EENG 303L - Diode Characteristics And Some Applications (1)

1. Objectives

To study the characteristic of several diodes, observing the temperature dependence of the I-V curve.

2. Instructions

a)

Use the curve tracer available in the lab. to obtain the diode <u>forward</u> current versus voltage for three different diodes over a wide current range (make sure to do not exceed the limitations of the diode).

The diodes are the 1N4148, the 1N751A and an LED of your choice.

For each diode, obtain one curve at $\underline{\text{room temperature}}$ and one curve at 50 °C.

Record all six forward curves (no need to sketch the reverse curves) and determine the temperature coefficient $dV_D/dT\approx \Delta V_D/\Delta T$ at two different points. Compare your graphically determined results to the well known theoretical equation

$$dV_D/dT \approx -2 \text{ mV/}^{\circ}\text{C}$$

b)
For each diode, carefully measure the reverse breakdown voltage.
Does the breakdown voltage increase, decrease, or remain constant when temperature increases?

Questions
Room Temperature =
Forward curves: The vertical and horizontal settings of the curve tracer should be clearly marked on each curve. The <u>numerical value</u> of the temperature should also be clearly marked.
Forward Curves for 1N4148
Forward Curves for 1N751A
Forward Curves for LED (what LED did you use:

What is the temperature coefficient of each diode? Shortly explain how it was computed using your graphs.

Diode Type	Temperature coeff.	I_D	ΔV_{D}	ΔΤ
	[units]	[units]	[units]	[units]
1N4148				
1N4148				
1N751A				
1N751A				
LED				
LED				

What is the breakdown voltage of each diode at room temperature?

Diode Type	V _{BR} [units]
1N4148	
1N751A	
LED	

Did any of the diodes blow up when the breakdown voltage v	was
measured?	

Why or why not?		