## EE303 - Problem Set

#### <u>Problem 1</u>

A silicon wafer is doped with donors at a concentration of  $N_D = 10^{15} \text{ cm}^{-3}$ 

(a) What is the electron concentration  $n_0$  (cm<sup>-3</sup>) at room temperature?

(b) What is the holes concentration  $p_0$  (cm<sup>-3</sup>) at room temperature?

## <u>Problem 2</u>

Calculate the drift current density for a given semiconductor. Consider silicon at T = 300 °K doped with arsenic atoms at a concentration of N<sub>D</sub>=8×10<sup>15</sup> cm<sup>-3</sup>. Assume mobility values of  $\mu_n$  = 1350 cm<sup>2</sup>/(Vs) and  $\mu_p$  = 480 cm<sup>2</sup>/(Vs). Assume the applied electric field is 100 V/cm.

## <u>Problem 3</u>

Calculate the diffusion current density for a given semiconductor. Consider silicon at T = 300 °K. Assume the electron concentration varies linearly from  $n=10^{12}$  cm<sup>-3</sup> to  $n=10^{16}$  cm<sup>-3</sup> over the distance from x=0 to x=3µm. Assume D<sub>n</sub>=35 cm<sup>2</sup>/s

#### <u>Problem 4</u>

Given a silicon wafer doped with donors with  $N_D=7.5 \times 10^{17}$  cm<sup>-3</sup> we add an acceptor concentration of  $N_A=5.5 \times 10^{17}$  to a particular region.

- (a) What type is the region (n or p)?
- (b) What is the electron concentration  $n_0$  (cm<sup>-3</sup>) in the region?
- (c) What is the hole concentration  $p_0$  (cm<sup>-3</sup>) in the region?

## <u>Problem 5</u>

Find the resistivity of (a) intrinsic silicon and (b) *p*-type silicon with  $N_A = 10^{16}/\text{cm}^3$ . Use  $n_i = 1.5 \times 10^{10}/\text{cm}^3$ , and assume that for intrinsic silicon  $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$  and  $\mu_p = 480 \text{ cm}^2/\text{V} \cdot \text{s}$ , and for the doped silicon  $\mu_n = 1110 \text{ cm}^2/\text{V} \cdot \text{s}$  and  $\mu_p = 400 \text{ cm}^2/\text{V} \cdot \text{s}$ . (Note that doping results in reduced carrier mobilities).

## <u>Problem 6</u>

A uniform bar of *n*-type silicon of 2  $\mu$ m length has a voltage of 1 V applied across it. If  $N_D = 10^{16}$ /cm<sup>3</sup> and  $\mu_n = 1350$  cm<sup>2</sup>/V·s, find (a) the electron drift velocity, (b) the time it takes an electron to cross the 2- $\mu$ m length, (c) the drift-current density, and (d) the drift current in the case the silicon bar has a cross sectional area of 0.25  $\mu$ m<sup>2</sup>.

## <u>Problem 7</u>

A silicon diode said to be a 1-mA device displays a forward voltage of 0.7 V at a current of 1 mA. Evaluate the junction scaling constant  $I_s$ . What scaling constants would apply for a 1-A diode of the same manufacture that conducts 1 A at 0.7 V?

#### <u>Problem 8</u>

For the circuits shown in Fig. P4.2 using ideal diodes, find the values of the voltages and currents indicated.



# <u>Problem 9</u>

The diode in the circuit of Fig. E4.9 is a large high-current device whose reverse leakage is reasonably independent of voltage. If V = 1 V at 20°C, find the value of V at 40°C and at 0°C.



#### Problem 10

Find the change in diode voltage if the current changes from 0.1 mA to 10 mA.

#### Problem 11

A silicon junction diode has v = 0.7 V at i = 1 mA. Find the voltage drop at i = 0.1 mA and i = 10 mA.

#### <u> Problem 12</u>

Using the fact that a silicon diode has  $I_s = 10^{-14}$  A at 25°C and that  $I_s$  increases by 15% per °C rise in temperature, find the value of  $I_s$  at 125°C.