
## **Objectives:**

- Performing DC and small signal AC analysis of the circuit
- Implementing the circuit in an experimental setting, taking measurements and comparing the circuit behavior with theoretical results

## <u>Pre-Lab</u>



Consider the amplifying circuit provided in figure. Select adequate values for RB, RC and VBB so that the DC bias point is set at VCE=4.5V and IC=10 mA.

Use SPICE to infer the  $\beta$  of the BJT. Hint: plot of the transistor's  $\beta$ =Ic(Q1)/Ib(Q1) vs. VCE curve using the model of the 2N3904 provided by LTSPICE. Extract the value of  $\beta$  for a DC bias point reasonably close to IC=10 mA, VCE=4.5V

 $\beta =$ 

Provide the symbolic equations and numerical values of the following quantities:

RC =

IB =

VBB =

RB =

gm =

 $r\pi =$ 

AV = vc/vin with RL not connected =

## <u>Lab</u>

Use the DC offset in your AWG for generating VBB.

1. Before applying the AC input signal to the base, adjust its DC offset (that is VBB) until VC=4.5V Measure the value of VBB required to set VC at 4.5V, and measure the value of VBE.

VBB = VBE =

2. Now, apply also the AC sinusoidal input signal. Measure the gain of the amplifier at a frequency of 10KHz with RL not connected (AV = vc/vin). Compare your measurement with your theoretical prediction from the prelab.

amplitude of the AC signal applied =

AV =

| Theoretical prediction | Measurement            | % Error                            |
|------------------------|------------------------|------------------------------------|
|                        |                        |                                    |
|                        | Theoretical prediction | Theoretical prediction Measurement |

- 3. Measure the maximum output swing you can achieve.
  - a. Maximum output swing
  - b. Corresponding maximum input swing
  - c. When clipping, does the transistor go in saturation or cut off?

Explain shortly your conclusion:

4. Connect a load of  $100 \Omega$  to the collector via capacitive coupling. Measure the gain again

- a. AV with RL connected =
- b. Did the gain increase, decrease or remain the same?

Increase the input voltage until clipping occurs.

- c. What is the maximum output swing:
- d. Does the transistor go into saturation or cut-off first?
- 5. Use SPICE .OP and .AC analysis to simulate the circuit you have built (use the version with RL not connected). Lookup the values of  $\beta$ DC (hFE),  $\beta$ AC (hfe),  $r\pi$  (hie) and ro (1/hoe) provided on the data sheet of the transistor.
  - a. Compare the quantities provided on the data sheet with the quantities obtained using SPICE

| Quantity | SPICE | Data Sheet | % Error |
|----------|-------|------------|---------|
| βDC      |       |            |         |
| βΑC      |       |            |         |
| rπ       |       |            |         |
| ro       |       |            |         |

% Error = 100 x (SPICE – DataSheet) / SPICE

b. Circle the value of  $\beta$  you used for computing |AV|?

βDC

Was it the best choice?

c. Estimate the importance of choosing the correct value of  $\beta$ .

 $100 \times (\beta_{DC,SPICE} - \beta_{AC,SPICE}) / \beta_{AC,SPICE} =$ 

 $100 \times (\beta_{DC,DATASHEET} - \beta_{AC,DATASHEET}) / \beta_{AC,DATASHEET} =$ 

- d. If you used  $\beta DC$  compute |AV| again, but this time using  $\beta AC$
- e. Compare the gain measured, the gain estimated and the gain obtained with SPICE (use the version with RL not connected)

| Quantity | SPICE | Measured | Estimated |
|----------|-------|----------|-----------|
| AV       |       |          |           |

βΑC