Semiconductors and Diodes

	Table 3.1 Summary of Important Equations				
	Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at $T = 300$ K)		
	Carrier concentration in intrinsic silicon (cm ⁻³)	$n_i = BT^{3/2}e^{-E_g/2kT}$	$B = 7.3 \times 10^{15} \text{ cm}^{-3} \text{K}^{-3/2}$ $E_g = 1.12 \text{ eV}$ $k = 8.62 \times 10^{-5} \text{ eV/K}$ $n_i = 1.5 \times 10^{10} / \text{cm}^3$		
	Diffusion current density (A/cm ²)	$J_{p} = -qD_{p} \frac{dp}{dx}$ $J_{n} = qD_{n} \frac{dn}{dx}$	$q = 1.60 \times 10^{-19}$ coulomb $D_p = 12 \text{ cm}^2/\text{s}$ $D_n = 34 \text{ cm}^2/\text{s}$		
	Drift current density (A/cm ²)	$J_{\rm drift} = q \left(p \mu_p + n \mu_n \right) E$	$\mu_p = 480 \text{ cm}^2/\text{V} \cdot \text{s}$ $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$		
	Resistivity (Ω · cm)	$\rho = 1/[q(p\mu_p + n\mu_n)]$	μ_p and μ_n decrease with the increase in doping concentration		
	Relationship between mobility and diffusivity	$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T$	$V_T = kT/q \simeq 25.9 \text{ mV}$		
	Carrier concentration in n -type silicon (cm ⁻³)	$n_{n0} \simeq N_D$ $p_{n0} = n_i^2 / N_D$			
	Carrier concentration in p -type silicon (cm ⁻³)	$p_{p0} \simeq N_A$ $n_{p0} = n_i^2 / N_A$			
PN junctions (diodes)	Junction built-in voltage (V)	$V_0 = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$			
	Width of depletion region (cm)	$\begin{aligned} \frac{x_n}{x_p} &= \frac{N_A}{N_D} \\ W &= x_n + x_p \\ &= \sqrt{\frac{2\epsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)} \end{aligned}$	$\begin{aligned} \boldsymbol{\epsilon}_s &= 11.7\boldsymbol{\epsilon}_0 \\ \boldsymbol{\epsilon}_0 &= 8.854 \times 10^{-14} \text{ F/cm} \end{aligned}$		

Table 3.1 continued					
Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at $T = 300$ K)			
Charge stored in depletion layer (coulomb)	$Q_J = q \frac{N_A N_D}{N_A + N_D} AW$				
Forward current (A)	$I = I_p + I_n$ $I_p = Aqn_i^2 \frac{D_p}{L_p N_D} \left(e^{V N_T} - 1 \right)$ $I_n = Aqn_i^2 \frac{D_n}{L_n N_A} \left(e^{V N_T} - 1 \right)$				
Saturation current (A)	$I_{S} = Aqn_{i}^{2} \left(\frac{D_{p}}{L_{p}N_{D}} + \frac{D_{n}}{L_{n}N_{A}} \right)$				
<i>I–V</i> relationship	$I = I_s \left(e^{VV_T} - 1 \right)$				
Minority-carrier lifetime (s)	$\tau_p = L_p^2 / D_p \qquad \tau_n = L_n^2 / D_n$	$L_p, L_n = 1 \ \mu \text{m}$ to 100 μm $\tau_p, \tau_n = 1 \text{ ns to } 10^4 \text{ ns}$			
Minority-carrier charge storage (coulomb)	$Q_p = \tau_p I_p \qquad Q_n = \tau_n I_n$ $Q = Q_p + Q_n = \tau_T I$				
Depletion capacitance (F)	$C_{j0} = A \sqrt{\left(\frac{\epsilon_s q}{2}\right) \left(\frac{N_A N_D}{N_A + N_D}\right) \frac{1}{V_0}}$ $C_j = C_{j0} / \left(1 + \frac{V_R}{V_0}\right)^m$	$m = \frac{1}{3} \text{ to } \frac{1}{2}$			
Diffusion capacitance (F)	$C_d = \left(\frac{\tau_T}{V_T}\right)I$				

FIGURE 1.46 The complete *i*-*v* characteristic of a *pn* junction.

Approximations of the diode three regions of operation

The *slope* of the diode curve at a given operating current I_D in the forward-bias region is:

$$g_d = \frac{I_D}{V_T}$$

In forward region to cause a *decade* change in I_D we need to change V_D by 60 mV.

Temperature affects the forward region as follows:

$$V_D(T) \cong V_D(T_0) - (2 \text{ mV}) \times (T - T_0)$$

and the reverse region as follows:

$$I_{R}(T) \cong I_{R}(T_{0}) \times 2^{(T-T_{0})/10}$$

$$I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

Key Small Signal Parameters for the MOSFET in saturation mode:

$$g_m = \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) = \frac{2I_D}{V_{GS} - V_{TH}}$$
$$r_O \approx \frac{1}{\lambda I_D}$$

<u>BIPOLAR in active mode ($V_{BE} \approx 0.7 V$ and $V_{CE} > V_{CE,sat} \approx 1V$)</u>

$$I_C \approx I_S e^{V_{BE}/V_T}$$

$$V_T = \frac{kT}{q}$$

 $V_T = 25.9$ mV at room temperature (= 300 degree Kelvin)

$$I_E = I_B + I_C = (\beta + 1)I_B$$

$$\beta = I_C / I_B$$

Key Small Signal Parameters for the BIPOLAR in active mode

$$g_m = \frac{I_C}{V_T}$$

$$r_{\pi} = \frac{\beta}{g_m}$$

$$r_O = \frac{V_A}{I_C}$$

Small signal model for MOSFET in saturation mode

Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Small-signal MOSFET model. This model applies to both *nMOSFETs* and pMOSFETs

Small signal model for BIPOLAR in active mode

Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Small-signal BJT model. This model applies to both *npn* and *pnp* BJTs.

