Problem 1

Given the circuit in Figure 1 hand derive the symbolic expressions for

1. As = vout $/ \mathrm{vs}$
2. Rin, that is the Thevenin equivalent resistance looking into terminals 1 and 0 (in the direction shown by the arrow)
3. Rout, that is the Thevenin equivalent resistance looking into terminals 2 and 0 (in the direction shown by the arrow)

Figure 1
4. Verify your results by simulating the given circuit with LTSPICE. Assume the following values vs=1V, Rs=1 $, \mathrm{Ri}=1 \mathrm{~K} \Omega, \mathrm{Gm}=1 \mathrm{mS}, \mathrm{Ro}=1 \mathrm{M} \Omega, \mathrm{RL}=10 \mathrm{~K} \Omega$. Hint: take a look at the. TF analysis. Make sure to 1) attach your LTSPICE schematic and your simulation results, and 2) explain any discrepancies.

Problem 2

Given the circuit in Figure 2 use matlab symbolic toolbox to derive an expression for

1. As = vout/vs
2. Rin, that is the Thevenin equivalent resistance looking into terminals 1 and 0
3. Rout, that is the Thevenin equivalent resistance looking into terminals 2 and 0
4. Find the practical conditions under which vout/vs, Rin, and Rout are approximately the same as you derived for the circuit in Figure 1

Figure 2

Make sure to attach you matlab script and its output.

Problem 3

Given the RC circuit in Figure 3 find out:

1. The transfer function $T(j \omega)=\operatorname{Vout}(\mathrm{j} \omega) / \operatorname{Vin}(\mathrm{j} \omega)$.

Note: for a given value of R, C, and ω the transfer function is simply a complex number
2. The expression of the magnitude of the transfer function $M=|T(j \omega)|$
3. The expression of the phase of the transfer function $\Phi=$ angle [T(j $\omega)$]
4. What is the approximate value of M for very small values of ω (that is $\omega \rightarrow 0$)
5. What is the value of M for $\omega=1 /(R C)$
6. What is the approximate value of M for very large values of ω (that is $\omega \rightarrow \infty$)
7. What is the approximate value of Φ for very small values of ω (that is $\omega \rightarrow 0$)
8. What is the value of Φ for $\omega=1 /(\mathrm{RC})$
9. What is the approximate value of Φ for very large values of ω (that is $\omega \rightarrow \infty$)

Figure 3

Problem 4

Assuming the input to the $R C$ circuit in Figure 3 is $v_{\text {in }}(t)=V_{D D} \times[u(t)-u(t-T)]$ and $T \gg \tau=R C$:

1. Draw $v_{\text {in }}$ vs. t and $v_{\text {out }}$ vs. t
2. What is the equation of $v_{\text {out }}(t)$ for $-\infty \leq t \leq T$
3. What is the equation of $v_{\text {out }}(t)$ for $t>T$
