First and Second Order Circuits

Claudio Talarico, Gonzaga University Fall 2017

Capacitors and Inductors

- intuition: bucket of charge

$$
q=C v \rightarrow i=C \frac{d v}{d t}
$$

- Resist change of voltage
- DC open circuit
- Store voltage (charge)
- Energy stored $=0.5 \mathrm{C} \mathrm{v}(\mathrm{t})^{2}$

- intuition: water hose

$$
\lambda=L i \rightarrow v=L \frac{d i}{d t}
$$

- Resist change of current
- DC short circuit
- Store current (magnetic flux)
- Energy stored $=0.5 \mathrm{Li}(\mathrm{t})^{2}$

Characterization of an LTI system's behavior

- Techniques commonly used to characterize an LTI system:

1. Observe the response of the system when excited by a step input (time domain response)
Assumption:
$x_{\text {in }}(t)$ is causal (i.e. $x(t)=0$ for $\left.t<0\right)$

$$
x_{o u t}=\int_{0-}^{t} x_{i n}(\tau) h(t-\tau) d \tau \equiv x_{i n}(t)^{*} h(t)
$$

1. Observe the response of the system when excited by sinusoidal inputs (frequency response)

$$
X_{\text {out }}(s)=X_{\text {in }}(s) \cdot H(s)
$$

Frequency Response

- The merit of frequency-domain analysis is that it is easier than time domain analysis:

$$
L[x(t)]=\int_{0-}^{\infty} e^{-s t} x(t) d t=X(s) \quad \longleftarrow \quad \begin{aligned}
& \text { One sided Laplace Transform } \\
& \text { (assumption: } x(\mathrm{t}) \text { is causal or is made } \\
& \text { causal by multiplying it by } \mathrm{u}(\mathrm{t}) \text {) }
\end{aligned}
$$

- The transfer function of any of the LTI circuits we consider
- Are rational with $m \leq n$
- Are real valued coefficients a_{j} and b_{i}
- Have poles and zeros that are either real or complex conjugated
- Furthermore, if the system is stable
- All denominator coefficients are positive
- The real part of all poles are negative

$$
\begin{aligned}
& H(s)=\frac{a_{0}+a_{1} s+\ldots+a_{m} s^{m}}{1+b_{1} s+\ldots+b_{n} s^{n}}=K \frac{\left(s+\omega_{z 1}\right) \ldots\left(s+\omega_{z m}\right)}{\left(s+\omega_{p 1}\right) \ldots\left(s+\omega_{p n}\right)}= \\
& =K \frac{\left(s-z_{1}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \ldots\left(s-p_{n}\right)} \text { with } K \equiv \frac{a_{m}}{b_{n}} \longleftarrow \quad \begin{array}{l}
\text { root form } \\
\text { "mathematicians" style }
\end{array}
\end{aligned}
$$

Frequency Response

NOTE :

$$
\begin{array}{ll}
p_{i}=-\omega_{p i} & (\text { poles }) \\
z_{i}=-\omega_{z i} & (\text { zeros })
\end{array}
$$

Magnitude and Phase (1)

- When an LTI system is exited with a sinusoid the output is a sinusoid of the same frequency. The magnitude of the output is equal to the input magnitude multiplied by the magnitude response $\left(\left|\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{in}}\right)\right|\right)$. The phase difference between the output and input sinusoid is equal to the phase response ($\phi=$ phase $\left[H\left(j \omega_{\text {in }}\right)\right]$)

$$
\begin{aligned}
& \begin{aligned}
x_{\text {in }}(t)=A_{\text {in }} & \cos (\omega t)=A_{\text {in }} \frac{e^{j \omega \mathrm{t}}+e^{-j \omega \mathrm{t}}}{2} \\
& \uparrow \mathcal{F} \\
X_{\text {in }}(j \omega) & \\
& F\left[x_{\text {in }}(t)\right] \quad \text { unit circle axis }
\end{aligned} \\
& H(j \omega)=|H(j \omega)| e^{j \omega t_{0}} \\
& \cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2} \\
& X_{\text {out }}(j \omega)=X_{\text {in }}(j \omega) \cdot H(j \omega)
\end{aligned}
$$

