Non Ideal Transistor Behavior

Slides adapted from:

N. Weste, D. Harris, *CMOS VLSI Design*, © Addison-Wesley, 3/e, 2004

Non-ideal Transistor I-V effects

- Non ideal transistor Behavior
 - Channel Length Modulation
 - Threshold voltage effects
 - Body effect
 - Drain induced Barrier Lowering (DIBL)
 - Short Channel effects
 - High Field Effects
 - Mobility Degradation
 - Velocity Saturation
 - Leakage
 - Sub threshold Leakage
 - Gate Leakage
 - Junction Leakage
 - Process and Environmental Variations

Ideal Transistor I-V

Schockley long channel transistor model

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \\ & \& V_{gs} \ge V_{t} \end{cases}$$

$$\beta = \mu \frac{\varepsilon o x}{to x} \frac{W}{L}$$

Ideal vs. Simulated nMOS I-V plots

65 nm IBM process, VDD=1.0V

ON and OFF Current (1/3)

ON and OFF Current (2/3)

ON and OFF Current (3/3)

$$I_{off} = I_{ds} @V_{gs} = 0, V_{ds} = V_{DD} (Cutoff)$$

Channel Length Modulation

FIGURE 2.18 Depletion region shortens effective channel length

Channel Length Modulation

- Reverse-biased p-n junctions form a depletion region
 - Region between n (drain) and p (bulk) with no carriers
 - Width of depletion L_d region (between D and B) grows with reverse bias V_{dh}

$$-L_{eff} = L - L_{d}$$

Shorter L_{eff} gives more current

- $-I_{ds}$ increases with V_{ds}
- Even in saturation

Channel Length Modulation I/V (1/2)

- Increasing V_{ds} causes the depletion around the drain to widen.
- This pushes the pinch off point further away from the drain resulting in an effective shortening of the channel

Channel Length Modulation I-V (2/2)

$$I_{ds} \approx \frac{\mu C_{ox}}{2} \cdot \frac{W}{L - \Delta L(V_{ds})} (V_{gs} - V_t)^2$$

$$\approx \frac{\mu C_{ox}}{2} \cdot \frac{W}{L \cdot \left(1 - \frac{\Delta L(V_{ds})}{L}\right)} \cdot (V_{gs} - V_t)^2$$

Taylor's Approx

$$\approx \frac{\mu C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(1 + \frac{\Delta L(V_{ds})}{L}\right) \cdot (V_{gs} - V_t)^2$$

$$\approx \frac{\mu C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(1 + \lambda V_{ds}\right) \cdot \left(V_{gs} - V_{t}\right)^{2}$$

Lambda

Lambda is inversely proportional to channel length

$$\lambda \propto \frac{1}{L}$$

- Lambda is a "fudge" factor (do not rely on a precise value of lambda)
- Improved but approximate model for the drain current in saturation:

$$I_{ds} \approx \frac{\mu C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(1 + \lambda V_{ds}\right) \cdot \left(V_{gs} - V_{t}\right)^{2} = \frac{\beta}{2} \cdot \left(1 + \lambda V_{ds}\right) \cdot \left(V_{gs} - V_{t}\right)^{2}$$

Mobility Degradation

Electric Fields Effects

- Vertical electric field: E_{vert} = V_{gs} / t_{ox}
 - Attracts carriers into channel
 - Long channel: $Q_{channel}$ ∝ E_{vert}
- Lateral electric field: E_{lat} = V_{ds} / L
 - Accelerates carriers from drain to source
 - Long channel: $v = \mu E_{lat}$

Mobility Degradation

- High E_{vert} effectively reduces mobility
 - Collisions with oxide interface (at high V_{gs} , carriers are buffeted against the oxide interface "wall")

$$\mu_{\text{eff}-n} = \frac{540 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \left(\frac{V_{gs} + V_t}{0.54 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}\right)^{1.85}} \qquad \mu_{\text{eff}-p} = \frac{185 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \frac{\left|V_{gs} + 1.5V_t\right|}{0.338 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}}$$

