
 

PN Junction and MOS structure



 

Basic electrostatic equations

• We will use simple one-dimensional electrostatic 
equations to develop insight and basic understanding of 
how semiconductor devices operate 

– Gauss's Law

– Potential Equation

– Poisson's Equation

It puts together Gauss's Law
and the potential equation



 

Gauss's Law
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charge density [C/m3]
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E = electric field [V/m]
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The possibility of a change in permittivity due to 
a material interface has been accounted for by 
keeping the permittivity together with the field



 

Potential Equation

x xR
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Poisson's Equation

• It directly links the potential with the charge distribution 
(there is no need to go through the field)

E x
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dx d
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dx
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Boundary Conditions 

• Electronic devices are made of layers of different 
materials

• We need conditions for  and E at the boundary 
between two materials 



 

Potential at a boundary 

• An abrupt jump of  (“along x”) would lead to an infinite 
electric field at the boundary

• Infinite electric fields are not possible (they would tear 
the material apart)

• Therefore (x) must be continuous:

E x
d

dx

0 0

Where the boundary 
is located at x = 0



 

Electric Field at a boundary

• The electric field usually jumps at a boundary

• By letting 0 :

d E x 2 E x 1 E x x dx

2 E x 0 1 E x 0 0

x dx 0

2 E x 0 1 E x 0 S

x dx S

There can be a sheet of charge 
at the boundary 

A sheet of charge is an Infinite 
amount of charge all distributed 
on the boundary surface 
(that is a Dirac function)



 

Boundary between materials



 

Boundary conditions

E x 0
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x dx 0
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x 0 x 0

electric field jump for 
charge free boundary

electric field jump for 
charged boundary

continuity of potential 
at a boundary



 

Oxide-Silicon interface
• Example of very common interface in microelectronic devices
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Metal–Metal Capacitor

• In many IC 
processes 
there are 
two or more 
levels of metal 
separated by 
silicon oxide



 

Metal–Metal Capacitor



 

Metal–Metal Capacitor

• Since there is no charge present in the oxide 

– the electric field in the oxide is constant

• Since the electric field in the oxide is 
constant and the voltage drop across 
the gap is V 

– it follows that: 

Eox
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t d

dE
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Example 

• Find potential, electric field and charge distribution for a 
metal-metal capacitor with t

d
 =1 μm and an applied 

voltage of 1V



 

M-O-S Capacitor



 

M-O-S charge distribution 
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M-O-S charge density profile



 

M-O-S Electric Field

• In the metal the electric field is 0

• In the oxide (–t
ox

< x < 0) the charge density is zero ( (x)=0), 

therefore the electric field is constant

SOM

for tox x 0:
dE x

dx

x

ox

0 E x E
ox

The electric field is 
confined in the region
 – t

ox
< x < X

d

NOTE: 
the total excess 
charge in the region 
– t

ox
< x < X

d
 is zero

0



 

M-O-S Electric Field

• Outside the charged region of the silicon (x > X
d
) the electric field is 0

• In the charged region of the silicon (0 < x < X
d
) the charge density is 

constant (
0
) therefore the electric field is a linear function of x

SOM
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dx s E xd s E 0
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NOTE: 
The electric field 
jumps only at the 
interface between 
two different materials 



 

M-O-S Electric Field

• The boundary condition at the oxide/silicon interface is:
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Potential plot through M-O-S

M SO

Poisson ' s Equation :

d
2
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potential at the metal gate :
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surface potential : s 0

substrate potential :
sub

X d

Potential is continuos at boundaries:
x = t

ox
 metal/oxide boundary

x = 0 oxide/silicon boundary 

V
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drop across the charged
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Surface potential
for tox x 0:
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The drop across the oxide is proportional to the 
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Potential drop across the substrate

for 0 x X d :

d
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The potential is “concave up” 
in the charged region

charged region of silicon
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PN Junction in Thermal Equilibrium

• If no external stimulus is applied (zero applied voltage, no 
external light source, etc) the device will eventually reach a 
steady state status of thermal equilibrium

• In this state (“open circuit” and steady state condition) the 
current density must be zero:

• Eventually, the populations of electrons and holes are each in 
equilibrium and therefore must have zero current densities

J tot ,0 J p ,0 J n ,0 0

J p ,0 0

J n ,0 0



 