Magnitude and Phase (2)

$$
\begin{gathered}
X_{\text {out }}(j \omega)=X_{\text {in }}(j \omega) \cdot H(j \omega)=X_{\text {in }}(j \omega) \cdot|H(j \omega)| \cdot e^{j \omega t_{0}} \\
\mathcal{F}^{-1} \uparrow \begin{array}{l}
\text { Time Shift Property: } \\
\mathcal{F}\left[\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right]=\mathrm{X}(\mathrm{f}) \mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{rtt} 0}
\end{array} \\
x_{\text {out }}(t)=\left|H\left(j \omega_{\text {in }}\right)\right| x_{\text {in }}\left(t+t_{0}\right)= \\
=A_{\text {in }}\left|H\left(j \omega_{\text {in }}\right)\right| \cos \left[\omega\left(t+t_{0}\right)\right]= \\
=A_{\text {in }}\left|H\left(j \omega_{\text {in }}\right)\right| \cos \left(\omega t+\omega t_{0}\right)
\end{gathered}
$$

First order circuits

- A first order transfer function has a first order denominator

$$
\begin{aligned}
& H(s)=\frac{A_{0}}{1+\frac{s}{\omega_{p}}} \\
& H(s)=A_{0} \frac{1+\frac{s}{\omega_{z}}}{1+\frac{s}{\omega_{p}}}
\end{aligned}
$$

First order low pass transfer function.
This is the most commonly encountered transfer function in electronic circuits

General first order transfer function.

Step Response of first order circuits (1)

- Case 1: First order low pass transfer function

$$
H(s)=\frac{A_{0}}{1+\frac{s}{\omega_{p}}}
$$

$$
x_{i n}(t)=A_{i n} \cdot u(t) \quad \leftrightarrow \quad X_{i n}(s)=\frac{A_{i n}}{s}
$$

$$
X_{\text {out }}(s)=\frac{A_{\text {in }}}{s} \frac{A_{0}}{1+\frac{s}{\omega_{p}}}=A_{\text {in }} A_{0}\left[\frac{1}{s}-\frac{1}{s+\omega_{p}}\right]
$$

$$
\uparrow
$$

$$
x_{\text {out }}(t)=A_{\text {in }} A_{0} u(t)\left[1-e^{-t / \tau}\right] \text { with } \tau=1 / \omega_{p}
$$

Step Response of first order circuits (2)

- Case 2: General first order transfer function

$$
H(s)=A_{0} \frac{1+\frac{s}{\omega_{z}}}{1+\frac{s}{\omega_{p}}}
$$

$$
\begin{gathered}
x_{\text {in }}(t)=A_{\text {in }} \cdot u(t) \quad X_{\text {in }}(s)=\frac{A_{\text {in }}}{S} \\
X_{\text {out }}(s)=\frac{A_{\text {in }} A_{0}}{s} \frac{1+\frac{s}{\omega_{z}}}{1+\frac{s}{\omega_{p}}} \\
\downarrow \\
x_{\text {out }}(t)=A_{\text {in }} A_{0} u(t)\left[1-\left(1-\frac{\omega_{p}}{\omega_{z}}\right) e^{-t / \tau}\right] \quad \text { where } \tau=1 / \omega_{p}
\end{gathered}
$$

Step Response of first order circuits (3)

- Notice $\mathrm{x}_{\text {out }}(\mathrm{t})$ "short term" and "long term" behavior

$$
\begin{aligned}
& x_{\text {out }}(0+)=A_{\text {in }} A_{0} \frac{\omega_{p}}{\omega_{z}} \\
& x_{\text {out }}(\infty)=A_{\text {in }} A_{0}
\end{aligned}
$$

- The short term and long term behavior can also be verified using the Laplace transform

$$
\begin{aligned}
& \left.x_{\text {out }}(0+)=\lim _{s \rightarrow \infty} s \cdot X_{\text {out }}(s)=\lim _{s \rightarrow \infty}\right) \frac{A_{\text {in }}}{X} \cdot H(s)=A_{\text {in }} A_{0} \frac{\omega_{p}}{\omega_{z}} \\
& x_{\text {out }}(\infty)=\lim _{s \rightarrow 0} s \cdot X_{\text {out }}(s)=\lim _{s \rightarrow 0} \$ \frac{A_{\text {in }}}{s} \cdot H(s)=A_{\text {in }} A_{0}
\end{aligned}
$$

