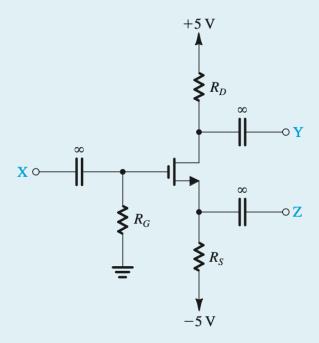
EE304 - Problem Set 1

Problem 3.1 [M]


Sketch the Bode Plots (magnitude and phase) for the following transfer functions. Assume $R_iC_i >> R_kC_k$ if i > k

- (a) $[1/(1+j\omega R_1C_1)][(1/(1+j\omega R_2C_2)]$
- (b) $(j\omega R_3C_3)[(1+j\omega R_4C_4)/(1+j\omega R_5C_5)]$
- (c) $[(1+j\omega R_6C_6)/(1+j\omega R_8C_8)][(1+j\omega R_7C_7)/(1+j\omega R_9C_9)]$

Problem 7.121 [S&S 7/e]

D *7.121 The MOSFET in the circuit of Fig. P7.121 has $V_t = 0.8 \text{ V}$, $k_n = 5 \text{ mA/V}^2$, and $V_A = 40 \text{ V}$.

- (a) Find the values of R_S , R_D , and R_G so that $I_D = 0.4$ mA, the largest possible value for R_D is used while a maximum signal swing at the drain of ± 0.8 V is possible, and the input resistance at the gate is $10 \text{ M}\Omega$. Neglect the Early effect.
- (b) Find the values of g_m and r_o at the bias point.
- (c) If terminal Z is grounded, terminal X is connected to a signal source having a resistance of $1 \text{ M}\Omega$, and terminal Y is connected to a load resistance of $10 \text{ k}\Omega$, find the voltage gain from signal source to load.
- (d) If terminal Y is grounded, find the voltage gain from X to Z with Z open-circuited. What is the output resistance of the source follower?

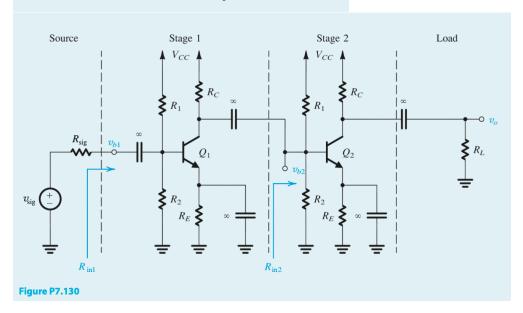


Figure P7.121

(e) If terminal X is grounded and terminal Z is connected to a current source delivering a signal current of 50 μ A and having a resistance of 100 k Ω , find the voltage signal that can be measured at Y. For simplicity, neglect the effect of r_a .

Problem 7.130 [S&S 7/e]

- *7.130 The amplifier of Fig. P7.130 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, $R_{\rm in2}$, constitutes the load resistance of the first stage.
- (a) For $V_{CC}=15$ V, $R_1=100$ k Ω , $R_2=47$ k Ω , $R_E=3.9$ k Ω , $R_C=6.8$ k Ω , and $\beta=100$, determine the dc collector current and dc collector voltage of each transistor.
- (b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components.
- (c) Find $R_{\rm in1}$ and $v_{b1}/v_{\rm sig}$ for $R_{\rm sig} = 5 \text{ k}\Omega$.
- (d) Find R_{in2} and v_{b2}/v_{b1} .
- (e) For $R_L = 2 \text{ k}\Omega$, find v_o/v_{b2} .
- (f) Find the overall voltage gain $v_o/v_{\rm sig}$.

Problem E6 [S&S]

E.6 Find the high-frequency gain, the 3-dB frequency f_0 , and the gain at f = 1 Hz of the capacitively coupled amplifier shown in Fig. EE.6. Assume the voltage amplifier to be ideal.

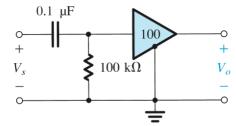
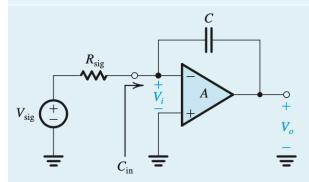



Figure EE.6

Problem 10.27 [S&S]

- **D 10.27** In the circuit of Fig. P10.27, the voltage amplifier is ideal (i.e., it has an infinite input resistance and a zero output resistance).
- (a) Use the Miller approach to find an expression for the input capacitance $C_{\rm in}$ in terms of A and C.
- (b) Use the expression for $C_{\rm in}$ to obtain the transfer function $V_o(s)/V_{\rm sig}(s)$.

Figure P10.27

- (c) If $R_{\rm sig}=1~{\rm k}\Omega$, and the gain $V_o/V_{\rm sig}$ is to have a dc value of 40 dB and a 3-dB frequency of 100 kHz, find the values required for A and C.
- (d) Sketch a Bode plot for the gain and use it to determine the frequency at which its magnitude reduces to unity.