EE303 - Midterm Exam #1

Closed Book: One 8.5"x11" sheet of handwritten notes permitted Calculator permitted

Important Notes:

- Read each problem completely and thoroughly
- Summarize all your answers in the boxes provided on these exam sheets
- Make sure to mark the units on your answers!
- Do all your work on the exams sheets provided. If you use any additional sheets, please turn them in, so we can consider all work for partial credit
- Do not forget to put your name in the space above

Problem #	Points	Score
1	30	
2	5	
3	5	
4	15	
5	5	
6	20	
TOTAL	80	

<u>Problem 1 [30 pts]</u>

Given the circuit in Fig.1 find an expression for $R_{\text{in}}, R_{\text{out}}, \text{and } A_{\text{V}}\text{=}v_{\text{out}}/v_{\text{in}}$

Figure 1

R _{in}	
R _{out}	
Av	

<u>Problem 2 [5 pts]</u>

A silicon wafer is doped with donors at a concentration of N_D =10¹⁵ cm⁻³. Assuming n_i at room temperature is 10^{10} cm⁻³

(a) What is the electron concentration n_0 (cm⁻³) at room temperature?

(b) What is the holes concentration p_0 (cm⁻³) at room temperature?

(a) $n_0 =$	
(b) p _o =	

Problem 3 [5 pts]

Using the fact that a silicon diode has $I_s = 10^{-14}$ A at 25°C and that I_s increases by 15% per °C rise in temperature, find the value of I_s at 125°C.

I _s at 125°C =	L at 125% -	
---------------------------	-------------	--

Problem 4 [15 pts]

Consider the circuit shown in Fig. 2. A string of three diodes is used to provide a constant voltage of about 2.1 V. We want to calculate the percentage change in this regulated voltage caused by

(a) a $\pm 10\%$ change in the power-supply voltage without the load

(b) a $\pm 10\%$ change in the power-supply voltage with a load of 1-k Ω connected

Figure 2

(a) $\Delta V_o / \Delta V_{supply} =$	
(b) $\Delta V_o / \Delta V_{supply} =$	

<u>Problem 5 [5 pts]</u>

For the circuit in Figure 3, utilizing an ideal diode, sketch the steady state output for the input shown. Label the most positive and most negative output levels.

Problem 6 [20 pts]

In the following circuit assuming $\mu_n C_{ox} = 100 \ \mu A/V^2$ and $V_{TH}=0.4 \ V$ and $\lambda \approx 0 \ V^{-1}$, determine the maximum allowable value of W/L if M₁ must remain in saturation.

Figure 4.

Assume the current flowing into the gate of the transistor is negligible (I_G=0).

