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Research Projects: Mixer
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Research Projects: 
Distributed LNA for UWB

claudio talarico 5



Motivation

• The square-law MOS model is 
plagued by several limitations

– Modern MOSFETs are impaired by mobility degradation 
effects

– In moderate inversion with gate overdrive voltages below 
150mV, the square law model is grossly inaccurate

– In weak inversion, the current flows by diffusion (like in a BJT) 
and the square-law model must be replaced with an 
exponential relationship
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Simulations (nMOS, 5 µm/0.18 µm, VDS=1.8V)

• The transistor does not abruptly turn off at VT

• The current is not perfectly quadratic with VOV (=VGS-VT)
• The current does not scale perfectly with 1/L
• The threshold voltage VT of the device changes with L
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The square law model fails miserably for low VGS

• The square law equation is adequate only for “strongly 
inverted” devices (that is for moderately-large VOV)
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A more design friendly perspective
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Weak Inversion (Subthreshold) Operation

• Physics governed by a “gated diode” model
• The amount of electrons injected into a given point of the body depends on the 

potential present at that given point   
Potential at this point is higher than the potential at any other body/source point

D.L. Pulfrey, Understanding Modern Transistors and Diodes, 
Cambridge University Press, 2010.
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Resulting Diffusion Current

• The current grows exponentially with ys
• The current becomes independent of VDS for VDS > 3Vth (78mV)
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Capacitive Divider

• n is called “subthreshold factor” or “nonideality factor”
• n @ 1.45 for an NMOS device in our technology
• After including this relationship between ys and VGS and after a few 

additional manipulations, the final expression for the drain current 
becomes:

dψ#
dV%&

= C)*
C+# + C)*

= 1
n
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2 I03e

567859
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where ID0 depends on technology (ID0 @ 0.43µA for an NMOS device in our 
technology)



In summary …

• Modern MOSFETs are complicated !

• The behavior of a MOS in saturation can be roughly 
categorized according to the channel’s inversion 
level: weak, moderate and strong inversion

• The bottom line is that there is no modeling 
expression that is simple enough for hand analysis 
and sufficiently accurate to match real world device 
behavior
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Typical Analog circuits design flow based on square 
law hand calculations and SPICE simulation

• The complexity of the transistor model preclude the derivation 
of simple closed form analytical expressions 

• Design process takes multiple iterations and “hand” tweaking of 
the transistor sizing before converging toward a working circuit
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Technology centric vs. Design centric FOMs

• Most of the he parameters in the square-law model 
are technology centric 

• It is hard to link technology parameters to the design 
requirements (gain, bandwidth, input and output 
impedances, noise)
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By the way what are µCox, lambda 
and VT for our technology ?

claudio talarico 16

* 0.18um CMOS models (nominal process)
.MODEL nmos nmos (
+acm = 3 hdif = 0.32e-6 LEVEL = 49
+ CAPOP = 39
+VERSION = 3.1 TNOM = 27 TOX = 4.1E-9
+XJ = 1E-7 NCH = 2.3549E17 VTH0 = 0.3618397
+K1 = 0.5916053 K2 = 3.225139E-3 K3 = 1E-3
+K3B = 2.3938862 W0 = 1E-7 NLX = 1.776268E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 1.3127368 DVT1 = 0.3876801 DVT2 = 0.0238708
+U0 = 256.74093 UA = -1.585658E-9 UB = 2.528203E-18
+UC = 5.182125E-11 VSAT = 1.003268E5 A0 = 1.981392
+AGS = 0.4347252 B0 = 4.989266E-7 B1 = 5E-6
+KETA = -9.888408E-3 A1 = 6.164533E-4 A2 = 0.9388917
+PRWG = 0.5 PRWB = -0.2
+WR = 1 WINT = 0 LINT = 1.617316E-8
+XL = 0 XW = -1E-8 DWG = -5.383413E-9
+DWB = 9.111767E-9 VOFF = -0.0854824 NFACTOR = 2.2420572
+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 2.981159E-3 ETAB = 9.289544E-6
+DSUB = 0.0159753 PCLM = 0.7245546 PDIBLC1 = 0.1568183
+PDIBLC2 = 2.543351E-3 PDIBLCB = -0.1 DROUT = 0.7445011
+PSCBE1 = 8E10 PSCBE2 = 1.876443E-9 PVAG = 7.200284E-3
+DELTA = 0.01 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 1
+CGDO = 4.91E-10 CGSO = 4.91E-10 CGBO = 1E-12
+CJ = 9.652028E-4 PB = 0.8 MJ = 0.3836899
+CJSW = 2.326465E-10 PBSW = 0.8 MJSW = 0.1253131
+CF = 0 PVTH0 = -7.714081E-4 PRDSW = -2.5827257
+PK2 = 9.619963E-4 WKETA = -1.060423E-4 LKETA = -5.373522E-3
+PU0 = 4.5760891 PUA = 1.469028E-14 PUB = 1.783193E-23
+PVSAT = 1.19774E3 PETA0 = 9.968409E-5 PKETA = -2.51194E-3
+nlev = 3 kf = 0.5e-25)

This is a 110-parameter
BSIM3v3 SPICE model:
µCox ≙ KP and lambda
are nowhere to be found



Transistor Figures of Merit for Design
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§ Transconductance efficiency
– Want large gm, for as little current 

as possible

§ Transit frequency
– Want large gm, without large Cgg

§ Intrinsic gain
– Want large gm, but no gds
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Design Tradeoffs
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Product of gm/ID and fT
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• Interestingly, the product of gm/ID and fT peaks in moderate inversion
– For our 0.18 µm technology it peaks at around gm/ID ≈ 13 S/A

