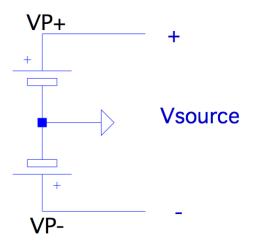
Objectives


To design, construct, and test a Zener diode voltage regulator.

Instructions

Your regulator requires a 1N751A and thus has a nominal zener voltage of 5.1V. Your design should resemble the following Figure.

NOTE: Use the programmable voltage supplies VP+ and VP- to generate the required Vsource

DESIGN TIPS:

Make sure the diode will remain in the breakdown region over the specified range of operation (10V \leq Vsource \leq 15V). In addition, make sure the regulator will not get damaged under any possible loading condition (loads can range from R_{LOAD}=0 Ω to R_{LOAD} = $\infty \Omega$). The nominal load is R_{LOAD} = 250 Ω .

Pre-Lab:

1. Calculate the expected range of output voltages and currents (extremes) using a piecewise linear circuit model for the diode. Assume the load is nominal. Show your work.

____≤ Iout ≤ _____

____≤ Vout ≤ _____

2. Show the piecewise model you used for your zener diode (plot $I_{\rm D}\, vs.\, V_{\rm D})$

Lab:

3. With a load of 250 ohm, vary the DC source voltage from 10V to 15 V and measure the output voltage at several points. Plot the output voltage as a function of the source voltage.

RIDAD	=	250	Ω	
LOAD	_	250		

V _{source} [V]	V _{OUT} [V]
10	
11	
12	
13	
14	
15	

V_{OUT} vs. V_{source} Plot:

Repeat for $R_{LOAD} = \infty \Omega$

V _{source} [V]	V _{OUT} [V]
10	
11	
12	
13	
14	
15	

 $V_{\text{OUT}} \, vs. \, V_{\text{source}}$ Plot:

Determine the line regulation: (Line regulation $\equiv \Delta Vout/\Delta V$ source $\times 100$)

4. With a source voltage of 15 V, vary the load current from 0 to 20 mA by changing the load resistor RLOAD from ______ to ______ (Fill the blanks)

For Vsource = 15V

$R_{LOAD}[\Omega]$	I _{OUT} [mA]	V _{OUT} [V]
	0	
	20	

Plot the output current vs. the output voltage.

Repeat for V source = 10 V

$R_{LOAD}[\Omega]$	I _{OUT} [mA]	V _{OUT} [V]
	0	
	20	

Plot the output current vs. the output voltage.

Determine the load regulation: Load regulation = 100× (V_{out,noload} -V_{out,fullload})/(I_{L,noload} - I_{L,fullload}) = 100 × Δ Vout / Δ IL

- 5. Did the Zener diode stay in breakdown the whole time?
- 6. If not indicate on your plots where the diode was not in breakdown and explain why the diode was not in breakdown.