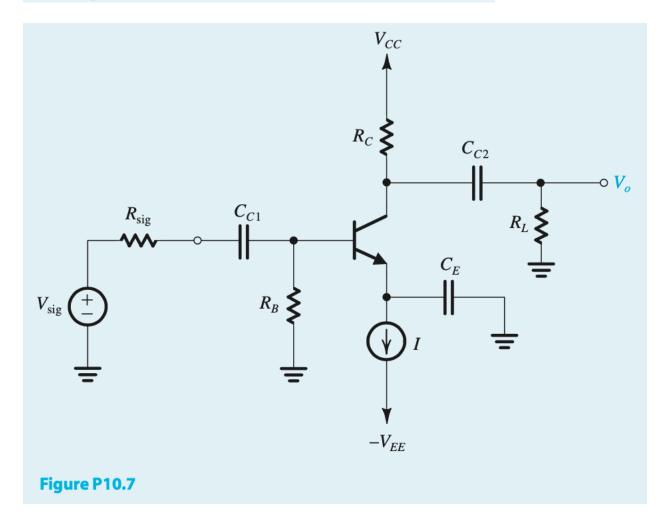

EE304 - Problem Set 2


Problem 10.4 [S&S 7/e]

10.4 The amplifier in Fig. 10.3(a) is biased to operate at $g_m = 5$ mA/V, and has the following component values: $R_{\rm sig} = 100$ k Ω , $R_{G1} = 47$ M Ω , $R_{G2} = 10$ M Ω , $C_{C1} = 0.01$ μ F, $R_S = 2$ k Ω , $C_S = 10$ μ F, $R_D = 4.7$ k Ω , $R_L = 10$ k Ω , and $C_{C2} = 1$ μ F. Find A_M , f_{P1} , f_{P2} , f_Z , f_{P3} , and f_L .

D 10.7 Figure P10.7 shows a current-biased CE amplifier operating at 100 μ A from ± 3 -V power supplies. It employs

 $R_C=20~{\rm k}\Omega,\,R_B=200~{\rm k}\Omega,\,$ and operates between a 20-k Ω source and a 10-k Ω load. The transistor $\beta=100$. Select C_E first, for a minimum value specified to one significant digit and providing up to 80% of f_L where f_L is to be 100 Hz. Then choose C_{C1} and C_{C2} , each specified to one significant digit, and each contributing about 10% of f_L . What f_L results? What total capacitance is needed?

10.34 Consider the integrated-circuit CS amplifier in Fig. P10.34 for the case $I_{\rm BIAS}=100~\mu{\rm A},~Q_2$ and Q_3 are matched, and $R_{\rm sig}=200~{\rm k}\Omega$. For Q_1 : $\mu_n C_{ox}=90~{\rm \mu A/V}^2,~V_A=12.8~{\rm V},~W/L=100~{\rm \mu m}/1.6~{\rm \mu m},~C_{gs}=0.2~{\rm pF},~{\rm and}~C_{gd}=0.015~{\rm pF}.$ For Q_2 : $|V_A|=19.2~{\rm V}.$ Neglecting the effect of the capacitance inevitably present at the output node, find the low-frequency gain, the 3-dB frequency f_H , and the frequency of the zero f_Z .

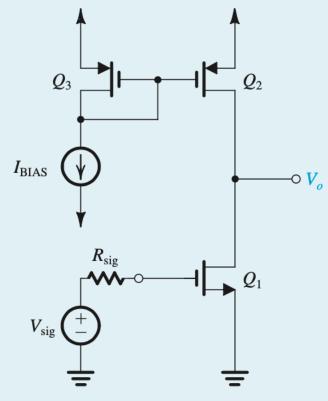


Figure P10.34

Problem 10.44 [S&S 7/e]

*10.44 The amplifier shown in Fig. P10.44 has $R_{\rm sig}=R_L=1~{\rm k}\Omega,~~R_C=1~{\rm k}\Omega,~~R_B=47~{\rm k}\Omega,~~\beta=100,$ $C_\mu=0.8~{\rm pF},~{\rm and}~f_T=600~{\rm MHz}.$ Assume the coupling capacitors to be very large.

- (a) Find the dc collector current of the transistor.
- (b) Find g_m and r_{π} .
- (c) Neglecting r_o , find the midband voltage gain from base to collector (neglect the effect of R_B).
- (d) Use the gain obtained in (c) to find the component of $R_{\rm in}$ that arises as a result of $R_{\rm B}$. Hence find $R_{\rm in}$.
- (e) Find the overall gain at midband.
- (f) Find C_{in} .
- (g) Find f_H .

Figure P10.44