dx} \]

- Both current components are always present
 - Neither one clearly dominates in moderate inversion
- Can show that ratio of drift/diffusion current \~ (V_{GS} - V_t) / (kT/q)
 - MOS equation becomes dominant at several kT/q
Short Channel Effects

- The sub-square behavior at large V_{GS} is primarily due to a number of issues that fall under the category of “short channel effects”

- Onset of velocity saturation due to high lateral field
- Mobility degradation due to high vertical field
- Strong V_{DS} dependence of drain current and output resistance
- Threshold voltage depends on channel length and width

- Many more issues exist; we will once again only discuss the most relevant subset
Figures of Merit for Design

- **Transconductance efficiency**
 - Want large g_m, for as little current as possible

- **Transit frequency**
 - Want large g_m, without large C_{gg}

- **Intrinsic gain**
 - Want large g_m, but no g_o

Square Law

\[\frac{g_m}{I_D} = \frac{2}{V_{OV}} \]

\[\frac{g_m}{C_{gg}} = \frac{3}{2} \frac{\mu V_{OV}}{L^2} \]

\[\frac{g_m}{g_o} = \frac{2}{\lambda V_{OV}} \]
Design Tradeoff: g_m/l_D and f_T

- Weak inversion: Large g_m/l_D (>20 S/A), but small f_T
- Strong inversion: Small g_m/l_D (<10 S/A), but large f_T
Elementary Amplifier Configurations

MOS
- Common Source
- Common Gate
- Common Drain

BJT
- Common Emitter
- Common Base
- Common Collector

Transconductance Stage
Current Buffer
Voltage Buffer