Equation for step response to any first order circuit

$$
x_{\text {out }}(t)=\underbrace{x_{\text {out }}(\infty)}_{\begin{array}{c}
\text { Steady } \\
\text { response }
\end{array}}-\underbrace{\left[x_{\text {out }}(\infty)-x_{\text {out }}(0+)\right] \cdot e^{-t / \tau}}_{\begin{array}{c}
\text { Transitory } \\
\text { response }
\end{array}} \text { where } \tau=1 / \omega_{p}
$$

Example \#1

- $R=1 K \Omega, C=1 \mu F$.
- Input is a 0.5 V step at time 0

Source: Carusone, Johns and Martin

$$
\begin{aligned}
& H(s)=\frac{1}{1+s R C} \\
& \tau=R C=1 \mu s \Leftrightarrow \omega_{p}=\frac{1}{\tau}=1 \mathrm{Mrad} / \mathrm{s} \Leftrightarrow f_{-3 d B}=\frac{\omega_{p}}{2 \pi} \cong 159 \mathrm{KHz} \\
& V_{\text {out }}(t)=0.5 \cdot\left(1-e^{-t / \tau}\right) u(t)
\end{aligned}
$$

Example \#2 (1)

- $\mathrm{R} 1=2 \mathrm{~K} \Omega, \mathrm{R} 2=10 \mathrm{~K} \Omega$
- C1=5pF. C2=10pF
- Input is a 2 V step at time 0

Source: Carusone, Johns and Martin

$$
\begin{aligned}
& H(s \rightarrow 0)=\frac{R_{2}}{R_{1}+R_{2}} \equiv A_{0} ; \quad H(s \rightarrow \infty)=\frac{C_{1}}{C_{1}+C_{2}} \equiv A_{\infty} \\
& \tau_{p}=\left(R_{1} \| R_{2}\right) \cdot\left(C_{1} \| C_{2}\right)=\frac{R_{1} R_{2}}{R_{1}+R_{2}}\left(C_{1}+C_{2}\right) \\
& H(s)=\frac{R_{2}}{R_{1}+R_{2}} \cdot\left[\frac{1+s R_{1} C_{1}}{1+s \frac{R_{1} R_{2}}{R_{1}+R_{2}}\left(C_{1}+C_{2}\right)}\right] \begin{array}{l}
\text { By inspect } \\
\tau_{z}=R_{1} C_{1}
\end{array}
\end{aligned}
$$

Example \#2 (2)

Example \#3

- Consider an amplifier having a small signal transfer function approximately given by

$$
A(s)=\frac{A_{0}}{1+\frac{s}{\omega_{p}}} \quad-\mathrm{A}_{0}=1 \times 10^{5}
$$

- Find approx. unity gain BW and phase shift at the unity gain frequency
since $A_{0} \gg 1$:

$$
\begin{aligned}
& A(s) \approx \frac{A_{0}}{\frac{s}{\omega_{p}}}=\frac{A_{0} \omega_{p}}{s} \Longleftrightarrow A(j \omega) \approx \frac{A_{0} \omega_{p}}{j \omega} \\
& \left|\frac{A_{0} \omega_{p}}{j \omega_{u}}\right|=1 \Rightarrow \omega_{u} \cong A_{0} \omega_{p} \quad \operatorname{Phase}\left[A\left(j \omega_{u}\right)\right] \approx \operatorname{Phase}\left[\frac{A_{0} \omega_{p}}{j \omega_{u}}\right]=-90^{\circ}
\end{aligned}
$$

Second-order low pass Transfer Function

$$
\begin{aligned}
& H(s)=\frac{a_{0}}{1+b_{1} s+b_{2} s^{2}}=\frac{a_{0}}{1+\frac{s}{\omega_{0} Q}+\frac{s^{2}}{\omega_{0}^{2}}} \\
& b_{1} \equiv \frac{1}{\omega_{0} Q} ; \quad b_{2} \equiv \frac{1}{\omega_{0}^{2}}
\end{aligned}
$$

- Interesting cases:
- Poles are real
- one of the poles is dominant $\longrightarrow \omega_{3 d B} \cong \frac{1}{b_{1}} \quad\left(b_{1}=\sum \tau_{j}\right)$
- Poles are complex

