
APPENDIX F

s-DOMAIN ANALYSIS: POLES,
ZEROS, AND BODE PLOTS

In analyzing the frequency response of an amplifier, most of the work involves finding the
amplifier voltage gain as a function of the complex frequency s. In this s-domain analysis, a
capacitance C is replaced by an admittance sC, or equivalently an impedance 1/sC, and an
inductance L is replaced by an impedance sL. Then, using usual circuit-analysis techniques,
one derives the voltage transfer function T(s) ≡ Vo(s)/Vi(s).

EXERCISE

F.1 Find the voltage transfer function T(s) ≡ Vo(s)/Vi(s) for the STC network shown in Fig. EF.1.
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Figure EF.1

Ans. T(s) = 1/CR1

s+ 1/C
(
R1 ‖ R2

)

Once the transfer function T(s) is obtained, it can be evaluated for physical frequencies
by replacing s by jω. The resulting transfer function T( jω) is in general a complex quantity
whose magnitude gives the magnitude response (or transmission) and whose angle gives the
phase response of the amplifier.

In many cases it will not be necessary to substitute s= jω and evaluate T(jω); rather, the
form of T(s) will reveal many useful facts about the circuit performance. In general, for all
the circuits dealt with in this book, T(s) can be expressed in the form

T(s) = ams
m + am−1s

m−1 + . . . + a0
sn + bn−1sn−1 + . . . + b0

(F.1)
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F-2 Appendix F s-Domain Analysis: Poles, Zeros, and Bode Plots

where the coefficients a and b are real numbers, and the order m of the numerator is smaller
than or equal to the order n of the denominator; the latter is called the order of the network.
Furthermore, for a stable circuit—that is, one that does not generate signals on its own—the
denominator coefficients should be such that the roots of the denominator polynomial all have
negative real parts. The problem of amplifier stability is studied in Chapter 10.

F.1 Poles and Zeros

An alternate form for expressing T(s) is

T(s) = am
(s−Z1)(s−Z2) . . . (s−Zm)

(s−P1)(s−P2) . . . (s−Pn)
(F.2)

where am is a multiplicative constant (the coefficient of sm in the numerator), Z1, Z2, . . . , Zm
are the roots of the numerator polynomial, and P1, P2, . . . , Pn are the roots of the denominator
polynomial. Z1, Z2, . . . , Zm are called the transfer-function zeros or transmission zeros, and
P1,P2, . . . ,Pn are the transfer-function poles or the naturalmodes of the network. A transfer
function is completely specified in terms of its poles and zeros together with the value of the
multiplicative constant.

The poles and zeros can be either real or complex numbers. However, since the a and b
coefficients are real numbers, the complex poles (or zeros) must occur in conjugate pairs.
That is, if 5+ j3 is a zero, then 5 – j3 also must be a zero. A zero that is purely imaginary
(±jωZ) causes the transfer function T(jω) to be exactly zero at ω = ωZ . This is because the
numerator will have the factors (s+ jωZ)(s− jωZ) = (s2 +ω

2
Z), which for physical frequencies

becomes (−ω
2 +ω

2
Z), and thus the transfer fraction will be exactly zero at ω = ωZ . Thus the

“trap” one places at the input of a television set is a circuit that has a transmission zero at the
particular interfering frequency. Real zeros, on the other hand, do not produce transmission
nulls. Finally, note that for values of s much greater than all the poles and zeros, the transfer
function in Eq. (F.1) becomes T(s) � am/s

n−m. Thus the transfer function has (n−m) zeros
at s= ∞.

F.2 First-Order Functions

Many of the transfer functions encountered in this book have real poles and zeros and can
therefore be written as the product of first-order transfer functions of the general form

T(s) = a1s+ a0
s+ω0

(F.3)

where−ω0 is the location of the real pole. The quantityω0, called the pole frequency, is equal
to the inverse of the time constant of this single-time-constant (STC) network (see Appendix
E). The constants a0 and a1 determine the type of STC network. Specifically, we studied in
Chapter 1 two types of STC networks, low pass and high pass. For the low-pass first-order
network we have

T(s) = a0
s+ω0

(F.4)

In this case the dc gain is a0/ω0, and ω0 is the corner or 3-dB frequency. Note that this transfer
function has one zero at s= ∞. On the other hand, the first-order high-pass transfer function
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F.3 Bode Plots F-3

has a zero at dc and can be written as

T(s) = a1s

s+ω0

(F.5)

At this point the reader is strongly urged to review the material on STC networks and their
frequency andpulse responses inAppendixE.Of specific interest are the plots of themagnitude
and phase responses of the two special kinds of STC networks. Such plots can be employed to
generate the magnitude and phase plots of a high-order transfer function, as explained below.

