EE303 - Problem Set

In the following problems, unless otherwise stated, assume $\mu_{n} C_{o x}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=$ $100 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0$, and $V_{T H}=0.4 \mathrm{~V}$ for NMOS devices and -0.4 V for PMOS devices.

Problem 1

. In the common-source stage of Fig. 7.54, $W / L=30 / 0.18$ and $\lambda=0$.
(a) What gate voltage yields a drain current of 0.5 mA ? (Verify that M_{1} operates in saturation.)

Figure 7.54
(b) With such a drain bias current, calculate the voltage gain of the stage.

Problem 2

.We wish to design the circuit shown in Fig. 7.59 for a voltage gain of 3. If $(W / L)_{1}=20 / 0.18$, determine $(W / L)_{2}$. Assume $\lambda=0$.

Figure 7.59

Problem 3

The degenerated CS stage of Fig. 7.61 must provide a voltage gain of 4 with a bias current of 1 mA . Assume a drop of 200 mV across R_{S} and $\lambda=0$.

Figure 7.61
(a) If $R_{D}=1 \mathrm{k} \Omega$, determine the required value of W / L. Does the transistor operate in saturation for this choice of W / L ?
(b) If $W / L=50 / 0.18$, determine the required value of R_{D}. Does the transistor operate in saturation for this choice of R_{D} ?

Problem 4

Calculate the voltage gain, the input impedance and the output impedance of the circuit depicted in fig. Assume channel length modulation is negligible.
NOTE: V_{b} is a DC bias voltage.

Problem 5

Consider the circuit of Fig. 7.72, where a common-source stage (M_{1} and $R_{D 1}$) is followed by a common-gate stage (M_{2} and $R_{D 2}$).
(a) Writing $v_{\text {out }} / v_{\text {in }}=\left(v_{X} / v_{\text {in }}\right)\left(v_{\text {out }} / v_{X}\right)$ and assuming $\lambda=0$, compute the overall voltage gain.
(b) Simplify the result obtained in (a) if $R_{D 1} \rightarrow \infty$. Explain why this result is to be expected.

Figure 7.72

NOTE: Vb is a DC bias voltage.
Problem 6
We wish to design the source follower shown in Fig. 7.77 for a voltage gain of 0.8 . If $W / L=30 / 0.18$ and $\lambda=0$, determine the required gate bias voltage.

Figure 7.77

Problem 7

We wish to design the source follower of Fig. 7.79 for a voltage gain of 0.8 with a power budget of 3 mW . Compute the required value of W / L. Assume C_{1} is very large and $\lambda=0$.

Figure 7.79