Poles Location

- Roots of the denominator of the transfer function: $1+\frac{s}{\omega_{0} Q}+\frac{s^{2}}{\omega_{0}^{2}}=0$
- Complex Conjugate poles (overshooting in step response) for $Q>0.5 \Rightarrow p_{1,2}=-\frac{\omega_{0}}{2 Q}\left(1 \mp j \sqrt{4 Q^{2}-1}\right)=-\omega_{R} \mp j \omega_{I}$
- For $Q=0.707\left(\Phi=45^{\circ}\right)$, the -3 dB frequency is ω_{0} (Maximally Flat Magnitude or Butterworth Response)

- Real poles (no overshoot in the step response)

$$
\text { for } Q \leq 0.5 \Rightarrow p_{1,2}=-\frac{\omega_{0}}{2 Q}\left(1 \mp \sqrt{1-4 Q^{2}}\right)
$$

Frequency Response

Step Response

- Ringing for $Q>0.5$
- The case $\mathrm{Q}=0.5$ is called maximally damped response (fastest settling without any overshoot)

Widely- Spaced Real Poles

$$
H(s)=\frac{a_{0}}{1+b_{1} s+b_{2} s^{2}}=\frac{a_{0}}{1+\frac{s}{\omega_{0} Q}+\frac{s^{2}}{\omega_{0}^{2}}}
$$

$$
b_{1} \equiv \frac{1}{\omega_{0} Q} ; \quad b_{2} \equiv \frac{1}{\omega_{0}^{2}}
$$

Real poles occurs when $Q \leq 0.5$:
for $Q \leq 0.5 \Rightarrow p_{1,2}=-\frac{\omega_{0}}{2 Q}\left(1 \mp \sqrt{1-4 Q^{2}}\right)$
Real poles widely-spaced (that is one of the poles is dominant) implies:
$p_{1} \equiv-\frac{\omega_{0}}{2 Q}-\frac{\omega_{0}}{2 Q} \sqrt{1-4 Q^{2}} \ll \quad p_{2} \equiv-\frac{\omega_{0}}{2 Q}+\frac{\omega_{0}}{2 Q} \sqrt{1-4 Q^{2}}$
I
$0 \ll 2 \sqrt{1-4 Q^{2}} \Leftrightarrow 0 \ll \sqrt{1-4 Q^{2}} \Leftrightarrow 0 \ll 1-4 Q^{2} \Leftrightarrow Q^{2} \ll \frac{1}{4} \Leftrightarrow \frac{b_{2}}{b_{1}^{2}} \ll \frac{1}{4}$

Widely-Spaced Real Poles

$$
\begin{aligned}
& H(s)=\frac{a_{0}}{1+b_{1} s+b_{2} s^{2}}=\frac{a_{0}}{\left(1-\frac{s}{p_{1}}\right) \cdot\left(1-\frac{s}{p_{2}}\right)}=\frac{a_{0}}{1-\frac{s}{p_{1}}-\frac{s}{p_{2}}+\frac{s^{2}}{p_{1} p_{2}}} \cong \frac{a_{0}}{1-\frac{s}{p_{1}}+\frac{s^{2}}{p_{1} p_{2}}} \\
& \Rightarrow \quad \mathrm{p}_{1} \cong-\frac{1}{b_{1}} \quad \mathrm{p}_{2} \cong \frac{1}{p_{1} b_{2}}=-\frac{b_{1}}{b_{2}}
\end{aligned}
$$

This means that in order to estimate the -3 dB bandwidth of the circuit, all we need to know is b_{1} !

$$
H(s) \cong \frac{a_{0}}{1-\frac{s}{p_{1}}} \quad \Rightarrow \omega_{-3 d B} \cong\left|p_{1}\right| \cong \frac{1}{b_{1}}
$$

ZVTC method: $\quad b_{1}=\sum \tau_{j}$

$$
\Rightarrow \omega_{-3 d B} \cong \frac{1}{b_{1}}=\frac{1}{\sum \tau_{j}}
$$

Example: Series RLC circuit (1)

$$
\begin{aligned}
& v_{\text {in }}(t)=V_{I} u(t) \\
& \frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}}=\frac{1}{1+s R C+s^{2} L C} \equiv \frac{1}{1+\frac{s}{\omega_{0} Q}+\frac{s^{2}}{\omega_{0}^{2}}} \\
& \omega_{0}^{2}=\frac{1}{L C} ; \quad Q=\frac{1}{\omega_{0} R C}=\frac{\sqrt{L / C}}{R} \equiv \frac{Z_{0}}{R}
\end{aligned}
$$

