

Systematic Design of Analog CMOS Circuits Using g_m/I_D-Based Lookup Tables

Systematic Design of Analog CMOS Circuits Using g_m/I_D-based Lookup Tables

CMOS Analog Design Using All-Region MOSFET Modeling

Márcio Cherem Schneider and Carlos Galup-Montoro

Systematic Design of Analog CMOS Circuits

Using Pre-Computed Lookup Tables

Paul G. A. Jespers and Boris Murmann

Research Projects: TIA

Spec.	[3]	[4]	[<mark>9</mark>]	[14]	[2]	This work
Gain (dBΩ)	66	66.02	94.96	69.8	72	78.34
BW (GHz)	2.1	22	0.0018	1	2.4	2.21
Cin (pF)	0.5	0.5	2	0.5	0.5	0.5
Input ref. noise (pA/√Hz)	10	22	0.065	4.5	18.12	11.91
P _{DISS} (mW)	7.2	75	0.436	4.62	20.57	13.5
FOM (Ω*GHz/mW)	581.95	586.7	231.19	668.9	464.4	1352
Process (µm)	0.18	0.09	0.18	0.18	0.18	0.18
Supply voltage (V)	1.8	1.2	1.8	3.3	1.8	1.8

3

Research Projects: Mixer

TABLE I.	REPORTED PERFORMANCE OF CMOS GILBERT MIXERS								
Ref.	CMOS Tech.	Gain [dB]	IIP3 [dBm]	NF Av. [dB]	<i>P</i> _{DC} [m ₩]	FOM			
[4]	0.13 um	8	-3	11.2	5.57	0.12			
[9]	0.18 um	10	4	10	10	0.16			
[10]	0.13 um	8.95	-2.2	11.4	3.7	0.16			
[11]	0.13 um	21	-1.8	15.7	18.3	0.06			
[12]	0.18 um	13.5	-3.25	21.22	7.2	0.06			
This Work	0.13 um	11.24	-3.1	11.6	2.1	0.32			
Ther	The performance matrice indicated refers to the core of the mixer								

The performance metrics indicated refers to the core of the mixer

 $FOM = \frac{CG_{[dB]} \cdot IIP3_{[mW]}}{NF_{[dB]}P_{DC[mW]}]}$

34 um

4

Reference	Technology	BW [GHz]	Gain [dB]	S11/S22 [dB]	NF average [dB]	Power [mW]	Area (mm²)	FOM [GHz/mW·mm ²]
[2]	0.13 um CMOS	3-9.4	12	<-7 / <-8	3.3	30	0.82	0.28
[8] (HG mode)	0.13 um CMOS	3-10	20.4	<-10/<-10	3.29	37.8	0.88	1.26
[8] (LG mode)	0.13 um CMOS	3-10	11	<-10/<-10	4.25	6.86	0.88	1.71
[9]	0.13 um CMOS	3-10	15	<-12/<-15	3.34	26	0.43	2.89
[10]	0.13 um CMOS	2.2-9	9.8	<-10/<-9.2	4.25	30	0.68	0.28
[11]	0.18 um CMOS	3-10	18	<-10/<-9	6	54	2.2	0.15
This Work	0.13 um CMOS	3-10	11	<-16/<-18	2.65	26	0.75	1.61

Motivation

 gate
 ↓

 source
 drain

 Depletion Region
 Inversion Layer

 pinched-off at drain
 The inversion layer

 thin down from S to D

 0

VGS >VT

 The square-law MOS model is plagued by several limitations

$$_{D} = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

- Modern MOSFETs are impaired by mobility degradation effects
- In moderate inversion with gate overdrive voltages below 150mV, the square law model is grossly inaccurate
- In weak inversion, the current flows by diffusion (like in a BJT) and the square-law model must be replaced with an exponential relationship

GONZAGA UNIVERSITY

Simulations (nMOS, 5 μ m/0.18 μ m, V_{DS}=1.8V)

- The transistor does not abruptly turn off at $V_{\rm T}$
- The current is not perfectly quadratic with V_{OV} (= V_{GS} - V_T)
- The current does not scale perfectly with 1/L
- The threshold voltage V_T of the device changes with L

A more design friendly perspective 30 Transconductance NMOS Efficiency -Weak Inversion 25 Square Law 20 gm/I_D [S/A] 15 10 5 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1 1.8 $V_{GS}[V]$ In weak inversion: $g_m = \frac{1}{n} \cdot \frac{I_D}{V_{th}}$ + + + + + + + oxide In moderate inversion: ??? S In strong inversion: $g_m = \frac{2I_D}{V_{OV}}$ V_{GB} Ν N body 9

Weak Inversion (Subthreshold) Operation

- Physics governed by a "gated diode" model
- The amount of electrons injected into a given point of the body depends on the potential present at that given point

Potential at this point is higher than the potential at any other body/source point

• The current becomes independent of V_{DS} for $V_{DS} > 3V_{th}$ (78mV)

additional manipulations, the final expression for the drain current becomes:

$$I_{\rm D} = \frac{W}{L} I_{\rm D0} e^{\frac{V_{\rm GS} - V_{\rm t}}{nV_{\rm th}}} (1 - e^{-\frac{V_{\rm DS}}{V_{\rm th}}})$$

where I_{D0} depends on technology ($I_{D0}\cong 0.43\mu A$ for an NMOS device in our technology)

