
EE304 - Problem Set 3

Problem 12.1 [S&S 7/e]

Figure 12.2 An emitter follower (Q_1) biased with a constant current I supplied by transistor Q_2 .

12.1 A class A emitter follower, biased using the circuit shown in Fig. 12.2, uses $V_{CC} = 10 \text{ V}$, $R = R_L = 1 \text{ k}\Omega$, with all transistors (including Q_3) identical. Assume $V_{BE} = 0.7 \text{ V}$, $V_{CE \text{sat}} = 0.3 \text{ V}$, and β to be very large. For linear operation, what are the upper and lower limits of output voltage, and the corresponding inputs? How do these values change if the emitter–base junction area of Q_3 is made twice as big as that of Q_2 ? Half as big?

Problem 12.2 [S&S 7/e]

12.2 A source-follower circuit using NMOS transistors is constructed following the pattern shown in Fig. 12.2. All three transistors used are identical, with $V_t = 0.5$ V and $\mu_n C_{ox} W/L = 20 \text{ mA/V}^2$; $V_{CC} = 2.5$ V, $R = R_L = 1 \text{ k}\Omega$. For linear operation, what are the upper and lower limits of the output voltage, and the corresponding inputs?

Problem 12.10 [S&S 7/e]

12.10 Consider the feedback configuration with a class B output stage shown in Fig. 12.9. Let the amplifier gain $A_0 = 100 \text{ V/V}$. Derive an expression for v_o versus v_I , assuming that $|V_{BE}| = 0.7 \text{ V}$. Sketch the transfer characteristic v_o versus v_I , and compare it with that without feedback.

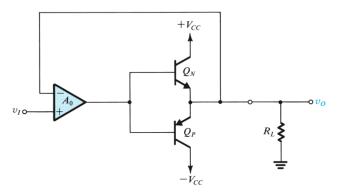
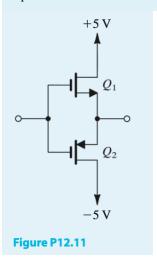



Figure 12.9 Class B circuit with an op amp connected in a negative-feedback loop to reduce crossover distortion.

Problem 12.11 [S&S 7/e]

MOSFETs, shown in Fig. P12.11. Let the devices have $|V_t| = 0.5 \text{ V}$ and $\mu C_{ox}W/L = 2 \text{ mA/V}^2$. With a 10-kHz sine-wave input of 5-V peak and a high value of load resistance, what peak output would you expect? What fraction of the sine-wave period does the crossover interval represent? For what value of load resistor is the peak output voltage reduced to half the input?