Example - Series RLC: Poles location (2)

$$
\begin{aligned}
& 1+\frac{s}{\omega_{0} Q}+\frac{s^{2}}{\omega_{0}^{2}}=0 \Leftrightarrow s^{2}+s \cdot \frac{\omega_{0}}{Q}+\omega_{0}^{2}=0 \Leftrightarrow s_{1,2}=\frac{-\frac{\omega_{0}}{Q} \mp \sqrt{\left(\frac{\omega_{0}}{Q}\right)^{2}-4 \omega_{0}^{2}}}{2} \Leftrightarrow \\
& \Leftrightarrow s_{1,2}=-\underbrace{\frac{\omega_{0}}{2 Q}}\left(1 \mp \sqrt{1-4 Q^{2}}\right)
\end{aligned}
$$

- Two possible cases:
- For $Q \leq 1 / 2$ real poles:

$$
s_{1,2}=-\frac{\omega_{0}}{2 Q}\left(1 \mp \sqrt{1-4 Q^{2}}\right) \equiv-\alpha\left(1 \mp \sqrt{1-4 Q^{2}}\right)
$$

- For $Q>1 / 2$ complex poles

$$
s_{1,2}=-\frac{\omega_{0}}{2 Q}\left(1 \mp j \sqrt{4 Q^{2}-1}\right) \equiv-\alpha\left(1 \mp j \sqrt{4 Q^{2}-1}\right)
$$

Example - series RLC

$$
\begin{aligned}
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}} & =\frac{1}{1+s R C+s^{2} L C} \equiv \frac{1}{1+\frac{s}{Q \omega_{0}}+\frac{s^{2}}{\omega_{0}^{2}}} \\
\omega_{0}^{2}=\frac{1}{L C} ; \quad Q=\frac{1}{\omega_{0} R C} & =\frac{\sqrt{L / C}}{R} \equiv \frac{Z_{0}}{R} ; \quad \frac{\omega_{0}}{2 Q} \equiv \alpha \\
C & =\frac{1}{L \cdot \omega_{0}^{2}} ; L=\frac{1}{C \cdot \omega_{0}^{2}} \\
Q & =\frac{1}{R C \omega_{0}}=\frac{L}{R} \omega_{0} \\
\alpha & =\frac{\omega_{0}}{2 Q}=\frac{R}{2 L}
\end{aligned}
$$

Example - series RLC

$$
s^{2}+s \cdot \frac{\omega_{0}}{Q}+\omega_{0}^{2}=0 \Leftrightarrow s^{2}+s \cdot 2 \alpha+\omega_{0}^{2}=0 \Leftrightarrow s_{1,2}=-\alpha \mp \sqrt{\alpha^{2}-\omega_{0}^{2}}
$$

- For $Q \leq 1 / 2$ real poles:

$$
s_{1,2}=-\alpha \mp \sqrt{\alpha^{2}-\omega_{0}^{2}} \quad\left(\text { for } \frac{\omega_{0}}{\alpha} \ll 1 \text { the poles are widely spaced }\right)
$$

- For $Q>1 / 2$ complex poles

$$
\begin{aligned}
& s_{1,2}=-\alpha \mp j \sqrt{\omega_{0}^{2}-\alpha^{2}}=-\alpha \mp j \omega_{n} \\
& \omega_{\mathrm{n}}=\text { natural (damped) frequency } \\
& \omega_{0}=\text { resonant frequency }
\end{aligned}
$$

Example - series RLC: Step response

(a) Overdamped $Q<0.5 \quad\left(\alpha>\omega_{0} \Leftrightarrow \zeta \equiv \alpha / \omega_{0}>1\right)$
(b) Critically damped $\mathrm{Q}=0.5\left(\alpha=\omega_{0} \Leftrightarrow \zeta \equiv \alpha / \omega_{0}=1\right)$
(c) Underdamped $\mathrm{Q}>0.5 \quad\left(\alpha<\omega_{0} \Leftrightarrow \zeta \equiv \alpha / \omega_{0}<1\right) \quad \omega_{\mathrm{n}}=$ ringing frequency
α = damping factor (rate of decay)
$\omega_{0}=$ resonance frequency
$\zeta=$ Damping ratio

