Problem 1

Consider the differential pair illustrated in Fig. 10.70. Assuming perfect symmetry and $V_A = \infty$,

- (a) Determine the voltage gain.
- (b) Under what condition does the gain become *independent* of the tail currents? This is an example of a very linear circuit because the gain does not vary with the input or output signal levels.

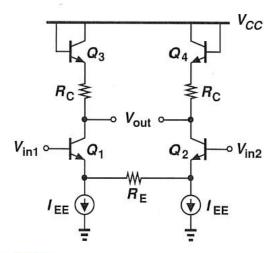
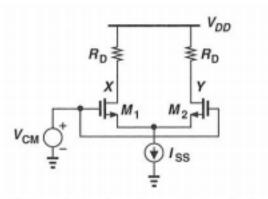



Figure 10.70

<u>Problem 2</u>

Consider the MOS differential pair of Fig. 10.24. What happens to the tail node voltage if (a) the width of M_1 and M_2 is doubled, (b) I_{SS} is doubled, (c) the gate oxide thickness is doubled?

Problem 3

Calculate the differential voltage gain of the circuits depicted in Fig. 10.76. Assume perfect symmetry and $\lambda > 0$.

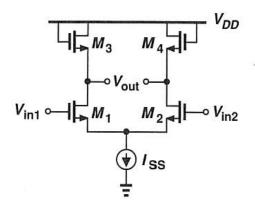
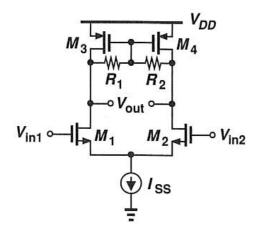
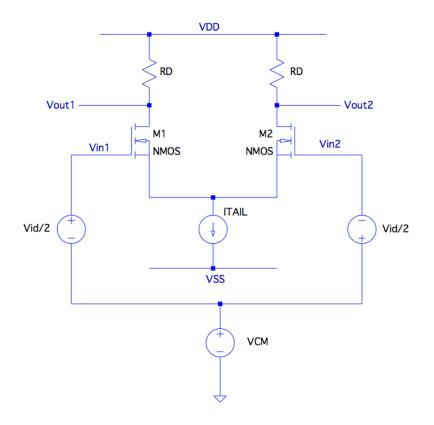


Fig. 10.76 (a)




Fig. 10.76 (b)

Problem 4

Design an nMOST differential pair with the following parameters: $I_{TAIL} = 0.4 \text{ mA}, V_{TH}=0.5 \text{V}, \mu C_{ox}(W/L) = 4 \text{mA}/\text{V}^2, V_{DD}=1.5 \text{V}, V_{SS}=-1.5 \text{V}, R_D=2.5 \text{K}\Omega$ Neglect channel length modulation:

Analytically:

- a. Find $V_{\rm OV}$ and $V_{\rm GS}$ at equilibrium
- b. For $V_{CM}=0$ find the values of V_S , I_{D1} , I_{D2} , V_{D1} , V_{D2}
- c. Repeat (b) for $V_{CM}=1V$
- d. Repeat (b) for $V_{CM} = 0.2V$
- e. What is the highest value of V_{CM} for which M_1 and M_2 remain in saturation?
- f. If the current source I_{TAIL} requires a minimum voltage of 0.4V to operate properly, what is the lowest value allowed for V_{CM} ?
- g. What is the range of differential mode operation (i.e. the range of $V_{id}=V_{in1}-V_{in2}$ for which M_1 and M_2 are "ON")
- h. Assuming the output differential pair is taken single-ended, plot the differential voltage amplification $A_{Vd} = v_{outl}/v_{id}$ and the common mode voltage amplification $A_{Vc} = v_{oc}/v_{ic}$.

