Introduction to CMOS Digital Logic Circuits

MOSTs as switches

For a transistor in triode region if $V_{GS} - V_t \ll V_{DS}$:

$$R_{on} \equiv R_{DS} \approx \frac{1}{\mu C_{ox} \frac{W}{L} (V_{GS} - V_t)}$$

Figure 14.1 Operation of the (a) NMOS and (b) PMOS transistor as an on/off switch. The gate voltage controls the operation of the transistor switch, with the voltage V_{DD} representing a logic 1 and 0 V representing a logic 0. Note that the connections of the drain and source terminals are not shown.

The CMOS inverter

Figure 14.2 (a) Block representation of the logic inverter; (b) its CMOS realization; (c) operation when the input is a logic 1; (d) operation when the input is a logic 0.

General CMOS logic gate structure

Examples of pull-down networks

Figure 14.4 Examples of pull-down networks.

Examples of pull-up networks

Figure 14.5 Examples of pull-up networks.

MOSTs symbols used in "digital logic"

The body terminal of all pMOSTs is "assumed" connected to VDD

The body terminal of all nMOSTs is "assumed" connected to GND

Example: CMOS NOR gate

Figure 14.7 A two-input CMOS NOR gate.

Example: CMOS NAND gate

Figure 14.8 A two-input CMOS NAND gate.

Example: a composite CMOS gate

Figure 14.9 CMOS realization of a complex gate.

Α	В	С	D	Υ
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Microelectronic Circuits, Seventh Edition

Copyright © 2015 by Oxford University Press

CMOS inverter: logic symbol, implementation, and simplified model

Figure 14.2 (a) Block representation of the logic inverter; (b) its CMOS realization; (c) operation when the input is a logic 1; (d) operation when the input is a logic 0.

DC transfer characteristic of the ideal inverter

Figure 14.16 The VTC of an ideal inverter.

DC transfer characteristic of "real" inverter

Typical voltage-transfer characteristic (VTC) of a logic inverter, illustrating the definition of the critical points.

DC parameters of the logic inverter

Table 14.1	Important Parameters of the	VTC of the Logic Inverter	(Refer to Fig. 14.13)
------------	-----------------------------	---------------------------	-----------------------

- V_{OL} : Output low level
- *V*_{OH}: Output high level
- V_{IL} : Maximum value of input interpreted by the inverter as a logic 0
- V_{IH} : Minimum value of input interpreted by the inverter as a logic 1
- NM_L : Noise margin for low input = $V_{IL} V_{OL}$
- NM_H : Noise margin for high input = $V_{OH} V_{IH}$

Implementation of CMOS inverter

CMOS inverter with $v_1 = VDD$

Figure 14.23 Operation of the CMOS inverter when v_i is high: (a) circuit with $v_i = V_{DD}$ (logic-1 level, or V_{OH}); (b) graphical construction to determine the operating point; (c) equivalent circuit.

CMOS inverter with $v_1 = GND$

DC transfer characteristic of a "real" inverter (with Q_P and Q_N matched)

Figure 14.25 The voltage-transfer characteristic of the CMOS inverter when Q_N and Q_P are matched.

"Robustness" of the inverter

FIGURE 2.29 Noise margin definitions

DC transfer characteristic of a "real" inverter (with Q_P and Q_N mismatched)

Speed of the logic inverter (Transient behavior)

Figure 14.29 Definitions of propagation delays and transition times of the logic inverter.