Example - RLC series: Quality Factor Q

For a system under sinusoidal excitation at a frequency ω, the most fundamental definition for Q is:

$$
Q=\omega \frac{\text { energystored }}{\text { average power dissipated }}
$$

At the resonant frequency ω_{0}, the current through the network is simply $V_{i n} / R$. Energy in such a network sloshes back and forth between the inductance and the inductor, with a constant sum. The peak inductor current at resonance is $\mathrm{I}_{\mathrm{pk}}=\mathrm{V}_{\text {in }} / \mathrm{R}$, so the energy stored by the network can be computed as:

$$
E_{\text {stored }}=\frac{1}{2} L \cdot I_{p k}^{2}
$$

The average power dissipated in the resistor at resonance is: $\quad P_{\text {avg }}=\frac{1}{2} R \cdot I_{p k}^{2}$

$$
Q=\omega_{0} \frac{E_{\text {stored }}}{P_{\text {avg }}}=\frac{1}{\sqrt{L C}} \cdot \frac{L}{R}=\frac{\sqrt{L / C}}{R}=\frac{Z_{0}}{R}
$$

$Z_{0}=$ Characteristic impedance of the network
At resonance $\left|\mathrm{Z}_{\mathrm{C}}\right|=\left(\omega_{0} \mathrm{C}\right)^{-1}=\left|\mathrm{Z}_{\mathrm{L}}\right|=\omega_{0} \mathrm{~L}=\frac{1}{\sqrt{L C}} \mathrm{~L}=\sqrt{L / C} \equiv Z_{0}$

Example - series RLC: Ringing and Q

Since Q is a measure of the rate of energy loss, one expect a higher Q to be associated with more persistent ringing than a lower Q.

$$
-\omega_{\mathrm{p} 2} \times
$$

$$
\begin{array}{ll}
\mathrm{Q}=0.5 & \rightarrow \Phi=0^{\circ} \\
\mathrm{Q}=0.707 & \rightarrow \Phi=45^{\circ} \\
\mathrm{Q}=1 & \rightarrow \Phi=60^{\circ} \\
\mathrm{Q}=10 & \rightarrow \Phi \approx 87^{\circ}
\end{array}
$$

Ringing doesn't last long and its excursion is small

The decaying envelope is proportional to:

$$
e^{-\alpha t}=e^{-\frac{\omega_{0} t}{2 Q}}
$$

Rule of thumb: Q is roughly equal to the number of cycles of ringing.
Frequency of the ringing oscillations: $1 / f_{n}=T_{n}=2 \pi / \omega_{n}$

Example - RLC series by intuition (1)

- We can predict the behavior of the circuit without solving pages of differential equations or Laplace transforms. All we need to know is the characteristics equation (denominator of $\mathrm{H}(\mathrm{s})$) and the initial conditions

- The voltage across the capacitor cannot jump: $v(0+)=v(0)=+V_{0}$
- The current through the inductor cannot jump: $i(0+)=i(0)=-I_{0}$
- The output voltage starts at V_{0}, it ends at $\mathrm{v}(\infty)=\mathrm{V}_{1}$ and it rings about Q times before settling at $V_{\text {। }}$

Example - RLC series using intuition (2)

- The only question left is to decide if $\mathrm{v}(\mathrm{t})$ will start off shooting down or up ?
- But, ... we know that $\mathrm{i}\left(0^{+}\right)$is negative \rightarrow this means the current flows from the capacitor toward the inductor \rightarrow which means the capacitor must be discharging \rightarrow the voltage across the capacitor must be dropping

Example - RLC series using intuition (3)

- In practice for the under damped case it useful to compute two parameters
- Overshoot
- Settling time

$$
O S=\exp \left(\frac{-\pi}{\omega_{n}} \alpha\right) \quad \longleftarrow \quad \begin{aligned}
& \text { Normalized overshoot }= \\
& \% \text { overshoot w.r.t. final value }
\end{aligned}
$$

$t_{s} \cong-\frac{1}{\alpha} \ln \left(\varepsilon \frac{\omega_{n}}{\omega_{0}}\right)$
ε is the \% error that we are willing to tolerate w.r.t. the ideal final value

First order vs. Second order circuits Behavior

- First order circuits introduce exponential behavior
- Second order circuits introduce sinusoidal and exponential behavior combined
- Fortunately we will not need to go on analyzing $3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$ and so on circuits because they are not going to introduce fundamentally new behavior