F.3 Bode Plots

A simple technique exists for obtaining an approximate plot of the magnitude and phase of a
transfer function given its poles and zeros. The technique is particularly useful in the case of
real poles and zeros. The method was developed by H. Bode, and the resulting diagrams are
called Bode plots.

A transfer function of the form depicted in Eq. (F.2) consists of a product of factors of
the form s+ a, where such a factor appears on top if it corresponds to a zero and on the
bottom if it corresponds to a pole. It follows that the magnitude response in decibels of the
network can be obtained by summing together terms of the form 20 log10

√
a2 +ω2, and the

phase response can be obtained by summing terms of the form tan−1(ω/a). In both cases
the terms corresponding to poles are summed with negative signs. For convenience we can
extract the constant a and write the typical magnitude term in the form 20 log

√
1+ (ω/a)2.

On a plot of decibels versus log frequency this term gives rise to the curve and straight-line
asymptotes shown in Fig. F.1. Here the low-frequency asymptote is a horizontal straight line
at 0-dB level and the high-frequency asymptote is a straight line with a slope of 6 dB/octave
or, equivalently, 20 dB/decade. The two asymptotes meet at the frequency ω = |a|, which is
called the corner frequency. As indicated, the actual magnitude plot differs slightly from

1 � (�/a)2 (dB)

0 dB

Actual curve

�6 dB/octave
(� 20 dB/decade)

3 dB

� (log scale)�3dB � a �
1
�

20 log ����������

� �

Figure F.1 Bode plot for the typical magnitude term. The curve shown applies for the case of a zero. For a
pole, the high-frequency asymptote should be drawn with a –6-dB/octave slope.
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the value given by the asymptotes; the maximum difference is 3 dB and occurs at the corner
frequency.

For a= 0—that is, a pole or a zero at s= 0—the plot is simply a straight line of 6 dB/octave
slope intersecting the 0-dB line at ω = 1.

In summary, to obtain theBode plot for themagnitude of a transfer function, the asymptotic
plot for each pole and zero is first drawn. The slope of the high-frequency asymptote of the
curve corresponding to a zero is +20 dB/decade, while that for a pole is −20 dB/decade. The
various plots are then added together, and the overall curve is shifted vertically by an amount
determined by the multiplicative constant of the transfer function.

Example F.1

An amplifier has the voltage transfer function

T(s) = 10s
(
1+ s/102

)(
1+ s/105

)

Find the poles and zeros and sketch the magnitude of the gain versus frequency. Find approximate values
for the gain at ω = 10, 103, and 106 rad/s.

Solution

The zeros are as follows: one at s= 0 and one at s= ∞. The poles are as follows: one at s= −102 rad/s
and one at s= −105 rad/s.

Figure F.2 shows the asymptotic Bode plots of the different factors of the transfer function. Curve 1, which
is a straight line intersecting the ω-axis at 1 rad/s and having a +20 dB/decade slope, corresponds to the s
term (that is, the zero at s= 0) in the numerator. The pole at s=−102 results in curve 2,which consists of two
asymptotes intersecting atω = 102. Similarly, the pole at s=−105 is represented by curve 3,where the inter-
section of the asymptotes is at ω = 105. Finally, curve 4 represents the multiplicative constant of value 10.

Figure F.2 Bode plots for Example F.1.
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Adding the four curves results in the asymptotic Bode diagram of the amplifier gain (curve 5). Note that
since the two poles are widely separated, the gain will be very close to 103 (60 dB) over the frequency
range 102 to 105 rad/s. At the two corner frequencies (102 and 105 rad/s) the gain will be approximately
3 dB below the maximum of 60 dB. At the three specific frequencies, the values of the gain as obtained
from the Bode plot and from exact evaluation of the transfer function are as follows:

ω Approximate Gain Exact Gain

10 40 dB 39.96 dB
103 60 dB 59.96 dB
106 40 dB 39.96 dB

We next consider the Bode phase plot. Figure F.3 shows a plot of the typical phase
term tan−1

(ω/a), assuming that a is negative. Also shown is an asymptotic straight-line
approximation of the arctan function. The asymptotic plot consists of three straight lines.
The first is horizontal at φ = 0 and extends up to ω = 0.1|a|. The second line has a slope of
–45°/decade and extends from ω = 0.1|a| to ω = 10|a|. The third line has a zero slope and a
level of φ = −90°. The complete phase response can be obtained by summing the asymptotic
Bode plots of the phase of all poles and zeros.

Figure F.3 Bode plot of the typical phase term tan
−1

(ω/a) when a is negative.

Example F.2

Find the Bode plot for the phase of the transfer function of the amplifier considered in Example F.1.

Solution

The zero at s= 0 gives rise to a constant +90° phase function represented by curve 1 in Fig. F.4. The pole
at s= −102 gives rise to the phase function

φ1 = −tan−1 ω

102
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Figure F.4 Phase plots for Example F.2.