Diffusion Mechanism

N
A
 > N

D

The charge on the two sides of the
junction must be equal (charge neutrality)

We assumed the n-side is the more lightly doped

Under “open circuit” and steady state 
conditions the built in electric field 
opposes the diffusion of free carriers 
until there is no net charge movement



 

Diffusion Current

• It’s a manifestation of thermal random motion of particles 
(statistical phenomenon)

• In a material where the concentration of particles is uniform the 
random motion balances out and no net movement result (drunk 
sail-man walk   Brownian walks)

• If there is a difference (gradient) in concentration between two 
parts of a material, statistically there will be more particles 
crossing from the side of higher concentration to the side of 
lower concentration than in the reverse direction. 

• Then we expect a net flux of particles



 

Diffusion Equations

I n Aqe

dn

dx

The more non uniform the 
concentration the larger 
the current

I n Dn Aqe

dn

dx
Dn A q

dn

dx

J n Dn q
dn

dx

J p D p q
dp

dx

I p D p Aqh

dn

dx
D p Aq

dn

dx

Assuming the charge concentration decreases with increasing x 
It means that dn/dx and dp/dx are negative, so to conform with 
conventions we must put a – sign in front of the equations.

Proportionality Constants

charge in the cross section



 

Drift Current

v
n n

E

v p p E

Eventually v saturates 
• too many collisions 
• effective electrons' 
   mass increases

Mobility (proportionality constant)

I n vn W h n qe
I

p
v

p
W h p q

h

charge per unit of volume

cross section area

volume travelled per unit of time
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J p p E p qh p E p q
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L
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Drift and Diffusion currents

J n ,drift n E n qe n E n q

J p ,drift p E p qh p E p q

q qh qe 1.6 10
19

C

J n ,diff Dn qe
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dx
Dn q
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dx

J p ,diff D p qh

dp

dx
D p q

dp

dx



 

Built in Voltage

• At equilibrium: 
(drift and diffusion balance out)

• Let's consider the second equation:

J n J n ,drift J n , diff n E n q Dn q
dn

dx
0

J p J p ,drift J p ,diff p E p q D p q
dp

dx
0
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            Built in Voltage

0
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p
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Einstein ' s Relation :
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Since both μ and D are
manifestations of thermal
random motion (i.e. 
statistical thermodynamics 
phenomena) they are not 
independent 

If n  then p  
A larger number of 
electrons causes
the recombination 
rate of electrons with 
holes to increase 



 

Applying KVL to the 
PN junction in equilibrium

I
0

R

P N

+ + +

+ + +

                

0

x
p x

n

R

We cannot have current. Something is wrong !



 

Built in Voltage 

P N

+ + +

+ + +

                    +

0

x
p x

n

E

If a free electron in the P region or a hole in the N region somehow reach the 
edge of the depletion region get swept by the electric field (  drift)

pm mn

KVL at equilibrium:

pm
+ 

mn
+ 

0
 = 0

Metal-semiconductor
contact potentials



 

• There are 4 charged particles in silicon, two mobiles (holes and 
electrons) and two fixed (ionized donors and ionized acceptors)

• The total positive change density and the total negative charge 
must be equal 

Neutrality of charge

positive ions 
concentration

holes 
concentration

negative ions 
concentration

electrons 
concentration

N D p N A n



 

Depletion region in equilibrium 

• The doping concentrations N
A
 on the p side and N

D
 on the n side 

are assumed constants

+q N
D
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p
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Positive and negative excess 
charge in the depletion region 
must balance out (neutrality of 
charge):

q N
D
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 = q N
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Gauss ' Law :

dE x

dx

x

s

x q p n N D N A

the depletion regionis freeof

electrons and holes

N D N A n p

x q N D N A

on the P side N D 0 :

x q N A

on the N side N A 0:

x q N D



 

Depletion region in equilibrium 
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Depletion region in equilibrium
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Width and max field of the 
depletion region in equilibrium
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Biased PN Junction

v
jpm mn

 v

P N

xE(x)

v=0
v<0

v>0

v pm mn
v j 0

0

v j 0
v

+ -



 

Biased PN Junction

• if we keep decreasing the voltage eventually we'll break the material. 
For silicon the breakdown point is reached for an electric field of approx. 107 V/m.
NOTE: the depletion region can't get bigger than the length of the bar !