Velocity Saturation

- At high E_{lat}, carrier velocity rolls off
 - Carriers scatter off (collide) atoms in silicon lattice (at high E_{lat} the carriers effective mass increases)
 - Velocity reaches $v_{\rm sat}$
 - Electrons: 10⁷ cm/s
 - Holes: 8 x 10⁶ cm/s

$$v = \begin{cases} \frac{\mu_{\text{eff}} E}{1 + \frac{E}{E_c}} & E < E_c \\ v_{\text{sat}} & E \ge E_c \end{cases}$$

$$E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}$$

Threshold Voltage Effects

- V_t is the value of V_{gs} for which the channel starts to invert
- Ideal models assume V_t is constant
- In reality it depends (weakly) on almost everything else:
 - Body voltage: Body Effect
 - Drain voltage: Drain-Induced Barrier Lowering
 - Channel length: Short Channel Effect

Body Effect

$$V_T = V_{T0} + \gamma \cdot \left(\sqrt{\Phi_s - V_{BS}} - \sqrt{\Phi_s} \right)$$

- The potential difference between source and body V_{SB} affects (increases) the threshold voltage
- Threshold voltage depends on:

$$-V_{SB}$$

$$\gamma = \frac{\sqrt{2q\varepsilon_S N_{bulk}}}{\varepsilon_{ox}/t_{ox}} = Body \quad Effect \quad Coefficient = GAMMA$$

$$\Phi_S = \frac{2KT}{q} \ln \frac{N_{bulk}}{n_i} = Surface \ Potential \equiv PHI$$

The higher the doping N_{bulk} the more voltage is required to produce an inversion layer: $N_{bulk} \uparrow \longrightarrow V_T \uparrow$

If C_{ox} is higher (= t_{ox} thinner) the less voltage is required to produce an inversion layer (Q=CV): C_{ox}

Body Effect

- V_{BS} affect the charge required to invert the channel
- For the same applied V_{GS} , the application of a negative V_{BS} (we are only interested in a negative voltage to avoid forward biasing the bulk-to-source pn junction) increases the width of the depletion region, thus the voltage required to invert the channel increases:

$$V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}} \right)$$

DIBL

- So far we assumed the amount of charge in the channel is controlled only by the vertical field
- For short transistors and especially small oxide thickness the amount of charge also depends on the later field. The drain is essentially like another "gate".
- The drain cannot control the charge so well as the gate, but it also affect the amount of charge (and therefore the V_t)

$$V_t' = V_t - \eta V_{ds}$$

High drain voltage causes current to increase

Short Channel Effect

- In small transistors the source/drain depletion regions extend into a significant portion of the channel
 - impacts the amount of change required to invert the channel
 - V_t typically increases with L (some processes exhibit a reverse short channel effect)

Leakage

What about current in cutoff?

Current doesn't go to 0 in cutoff!!!

FIGURE 2.20 I-V characteristics of a 65 nm nMOS transistor at 70 °C on a log scale

Source of Leakage

Subthreshold conduction

- Transistors can't abruptly turn ON or OFF
- Dominant source in contemporary transistors

Gate leakage

Tunneling through ultrathin gate dielectric

Junction leakage

Reverse-biased PN junction diode current

Subthreshold Conduction

- In real transistors, current doesn't abruptly cut off below threshold, but rather drop off exponentially with V_{GS}
- This leakage current when the transistor is nominally OFF depends on:

$$\begin{array}{lll} - \text{ process } (\epsilon_{\text{ox}}, t_{\text{ox}}) & \rightarrow & \text{hidden in } K_{\gamma} \\ - \text{ doping levels } (N_{\text{bulk}}) & \rightarrow & \text{hidden in } K_{\gamma} \\ - \text{ device geometry (W, L)} & \rightarrow & \text{hidden in } I_{\text{ds0}} \\ - \text{ temperature (T)} & \rightarrow & \text{hidden in } v_{\text{T}} = \text{KT/q} \end{array}$$

