EE304 - Problem Set 4

Problem 8.11 [S&S 7/e]

8.11 Consider the basic BJT current mirror of Fig. 8.7 when Q_1 and Q_2 are matched and $I_{REF}=1$ mA. Neglecting the effect of finite β , find the change in I_O , both as an absolute value and as a percentage, corresponding to V_O changing from 1 V to 10 V. The Early voltage is 90 V.

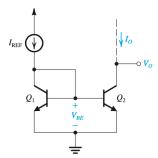
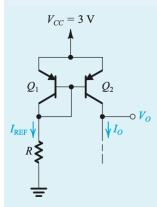
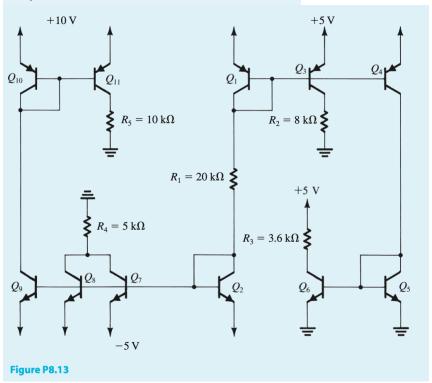


Figure 8.7 The basic BJT current mirror.

Problem 8.12 [S&S 7/e]

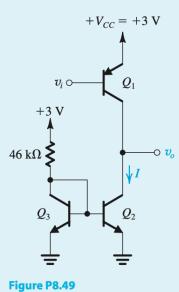
D 8.12 The current-source circuit of Fig. P8.12 utilizes a pair of matched *pnp* transistors having $I_s = 10^{-15} \text{A}$, $\beta = 50$, and $|V_A| = 50 \text{ V}$. It is required to design the circuit to provide an output current $I_o = 1 \text{ mA}$ at $V_o = 1 \text{ V}$. What values of I_{REF} and R are needed? What is the maximum allowed value of V_o while the current source continues to operate properly? What change occurs in I_o corresponding to V_o changing from the




Figure P8.12

maximum positive value to -5 V? Hint: Adapt Eq. (8.21) for this case as:

$$I_{O} = I_{REF} \left[\begin{array}{c} 1 + \frac{3 - V_{O} - V_{EB}}{|V_{A}|} \\ \hline 1 + \frac{2}{R} \end{array} \right]$$


Problem 8.13 [S&S 7/e]

8.13 Find the voltages at all nodes and the currents through all branches in the circuit of Fig. P8.13. Assume $|V_{BE}| = 0.7 \text{ V}$ and $\beta = \infty$.

Problem 8.49 [S&S 7/e]

- **8.49** Transistor Q_1 in the circuit of Fig. P8.49 is operating as a CE amplifier with an active load provided by transistor Q_2 , which is the output transistor in a current mirror formed by Q_2 and Q_3 . (Note that the biasing arrangement for Q_1 is *not* shown.)
- (a) Neglecting the finite base currents of Q_2 and Q_3 and assuming that their $V_{BE} \simeq 0.7 \text{ V}$ and that Q_2 has five times the area of Q_3 , find the value of I.
- (b) If Q_1 and Q_2 are specified to have $|V_A| = 30$ V, find r_{o1} and r_{o2} and hence the total resistance at the collector of Q_1 .
 - (c) Find $r_{\pi 1}$ and g_{m1} assuming that $\beta_1 = 50$.
 - (d) Find R_{in} , A_v , and R_o .