• if we keep increasing the voltage the depletion region will disappear (v=
0
).

As v becomes comparable with 
0
 the PN junction behave like a sort of resistor (the 

current is determined by the ohmic contacts and the resistance of the semiconductor)
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Reverse Biased PN Junction
• Under reverse bias the depletion 

region becomes wider 

• Then, it gets harder for the 
majority carriers to cross (diffuse 
through) the junction and easier 
for the minority carrier to be 
swept (drifted) across the junction

 

• Since there are only a FEW 
minority carriers, the current 
carried under reverse bias is 
negligible

E

E
0



 

Reverse Biased PN Junction
NOTE: 

As soon as a minority carrier, let's say an 
electron on the P side, is swept across 
the junction, on the N side it becomes a 
majority carrier. Every time a minority 
carrier on the P side is swept toward the 
N side it leaves one less minority carrier 
on the edge of the depletion region in the 
P region. The same is true for holes 
swept from the N side to the P side.

Under reverse bias the minority carrier 
concentration at the edges of the 
depletion regions is depleted below their 
equilibrium value. Since the number of 
minority carriers is small anyway this 
won't be a major difference

E

E
0



 

Forward Biased PN Junction
• Under forward bias the depletion 

region shrinks  

• Then, it gets easier for the 
majority carriers to cross (diffuse 
through) the junction and harder 
for the minority carrier to be 
swept (drifted) across the 
junction. 

• Since there are a LOT of majority 
carriers we expect the current to 
be considerable



Forward Biased PN Junction



 

I/V characteristic of PN Junction 
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A cross section area of the diode
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N D

holes' concentration in the N region (minority carriers)
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2

N A

electrons' concentration in the P region (minority carriers)

D p diffusion constant for the holes in the N region

L p diffusion lenght for the holes in the N region D p p

p average time it takes for a hole into the N region to recombine

with a majority electron

...



 

I/V characteristic of PN Junction
Since the only region where we have “net charge” is between  -x

p
 and x

n
 

such region (a.k.a. space charge region) is the only one where there is 
electric field.

The regions from A to -x
p
 and from x

n 
to K are quasi-neutral (it is like they 

were perfect conductors and in perfect conductors there is no electric 
field inside)

 



 

I/V characteristic of PN Junction 

The situation is similar to the one at equilibrium but now the “built in 
voltage” is 

0
 – V

diode
 instead of 

0
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I/V characteristic of PN Junction 

P N
In the N region we have a lot of electrons
that will diffuse toward the P region 

In the P region we have a lot of holes
that will diffuse toward the N region 

• Under forward bias close to the depletion edges we 
have:

– a greater hole concentration than normal on the N side 
(minority carriers)

– a greater electrons concentration than normal on the P 
side (minority carriers)



 

I/V characteristic of PN Junction 

Extending the result derived at equilibrium we can write the voltage 
across the space charge region (between -x

p
 and x

n
) as:
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I/V characteristic of PN Junction
• And noting that: 

– at the boundary of the quasi neutral P region at -Xp the hole density 
(majority carriers) is approximately equal at equilibrium as well as 
under bias, 

– and the same is true for the electron density (majority carriers) at the 

boundary of the quasi neutral N region (at Xn) 
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the concentration of the majority 
carriers in the quasi neutral regions 
is approximately the same as the 
concentration at equilibrium



 

I/V characteristic of PN Junction
• Thus: 
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I/V characteristic of PN Junction

• If we consider the quasi neutral regions, since in the quasi neutral regions 
there is no field there will be no drift

• Then, the most suitable traverse sections for the evaluation of the total 
current I

diode
 are those at the boundary of the depletion layer (x=–x

p
 or x=x

n
) 
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I/V characteristic of PN Junction
   If we make the simplifying assumption that the flow of the carriers in the   

     depletion region is approximately constant (in other words we assume the  
     recombination in the depletion region is negligible) 

 

   The currents due to diffusing carriers moving away from the junction are given 
      by the well know diffusion equations:
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I/V characteristic of PN Junction
• If we assume that the carriers distribution is linear (SHORT DIODE)
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PN Junction: I/V characteristic 

• Recalling that: 
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PN Junction: I/V characteristic 
• And finally:

• In the case of a LONG DIODE the minority carriers will 
recombine before reaching the diode terminals 
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PN Junction: I/V characteristic 
SHORT DIODE:

LONG DIODE:

Where L
n
 is a constant known as the diffusion length of electrons in 

the P side and L
p
 is a constant known as the diffusion length for 

holes in the N side. The constants L
n
 and L

p
 are dependent on the 

doping concentrations N
A
 and N

D
 respectively. 