- Subthreshold voltage (V_t)

$$\rightarrow$$
 hidden in K_{ν}

$$\rightarrow$$
 hidden in $v_T = KT/q$

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_{t0} + \eta V_{ds} - k_{\gamma} V_{sb}}{n v_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}}\right)$$

Gate Leakage

- There is a finite probability that carriers will tunnel through the thin gate oxide.
 This result in gate leakage current flowing into the gate.
 I_{gate} is greater for electrons (nMOS gates leak more)
- The probability drops off exponentially with t_{ox}
- For oxides thinner than 15-20 Å, tunneling becomes a critically important factor (at 65nm t_{ox}≈10.5 Å)

$$I_{\text{gate}} = WA \left(\frac{V_{DD}}{t_{\text{ox}}}\right)^2 e^{-B\frac{t_{\text{ox}}}{V_{DD}}}$$

A and B are tech constants

FIG 2.20 Gate leakage current from [Song01]

Junction Leakage

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

- The p-n junctions between diffusion and the substrate or well for diodes.
- The well-to-substrate is another diode
- Substrate and well are tied to GND and VDD to ensure these diodes remain reverse biased
- But, reverse biased diodes still conduct a small amount of current that depends on: $(I_S \text{ is typically } < 1fA/\mu m^2)$
 - Doping levels
 - Area and perimeter of the diffusion region
 - The diode voltage

Temperature dependence

- Transistor characteristics are influenced by temperature
 - $-\mu$ decreases with T
 - V_t decreases linearly with T
 - I_{leakage} increases with T
- ON current decreases with T
- OFF current increases with T
- Thus, circuit performances are worst at high temperature

FIG 2.21 I–V characteristics of nMOS transistor in saturation at various temperatures

FIG 2.22 I_{dsat} vs. temperature

Geometry Dependence

- Layout designers draw transistors with W_{drawn} L_{drawn}
- Actual dimensions may differ from some factor X_W and X_L
- The source and drain tend to diffuse laterally under the gate by L_D, producing a shorter effective channel
- Similarly, diffusion of the bulk by W_D decreases the effective channel width
- In process below 0.25 μm the effective length of the transistor also depends significantly on the orientation of the transistor

Process Variation

- Transistors have uncertainty in process parameters
 - Process: L_{eff}, V_t, t_{ox} of nMOS and pMOS
- Variation is around typical (T) values
- Fast (F)
 - L_{eff}: short
 - $-V_{t}$: low
 - $-t_{ox}$: thin
- Slow (S): opposite
- Not all parameters are independent for nMOS and pMOS

Environmental Variation

- V_{DD} and Temperature also vary in time and space
- Fast:

 $-V_{DD}$: high

- T: low

Corner	Voltage Temperature	
F	1.98	0 C
Т	1.8	70 C
S	1.62	125 C

Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will <u>probably</u> work for any variation.
- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

Important Corners

• Critical Simulation Corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthreshold leakage	F	F	F	S

Impact of non-ideal I-V effects

- Threshold is a significant fraction of the supply voltage
- Leakage is increased causing gates to
 - consume power when idle
 - limits the amount of time that data is retained
- Leakage increases with temperature
- Velocity saturation and mobility degradation result in less current than expected at high voltage
 - No point in trying to use high VDD to achieve fast transistors
 - Transistors in series partition the voltage across each transistor thus experience less velocity saturation
 - Tend to be a little faster than a single transistor V_{DD}
 - Two nMOS in series deliver more than half the current of a single nMOS transistor of the same (b) width
 FIG 2.37 Current in series transistors
- Matching: same dimension and orientation

So What?

- So what if transistors are not ideal?
 - They still behave like switches.
- But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation