EE303 - Final Exam

Closed Book:

Two 8.5"x11" sheet of handwritten notes permitted Calculator permitted

Important Notes:

- Read each problem completely and thoroughly
- Summarize all your answers in the boxes provided on these exam sheets
- Make sure to mark the units on your answers!
- Do all your work on the exams sheets provided. If you use any additional sheets, please turn them in, so we can consider all work for partial credit
- Do not forget to put your name in the space above

Problem #	Points	Score
1	10	
2	20	
3	20	
4	20	
5	20	
TOTAL	90	

Unless otherwise specified assume:

NMOS: $\mu_n C_{OX} = 200 \ \mu A/V^2 \ \text{and} \ V_{THn} = 0.4V$ PMOS: $\mu_p C_{OX} = 100 \ \mu A/V^2 \ \text{and} \ V_{THp} = -0.4V$

Problem 1 [10 pts]

Consider the differential pair illustrated in Fig. 10.70. Assuming perfect symmetry and $V_A = \infty$,

- (a) Determine the voltage gain.
- (b) Draw the differential AC half circuit

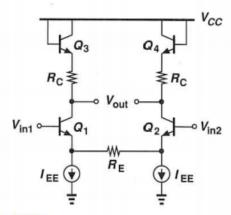


Figure 10.70

V ((V:1 - V:2)	
$V_{out/(V_{in1}-V_{in2})}$	

Problem 2 [20 pts]

Calculate the differential voltage gain of the circuits depicted in Fig. 10.76. Assume perfect symmetry and $\lambda > 0$.

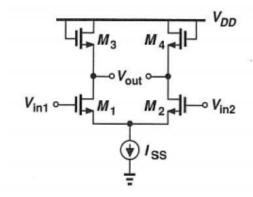


Fig. 10.76 (a)

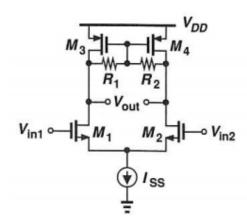
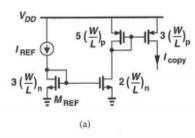
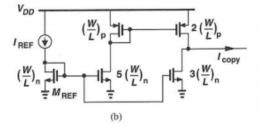


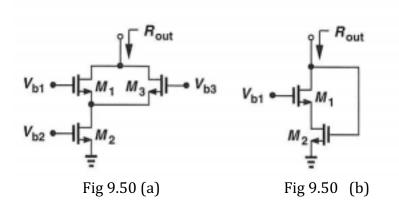
Fig. 10.76 (b)

(a) $v_{out}/(v_{in1}-v_{in2}) =$	
(b) $v_{out}/(v_{in1}-v_{in2}) =$	

Problem 3 [15 pts]

Calculate I_{copy} in each of the circuits shown in Fig. 9.71. Assume all of the transistors operate in saturation.


Figure 9.71

a) I _{copy} =	
b) I _{copy} =	

Problem 4 [20 pts]

Compute the output resistance of the circuits depicted in Fig. 9.50. Assume all of the transistors operate in saturation and $g_n r_O \gg 1$.

a) R _{out} =	
b) R _{out} =	

Problem 5 [10 pts]

Consider the circuit shown in Fig. 9.49, where $V_{DD}=1.8~{\rm V},~(W/L)_1=20/0.18,$ and $(W/L)_2=40/0.18.$ Assume $\mu_nC_{ox}=100~\mu{\rm A/V}^2$ and $V_{TH}=0.4~{\rm V}.$

- (a) If we require a bias current of 1 mA and $R_D = 500 \Omega$, what is the highest allowable value of V_{b1} ?
- (b) With such a value chosen for V_{b1}, what is the value of V_X?

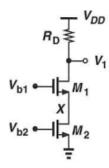


Figure 9.49

(a) V _{b1} (max) =	
(b) V _X =	