• Operating the transistor in moderate inversion makes sense when we value 
speed and power efficiency equally
– Not always the case, it depends on the application
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Product of gm/ID and fT for varying L
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Systematic Design of Analog CMOS 
Circuits Using gm/ID-based Methodology

§ Use pre-computed SPICE data in hand calculations 

Specifications

Hand Calculations

Circuit

SPICE

Results

Design Tables

Sim Models

SPICESim Models

§ Goal
– Maintain a systematic design 

methodology in the absence 
of a set of useful compact 
MOS equations

§ Strategy
– Design using look-up 

tables or charts



Starting Point: 
gm/ID-Centric Technology Characterization
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• Tabulate the figures of merit considering gm/ID as an index, over a 
reasonable range of gm/ID and channel lengths

• Transit frequency (fT)
• Intrinsic gain (gm/gds)

• Also tabulate relative estimates of capacitances
Cgd/Cgg and Cdd/Cgg

• Note, that all the FOMs are (to first order) independent of device width

• So, in order to compute device widths, we need one more table that links 
gm/ID and current density ID/W



gm/ID-Centric Technology Characterization
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• Obtain tables of device characteristics through a DC 
sweep of the transistor

– Measure transistor .op parameters at each point of the sweep
• gm, ID, Cgg, gds, etc.

– Repeat the sweep for different lengths
• 180nm, 200nm, ….. 3µm

• Simple version: sweep VGS with VDS held fixed at 
VDS =VDD/2

– The figures of merit and ID/W don’t vary too much with VDS

• Advanced version: sweep also VDS and VBS

– Captures the back-gate effect due to VBS

• Threshold Voltage shift

– Often using “low/medium/high” VDS charts is good enough



Simulation Data in MATLAB

% data stored in /home/ee406/matlab
>> load 180nch.mat
>> nch
nch = 

ID: [4-D double]
VT: [4-D double]
GM: [4-D double]
GMB: [4-D double]
GDS: [4-D double]
CGG: [4-D double]
CGS: [4-D double]
CGD: [4-D double]
CGB: [4-D double]
CDD: [4-D double]
CSS: [4-D double]
INFO: ’GU ee406 models, 180nm CMOS, BSIM3'
VGS: [73x1 double]
VDS: [73x1 double]
VSB: [11x1 double]
L: [32x1 double]
W: 5.0000e-06

NFING: 1
>> size(nch.ID)
ans =

32    73    73    11

!"($, &'(, &"(, &()
&*($, &'(, &"(, &()
+,($, &'(, &"(, &()

…

Four-dimensional arrays



Transit Frequency (fT=gm/Cgg)
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Intrinsic Gain (gm/gds)
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Current Density (JD=ID/W)
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VDS Dependence

§ VDS dependence is 
relatively weak

§ Typically it is OK to 
work with data 
generated for VDD/2



Capacitances
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Capacitances – Length Dependence
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Design in a Nutshell

• Choose length L such that the circuit has ‘enough’ gain
• Choose the inversion level according to the proper tradeoff between speed (fT) and 

transconductance efficiency (gm/ID) for the given circuit
• The inversion level is fully determined by the gate overdrive VOV

– But, VOV is not a very interesting parameter outside the square law framework; 
not much can be computed from VOV
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Eliminating VOV

• But, … the inversion level is also fully defined by gm/ID
so there is no need to know VOV

The SPICE model data
confirms that 2/(gm/ID) is
a good estimate for the
minimum reasonable VDS
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A Generic Design Optimization Flow
Complicated circuits have *many* degrees of freedom and objectives

– Usually we must make some heuristic choices up front

– Charts and lookup tables help you iterate through possible designs rapidly

1) Pick transistor lengths
2) Pick gm/ID bias points
3) Determine gm (from design objective)
4) Determine bias currents (from gm and gm/ID)
5) Total power consumption = ???

- Room for improvement?
- Ready to verify?

6) Determine W (from ID/W)
7) Simulate the circuit: meets specs and estimated performance?

- If yes, then you’re done!

- If not, revise the design flow: correct mistakes, improve estimates, etc.

Revise the 
optimization 

variables



TIA for Fiber Optic Receiver
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TIA specifications: 

• 0.18μm CMOS technology, 

• closed-loop transimpedance gain of 73 dBW
• 0.5 pF photodiode 

• 250 W-load, 

• Total current budget up to 16mA

• input referred current noise PSD up to 160 × 10−24 A2/Hz
• Optimize for gain, speed and power consumption



TIA for Fiber Optic Receiver
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TIA for Fiber Optic Receiver

Loop gain:

Bandwidth (ZVTC):

Closed Loop Trans-impedance gain:

Input referred current noise PSD:
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TIA for Fiber Optic Receiver

TC at the CG input:

TC at the CG  output:

TC at the source of M2C:

TCs at the first CS output:

TC at the source of M3C:

TC at the CD input:

TC at the CD output:
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Design Optimization Framework
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Design Optimization Framework



Results
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Gilbert Cell Mixer
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Topology Main Benefits:
• Simple 
• Good port-to-port isolation
• Low even-order harmonic distortion 

Specifications:
• A conversion gain greater than 10 dB 
• DC-power consumption lower than 3 mW
• A resistive load of 500 W
• A target third-order intercept (IIP3) > -5 dBm

Topology Drawback: 
The cell is composed of a stack of three MOS 
transistors, so it requires large voltage headroom 
to keep the transistors biased in saturation, and it 
results in a large DC-power consumption 

ID(TS)

ID(SS)



Optimization 
Framework
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Optimization 
Framework
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Optimization Framework



Gilbert Cell:
Framework 
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UWB LNA Distributed Amplifier
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Theoretical Gain:

Upper Bound:

Synchronism of propagation: Symmetry of characteristic impedance

Bandwidth:



UWB Framework
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