Small signal resistances looking into the BJT's terminals

 $R_{B} = R_{C} = R_{C}$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Exact	Approximate		
$R_b = r_{\pi} + (\beta + 1)R_E \left(\frac{r_o + \frac{R_C}{\beta + 1}}{r_o + R_C + R_E}\right) [GHLM]$	$R_b \approx r_{\pi} + (\beta + 1)R_E \ (r_o \gg R_E, r_o \gg R_C)$		
$R_{e} = \left[\frac{(r_{o} + R_{c})(r_{\pi} + R_{B})}{r_{\pi} + R_{B} + \beta r_{o}}\right] (r_{\pi} + R_{B})$	$R_e \approx \left[\frac{(r_{\pi} + R_B)}{\beta + 1}\right] (r_o \gg R_C; \ g_m r_o \gg 1; r_o \gg \frac{R_B}{\beta})$		
$R_{c} = r_{o} \left[1 + \frac{g_{m} r_{\pi} R_{E}}{r_{\pi} + R_{B} + R_{E}} \right] + (r_{\pi} + R_{B}) R_{E} $	$R_c \approx r_o [1 + g_m(r_\pi R_E)] (r_\pi \gg R_B; g_m r_o \gg 1)$		

Small signal terminal resistances for the MOSFET

NOTE:
$$R_s = \left(\frac{1}{g_m}||r_o\right) + \frac{R_D}{(1+g_mr_o)} = \frac{R_D + r_o}{(1+g_mr_o)}$$

Exact	Approximate		
with $R_E \neq 0$ [GHLM]:	with $R_E \neq 0$:		
$\frac{v_c}{v_b} = -\frac{R_C(\beta r_o - R_E)}{R_E[R_C + r_o(\beta + 1)] + r_\pi(R_C + R_E + r_o)}$	$\frac{v_c}{v_b} = -\frac{g_m R_c}{1 + g_m R_E}$ $r_o \gg R_c + R_E; \beta \gg 1$		
with $R_E = 0$:	with $R_E = 0$:		
$\frac{v_c}{v_b} = -g_m(R_C r_o)$	$\frac{v_c}{v_b} = -g_m R_C$ $r_o \gg R_C$		
with $R_{C} \neq 0$ [GHLM]:	with $R_C \neq 0$:		
$\frac{v_{e}}{v_{b}} = \frac{1}{1 + \frac{r_{\pi}(R_{C} + R_{E} + r_{o})}{R_{E}[R_{C} + r_{o}(\beta + 1)]}}$	$\frac{v_e}{v_b} = \frac{g_m R_E}{g_m R_E + 1}$ $r_o \gg R_C + R_E; \beta \gg 1$		
with $R_c = 0$ [GHLM]:	with $R_c = 0$ [GHLM]:		
$\frac{v_e}{v_b} = \frac{(\beta + 1)/r_{\pi}}{\frac{1}{R_E} + \frac{1}{r_o} + \frac{\beta + 1}{r_{\pi}}}$	$\frac{v_e}{v_b} = \frac{g_m R_E}{g_m R_E + 1} g_m r_o \gg 1; \ \beta \gg 1$		

(B)

$$v_{be} = -v_e \frac{r_\pi}{r_\pi + R_B}$$

Exact:

$$\frac{v_c}{v_e} = \frac{g_m R_L \frac{r_\pi}{r_\pi + R_B} + \frac{R_L}{r_o}}{1 + \frac{R_L}{r_o}}$$

Approximate:

$$\frac{v_c}{v_e} = g_m(R_L||r_o) \qquad \qquad r_\pi \gg R_B$$

(A)

Exact		Approximate
$G_{m} = \frac{i_{d}}{v_{g}} = \frac{g_{m}}{1 + g_{m}R_{S} + (R_{D} + R_{S})/r_{o}}$		$G_m \cong \frac{g_m}{1 + g_m R_s}$
$\frac{v_{d}}{v_{g}} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S} + (R_{D} + R_{S})/r_{o}}$		$\frac{v_d}{v_g} \cong \frac{-g_m R_D}{1 + g_m R_S}$
$\frac{v_s}{v_g} = \frac{g_m R_s}{1 + g_m R_s + (R_D + R_s)/r_o}$		$\frac{v_s}{v_g} \cong \frac{1}{1+1/(g_m R_s)}$

$$\frac{1}{g_m}||r_\pi\approx\frac{1}{g_m}\ (\beta\gg1)$$

(B)

Very Common Cases: Voltage Gain Equations for $\beta \gg 1 \rightarrow \left(r_{\pi} || \frac{1}{a_m}\right) \approx \frac{1}{a_m}$

*
$$v_{out} = (R_E ||r_o)g_m v_{be} + (R_E ||r_o) \frac{v_{be}}{r_{\pi}} =$$
$$= \frac{R}{r_{\pi}} v_{be} (\beta + 1) \approx g_m R v_{be}$$

 $\begin{aligned} v_{in} &= v_{be} + v_{out} \approx \\ &\approx v_{be} (1 + g_m R) \end{aligned}$

± ac

 $\lambda = 0$

ro

base as $R_B(\beta+1)$ and E becomes ground

 R_B can be "moved" in emitter as $R_E/(\beta+1)$ and B becomes ground

 $(1+g_{\rm m}r_{\rm O})R_{\rm S}+r_{\rm O}$