Short Channel MOSFET vs. Long Channel MOSFET

Issues with the Square Law model

Simulation (NMOS, 5/0.18µm, V_{DS}=1.8V)

Two observations

- The transistor does not abruptly turn off at some V_t
- The current is not perfectly quadratic in (V_{GS}-V_t)

• •

The square law fails miserably at predicting g_m/l_D for low V_{GS}

Additional Issues

- The current does not scale perfectly with 1/L (I_D·L ≠ const.)
- The threshold voltage of the device depends on the channel length

Currents on a Log Scale

- What is V_t, anyway? The device does not turn off at all, but really approaches an exponential IV law for low V_{GS}
- What determines the current at low V_{GS}?

Definition of Vt

- V_t is (roughly speaking) defined as the V_{GS} at which the number of electrons at the surface equals the number of doping atoms
- Seems arbitrary, but makes sense in terms of surface charge control
 - This is the point where the surface becomes inverted (no more holes to fill) and the relationship between mobile charge and gate voltage becomes linear, $Q_n \propto C_{ox}(V_{GS}-V_t)$
 - Exactly what is assumed in the square law model

Weak Inversion

- Before inversion occurs, the electrostatic field from the gate forwardbiases the source-side pn junction at the surface
- Physics governed by the "gated diode" model

Potential at this point is higher than body potential → forward bias

D.L. Pulfrey, Understanding Modern Transistors and Diodes, Cambridge University Press, 2010.

Resulting Diffusion Current

- The current grows exponentially with ψ_s
- The current becomes independent of V_{DS} for V_{DS} > 3V_T (~78mV)

BJT Similarity

- We have
 - An NPN sandwich, mobile minority carriers in the P region
- This is a BJT!
 - Except that the base potential is here controlled through a capacitive divider, and not directly by an electrode

Capacitive Divider

$$\frac{d\psi_s}{dV_{GS}} = \frac{C_{ox}}{C_{js} + C_{ox}} = \frac{1}{n}$$

- n is called "subthreshold factor" or "nonideality factor"
- n ≅ 1.45 in the EE214B technology
- After including this relationship between ψ_s and V_{GS} and after a few additional manipulations, the tinal expression for the drain current becomes

$$I_{D} = I_{D0} e^{\frac{V_{GS} - V_{t}}{V_{I}}} (1 - e^{\frac{V_{DS}}{V_{I}}})$$

where I_{DO} depends on technology ($I_{DO} \cong 0.43 \mu A$ for EE214B technology)

Subthreshold Transconductance

$$g_{m} = \frac{dI_{D}}{dV_{GS}} = \frac{1}{n} \frac{I_{D}}{V_{T}} \qquad \qquad \frac{g_{m}}{I_{D}} = \frac{1}{nV_{T}}$$

Similar to BJT, but unfortunately n (≅1.5) times lower

EE214 Winter 2010-11 - Chapter 3

Combining the Weak Inversion Expression and Square Law

- Two remaining problems
 - The weak inversion expression and square law are disconnected
 - We still do not know what causes the discrepancies at high V_{GS}

G_m/I_D

 We now have a better idea now about the maximum possible g_m/I_D, but this does not help in the transistor region between the two IV laws

Moderate Inversion

- In the transition region between weak and strong inversion, the drain current consists of both drift and diffusion currents
- One can show that the ratio of drift/diffusion current in moderate inversion and beyond is approximately (V_{GS}-V_t)/(kT/q)
- This means that the square law equation (which assumes 100% drift current) does not work unless the gate overdrive is several kT/q
 - Recall that in EE214A, you used the square law model only for V_{GS} - V_t > 150mV \cong 6 kT/q

Moderate Inversion

 In the transition region between subthreshold and strong inversion, we have two different current mechanisms

> Drift (MOS) $v = \mu E$ Diffusion (BJT) $v = D \frac{dn}{dx} = \frac{kT}{q} \mu \frac{dn}{dx}$

- Both current components are always present
 - Neither one clearly dominates in moderate inversion
- Can show that ratio of drift/diffusion current ~(V_{GS}-V_t)/(kT/q)
 - MOS equation becomes dominant at several kT/q

Short Channel Effects

- The sub-square behavior at large V_{GS} is primarily due to a number of issues that fall under the category of "short channel effects"
- Onset of velocity saturation due to high lateral field
- Mobility degradation due to high vertical field
- Strong V_{DS} dependence of drain current and output resistance
- Threshold voltage depends on channel length and width
- Many more issues exist; we will once again only discuss the most relevant subset

Figures of Merit for Design

- Transconductance efficiency
 - Want large g_m, for as little current as possible

Square Law

- Transit frequency
 - Want large g_m, without large C_{gg}

- Intrinsic gain
 - Want large g_m, but no g_o

 $\cong \frac{2}{\kappa v_{OV}}$

Design Tradeoff: g_m/l_D and f_T

- Weak inversion: Large g_m/ID (>20 S/A), but small f_T
- Strong inversion: Small g_m/ID (<10 S/A), but large t_T

Elementary Amplifier Configurations

