EE303 - Midterm Exam \#1

Closed Book:

One 8.5 "x11" sheet of handwritten notes permitted Calculator permitted

Important Notes:

- Read each problem completely and thoroughly
- Summarize all your answers in the boxes provided on these exam sheets
- Make sure to mark the units on your answers!
- Do all your work on the exams sheets provided. If you use any additional sheets, please turn them in, so we can consider all work for partial credit
- Do not forget to put your name in the space above

Problem \#	Points	Score
1	30	
2	5	
3	5	
4	15	
5	5	
6	20	
TOTAL	$\mathbf{8 0}$	

Name:

Problem 1 [30 pts]

Given the circuit in Fig. 1 find an expression for $R_{\text {in }}, R_{\text {out }}$, and $A_{v}=v_{\text {out }} / v_{\text {in }}$

Figure 1

$\mathrm{R}_{\text {in }}$	
$\mathrm{R}_{\text {out }}$	
A_{V}	

Problem 2 [5 pts]

A silicon wafer is doped with donors at a concentration of $N_{D}=10^{15} \mathrm{~cm}^{-3}$. Assuming n_{i} at room temperature is $10^{10} \mathrm{~cm}^{-3}$
(a) What is the electron concentration $\mathrm{n}_{0}\left(\mathrm{~cm}^{-3}\right)$ at room temperature?
(b) What is the holes concentration $\mathrm{p}_{\mathrm{o}}\left(\mathrm{cm}^{-3}\right)$ at room temperature?

(a) $\mathrm{n}_{\mathrm{o}}=$	
(b) $\mathrm{p}_{\mathrm{o}}=$	

Problem 3 [5 pts]
Using the fact that a silicon diode has Is $=10^{-14} \mathrm{~A}$ at $25^{\circ} \mathrm{C}$ and that Is increases by 15% per ${ }^{\circ} \mathrm{C}$ rise in temperature, find the value of Is at $125^{\circ} \mathrm{C}$.

Is at $125^{\circ} \mathrm{C}=$	

Problem 4 [15 pts]

Consider the circuit shown in Fig. 2. A string of three diodes is used to provide a constant voltage of about 2.1 V . We want to calculate the percentage change in this regulated voltage caused by
(a) a $\pm 10 \%$ change in the power-supply voltage without the load
(b) a $\pm 10 \%$ change in the power-supply voltage with a load of $1-\mathrm{k} \Omega$ connected

Figure 2

(a) $\Delta \mathrm{V}_{0} / \Delta \mathrm{V}_{\text {supply }}=$	
(b) $\Delta \mathrm{V}_{\mathrm{o}} / \Delta \mathrm{V}_{\text {supply }}=$	

Problem 5 [5 pts]

For the circuit in Figure 3, utilizing an ideal diode, sketch the steady state output for the input shown. Label the most positive and most negative output levels.

Figure 3.

In the following circuit assuming $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{TH}}=0.4 \mathrm{~V}$ and $\lambda \approx 0 \mathrm{~V}^{-1}$, determine the maximum allowable value of W / L if M_{1} must remain in saturation.

Figure 4.
Assume the current flowing into the gate of the transistor is negligible $\left(\mathrm{I}_{\mathrm{G}}=0\right)$.

$\mathrm{V}_{\mathrm{GS}}=$	
$\mathrm{W} / \mathrm{L} \leq$	