I
diode

I n.diff x p I p , diff x p q An
i

2
D

n

N
A
W p

D p

N
D
W

n

e

V diode

V T
1

I
s

I
diode

I n.diff x p I p ,diff x p q An
i

2
D

n

N
A

L
n

D p

N
D

L p

e

V diode

V T
1

I
s



 

Diode Capacitances

• Depletion Capacitance (= Junction Capacitance) 

• Diffusion Capacitance 

• Reverse Biased Diode

– Depletion Capacitance

• Forward Biased Diode

– Diffusion Capacitance + Depletion Capacitance

C j

C
d



 

Depletion Charge 
• The depletion region stores an immobile charge of equal amount 

on each side of the junction (  it forms a capacitance !!)
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The charge of the depletion 
region is a function of the 
voltage v

D 
applied to the diode

P side has “ ” ions

N side has “+” ions

The decision to take qJ negative is 

totally arbitrary. (But it turns out to
be a good one if we prefer to work 
with positive capacitances)  



 

Depletion Capacitance 
• Since the depletion charge does not change linearly with the applied 

voltage the resulting capacitor is non linear !!

• An important physical consideration: 
we are dealing with a capacitor that no matter where I put the + of the 
applied voltage it always accumulate the positive charge on the N 
side of the junction, and the negative charge on the P side of the 
junction.
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Small Signal Depletion Capacitance 
• For small changes of the applied voltage about a specified DC 

voltage V
D
 we can derive an equivalent linear capacitor 

approximation 

q
J

v
D

since qJ vs. D relationship is 

non linear the capacitor is non 
linear
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Small Signal Depletion Capacitance 
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Small Signal Depletion Capacitance 
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Zero Bias Capacitance = 
junction capacitance in 
thermal equilibrium (V

D
=0) 
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Small Signal Depletion Capacitance:
Physical Interpretation

C j

q j

v
d

A
s

X dep

Capacitance of a parallel plate capacitor with its plates separated by 
the depletion width X

dep
(V

D
) at the particular DC voltage V

D
. 

The charges separated by X
dep

 are the small signal charge layers ±q
j
. 

For vd  0, the small signal charges become sheets that are 
separated by a gap width of exactly Xdep 



 

Physical Interpretation

C j

q j

v
d

A
s

X dep

Capacitance of a parallel plate capacitor with its plates separated by the 
depletion width X

dep
(V

D
) at the particular DC voltage V

D
. The charges 

 separated by X
dep

 are the small signal charge layers ±q
j
. For vd  0, the 

small signal charges become sheets that are separated by a gap width of 
Xdep 



 

Small Signal Depletion Capacitance

• In the practice the depletion capacitance is usually provided per 
cross-section area: 

j0 j V
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NOTE: when the diode is forward biased with vD = 
0
 

the equation for C
j 
“blows up” (i.e., is equal to infinity). 

As vD approaches 0 the assumption that the depletion 

region is  free of charged carriers is no longer true.



 

Graded Junctions

• All the equations derived for the depletion capacitance are based on 
the assumption that the doping concentration change abruptly at the 
junction. Although this is a good approximation for many integrated 
circuits is not always true.

• More in general:

• Mj is a constant called grading coefficient and its value ranges from 
1/3  to  depending on the way the concentration changes from the P 
to the N side of the junction

j

j0

1
V
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0

M j



 

Large Signal Depletion Capacitance

• The equations for the depletion capacitance given before are valid 
only for small changes in the applied voltage

• It is extremely difficult and time consuming to accurately take this non 
linear capacitance into account when calculating the time to charge 
or discharge a junction over a large voltage change 

• A commonly used approximation is to calculate the charge stored in 
the junction for the two extreme values of applied voltage, and then 
through the use of Q = C V, calculate the average capacitance 
accordingly 

j av
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The approximation is
pessimistic



 

Large Signal Depletion Capacitance
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Example

Find a rough approximation for the junction capacitance to be used to estimate 
the charging time of a reverse biased junction from 0V to 5V (or vice versa). 
Assume 
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