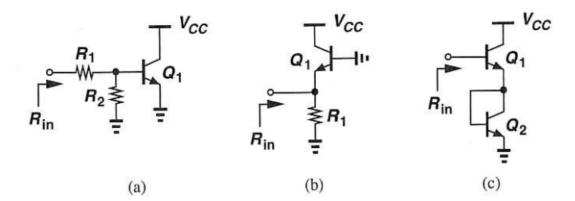
EE303 - Midterm Exam #2

Closed Book:

Two 8.5"x11" sheet of handwritten notes permitted Calculator permitted

Important Notes:

- Read each problem completely and thoroughly
- Summarize all your answers in the boxes provided on these exam sheets
- Make sure to mark the units on your answers!
- Do all your work on the exams sheets provided. If you use any additional sheets, please turn them in, so we can consider all work for partial credit
- Do not forget to put your name in the space above

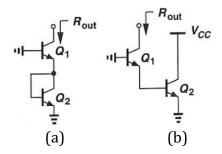

Problem #	Points	Score
1	15	
2	10	
3	15	
4	10	
5	10	
6	15	
7	10	
TOTAL	85	

Unless otherwise specified assume:

NMOS: $\mu_n C_{OX} = 200 \ \mu A/V^2 \ \text{and} \ V_{THn} = 0.4V$ PMOS: $\mu_p C_{OX} = 100 \ \mu A/V^2 \ \text{and} \ V_{THp} = -0.4V$

<u>Problem 1 [15 pts]</u>

Compute the input resistance for the following circuits. Assume V_{A} = ∞



a) R _{in}	
b) R _{in}	
c) R _{in}	

Name:

Problem 2 [10 pts]

Compute the output resistance for the following circuits. Assume V_{A} is finite:

(a) R _{out} =	
(b) R _{out} =	

Problem 3 [15 pts]

The CS stage of Fig. 7.56 must provide a voltage gain of 10 with a bias current of 0.5 mA. Assume $\lambda_1=0.1\,V^{-1}$, and $\lambda_2=0.15\,V^{-1}$.

- (a) Compute the required value of $(W/L)_1$.
- (b) If $(W/L)_2 = 20/0.18$, calculate the required value of V_B .

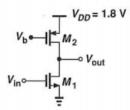


Figure 7.56

(W/L) ₁ =	
$V_B =$	

Problem 4 [10 pts]

. We wish to design the circuit shown in Fig. 7.59 for a voltage gain of 3. If $(W/L)_1 = 20/0.18$, determine $(W/L)_2$. Assume $\lambda = 0$.

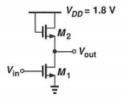


Figure 7.59

$(W/L)_2 =$	
-------------	--

Name:

Problem 5 [10 pts]

We wish to design the source follower shown in Fig. 7.77 for a voltage gain of 0.8. If W/L = 30/0.18 and $\lambda = 0$, determine the required gate bias voltage.

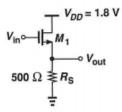
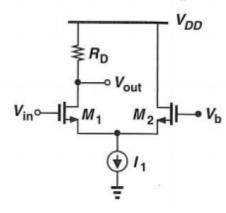
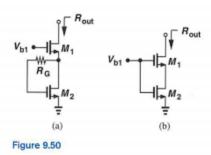



Figure 7.77

$V_G =$

Problem 6 [15 pts]


Calculate the voltage gain, the input impedance and the output impedance of the circuit depicted in fig. Assume channel length modulation is negligible. NOTE: V_b is a DC bias voltage.

$A_{\rm v} = v_{\rm out}/v_{\rm in} =$	
R _{in} =	
R _{out} =	

Problem 7 [10 pts]

Compute the output resistance of the circuits depicted in Fig. 9.50. Assume all of the transistors operate in saturation and $g_m r_O \gg 1$.

(a) R _{out} =	
(b) R _{out} =	