The purpose of this laboratory is:

Model and simulate the DC characteristic of diodes and observe and quantify how the diode's behavior is affected by temperature.

Pre-Lab:

Using the 1N4148 diode model provided by LTSPICE, plot the ID vs. VD curve of the diode in FORWARD and REVERSE region at room temperature.

Room temperature = _____

What is the default temperature (TNOM) used by SPICE simulation?
What is the unit of temperature used by SPICE?
What type of Analysis do you need to use for plotting the ID vs. VD curve of the diode?
Write down the SPICE directive you used to obtain your plot.
What is a reasonable range of VD values over which plot the ID characteristic?
Write down the SPICE directive you used to obtain your plot.
Compare qualitatively your plots with the information provided by the diode Data Sheet:
Does the model provided seem to capture the forward region behavior adequately?
Does the model provided seem to capture the reverse region behavior adequately?
Does the model provided seem to capture the reverse breakdown region behavior adequately?

Lab:

Modify your Prelab circuit to use the following model rather than the default one provided by LTSPICE:

.model D1N4148 D (IS=0.1PA, RS=16 CJO=2PF TT=12N BV=100 IBV=0.1PA)

Plot the ID vs. VD characteristic of the diode in forward region, reverse region, and reverse breakdown region at three different temperatures: -50 centigrade, 25 centigrade and 50 centigrade. HINT: to change temperature use the parametric analysis command .STEP

- 1. Attach the plot. Make sure to clearly label the three curves with the corresponding temperature.
- 2. Determine the forward temperature coefficient $dV_{\nu}/dT \approx \Delta V_{\nu}/\Delta T$.

What is the forward temperature coefficient of the diode?

Diode	Temperature coeff. [units]	I _p [units]	ΔV_{D} [units]	ΔT [units]
1N4148				

Shortly explain/show how it was computed using your graphs.

Compare your graphically determined results to the well-known theoretical equation:

 $dV_{\rm \tiny D}/dT\approx -2~mV/^{\circ}C$

%Error = 100 x (measured – theoretical) / theoretical =

^{3.} Measure the reverse breakdown voltage. Does the breakdown voltage increase, decrease, or remain constant when temperature increases?

Diode Type	V _{BR} [units] at -50 °C	V _{BR} [units] at 25 °C	V _{BR} [units] at 50 °C
1N4148			