(the leadingminus sign is due to the fact that this singularity is a pole). The asymptotic plot for this function
is given by curve 2 in Fig. F.4. Similarly, the pole at s= −105 gives rise to the phase function

φ2 = − tan−1 ω

105

whose asymptotic plot is given by curve 3. The overall phase response (curve 4) is obtained by direct
summation of the three plots. We see that at 100 rad/s, the amplifier phase leads by 45° and at 105 rad/s
the phase lags by 45°.

F.4 An Important Remark

For constructing Bode plots, it is most convenient to express the transfer-function factors in
the form (1+ s/a). The material of Figs. F.1 and F.2 and of the preceding two examples is
then directly applicable.

PROBLEMS

F.1 Find the transfer functionT(s)=Vo(s)/Vi(s) of the circuit
in Fig. PF.1. Is this an STC network? If so, of what type? For
C1 = C2 = 0.5 μF and R = 100 k�, find the location of the
pole(s) and zero(s), and sketch Bode plots for the magnitude
response and the phase response. C2 R Vo

�

�

�
�

C1

Vi Vo

C1

Vi

Figure PF.1
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Problems F-7

D *F.2 (a) Find the voltage transfer function T(s) =
Vo(s)/Vi(s), for the STC network shown in Fig. PF.2.

Rs
C

Vs VoRL�
�

�

�

Figure PF.2

(b) In this circuit, capacitor C is used to couple the signal
source Vs having a resistance Rs to a load RL. For Rs = 10 k�,
design the circuit, specifying the values of RL and C to only
one significant digit to meet the following requirements:

(i) The load resistance should be as small as possible.
(ii) The output signal should be at least 70% of the input at

high frequencies.
(iii) The output should be at least 10% of the input at 10 Hz.

F.3 Two STC RC circuits, each with a pole at 100 rad/s
and a maximum gain of unity, are connected in cascade
with an intervening unity-gain buffer that ensures that they
function separately. Characterize the possible combinations
(of low-pass and high-pass circuits) by providing (i) the
relevant transfer functions, (ii) the voltage gain at 10 rad/s,
(iii) the voltage gain at 100 rad/s, and (iv) the voltage gain at
1000 rad/s.

F.4 Design the transfer function in Eq. (F.5) by specifying
a1 and ω0 so that the gain is 10 V/V at high frequencies and
1 V/V at 10 Hz.

F.5 An amplifier has a low-pass STC frequency response.
The magnitude of the gain is 20 dB at dc and 0 dB at 100 kHz.
What is the corner frequency? At what frequency is the gain
19 dB? At what frequency is the phase −6°?

F.6 A transfer function has poles at (−5), (−7 + j10), and
(−20), and a zero at (−1− j20). Since this function represents

an actual physical circuit, where must other poles and zeros
be found?

F.7 An amplifier has a voltage transfer function T(s) =
106s(s+ 10)

(
s+ 103

)
. Convert this to the form convenient

for constructing Bode plots [that is, place the denominator
factors in the form (1 + s/a)]. Provide a Bode plot for the
magnitude response, and use it to find approximate values for
the amplifier gain at 1, 10, 102, 103, 104, and 105 rad/s. What
would the actual gain be at 10 rad/s? At 103 rad/s?

F.8 Find the Bode phase plot of the transfer function of the
amplifier considered in ProblemF.7. Estimate the phase angle
at 1, 10, 102, 103, 104, and 105 rad/s. For comparison, calculate
the actual phase at 1, 10, and 100 rad/s.

F.9 A transfer function has the following zeros and poles: one
zero at s= 0 and one zero at s= ∞; one pole at s= −100 and
one pole at s= −106. The magnitude of the transfer function
at ω = 104 rad/s is 100. Find the transfer function T(s) and
sketch a Bode plot for its magnitude.

F.10 Sketch Bode plots for the magnitude and phase of the
transfer function

T(s) = 104
(
1+ s/105

)

(
1+ s/103

)(
1+ s/104

)

From your sketches, determine approximate values for the
magnitude and phase at ω = 106 rad/s. What are the exact
values determined from the transfer function?

F.11 A particular amplifier has a voltage transfer func-
tion T(s)=10s2/(1+ s/10)(1+ s/100)

(
1+ s/106

)
. Find the

poles and zeros. Sketch themagnitude of the gain in dB versus
frequency on a logarithmic scale. Estimate the gain at 100, 103,
105, and 107 rad/s.

F.12 Adirect-coupled differential amplifier has a differential
gain of 100 V/V with poles at 106 and 108 rad/s, and a
common-mode gain of 10−3 V/V with a zero at 104 rad/s
and a pole at 108 rad/s. Sketch the Bode magnitude plots for
the differential gain, the common-mode gain, and the CMRR.
What is theCMRRat 107 rad/s? (Hint:Division ofmagnitudes
corresponds to subtraction of logarithms.)
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