Typical Analog circuits design flow based on square law hand calculations and SPICE simulation

- The complexity of the transistor model preclude the derivation of simple closed form analytical expressions
- Design process takes multiple iterations and "hand" tweaking of the transistor sizing before converging toward a working circuit

Technology centric vs. Design centric FOMs

 Most of the he parameters in the square-law model are technology centric

$$I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{OV})^2 (1 + \lambda V_{DS})$$

$$V_{OV} \therefore V_{GS} - V_T$$

 It is hard to link technology parameters to the design requirements (gain, bandwidth, input and output impedances, noise)

By the way what are μC_{ox} , lambda and V_T for our technology ?

* 0.18um CMOS mo	dels (nominal pro	oce	55)		
.MUDEL NMOS NMOS	; (bdif	_	0 320 6		- 10
+dCIII = 3	nati	=	0.520-0	LEVEL	= 49
$\pm VEDSTON = 3.1$		_	27	τογ	- / 1E_0
+VLR510N = 5.1 $+V1 = 1E_7$		_	27 2 35/0E17		-4.11-9 - 0.3619307
+K1 = 0.591	6053 K2	_	3,225139F-3	K3	$= 1F_3$
+K3R = 2.393	18862 W0	_	1F_7	NIX	= 1.776268F-7
+DVT0W = 0	DVT1W	=	0	DVT2W	= 0
+DVT0 = 1.312	7368 DVT1	=	0.3876801	DVT2	= 0.0238708
+00 = 256.7	4093 UA	=	-1.585658E-9	UB	= 2.528203E - 18
+UC = 5.182	125E–11 VSAT	=	1.003268E5	A0	= 1.981392
+AGS = 0.434	7252 B0	=	4.989266E-7	B1	= 5E-6
+KETA = -9.88	8408E-3 A1	=	6.164533E-4	A2	= 0.9388917
+PRWG = 0.5	PRWB	=	-0.2		
+WR = 1	WINT	=	0	LINT	= 1.617316E-8
+XL = 0	XW	=	-1E-8	DWG	= -5.383413E-9
+DWB = 9.111	.767E–9 VOFF	=	-0.0854824	NFACTOR	= 2.2420572
+CIT = 0	CDSC	=	2.4E-4	CDSCD	= 0
+CDSCB = 0	ETAØ	=	2.981159E-3	ETAB	= 9.289544E-6
+DSUB = 0.015	9753 PCLM	=	0.7245546	PDIBLC1	= 0.1568183
+PDIBLC2 = 2.543	351E-3 PDIBLC	B =	-0.1	DROUT	= 0.7445011
+PSCBE1 = 8E10	PSCBE2	=	1.8/6443E-9	PVAG	= 7.200284E-3
+DELIA = 0.01	MOBMOD	=	1	1/74	0.11
+PRI = 0	UIE	=	-1.5	KI1	= -0.11
+NIL = 0		=	0.022	UAL	= 4.31E-9
+0BI = -/.0I	.E-18 UC1	=	-5.0E-11	AI	= 3.3E4
+WL = 0	W LIN	=	1	WW	= 0
+WWN = 1	WWL	=	0		= 0 - 1
+LLN = 1		_	9 2		- 1
+CGD0 = 4.91F	-10 (GSO	_	2 4.91F–10	CGBO	= 1 = 1F-12
+0.000 = 4.012 +0.1 = 9.652	2028F-4 PB	=	0.8	M1	= 0.3836899
+C.1SW = 2.326	465F-10 PBSW	=	0.8	MJSW	= 0.1253131
+CF = 0	PVTH0	=	-7.714081F-4	PRDSW	= -2.5827257
+PK2 = 9.619	963E-4 WKETA	=	-1.060423E-4	LKETA	= -5.373522E-3
+PU0 = 4.576	0891 PUA	=	1.469028E-14	PUB	= 1.783193E-23
+PVSAT = 1.197	74E3 PETA0	=	9.968409E-5	PKETA	= -2.51194E-3
+nlev = 3	kf	=	0.5e-25)		

This is a 110-parameter BSIM3v3 SPICE model: μ Cox \triangleq KP and lambda are nowhere to be found

Design Tradeoffs

Plot of $g_{\rm m}/I_{\rm D}$ and $f_{\rm T}$ at different levels of inversion Vov for an nMOS transistor with channel length $L = 0.18 \,\mu {\rm m}$

Transconductance efficiency	
Low $g_{\rm m}/I_{\rm D}$	High $g_{\rm m}/I_{\rm D}$
Strong inversion	Weak inversion
Poor power efficiency	Good power efficiency
Low output voltage range	High output voltage range
High transient frequency	Low transient frequency
Small transistor	Large transistor

Table 1 Transistor's propertiesat different levels oftransconductance efficiency

- Interestingly, the product of g_m/I_D and f_T peaks in moderate inversion
 - -~ For our 0.18 μm technology it peaks at around $g_m/I_D \approx$ 13 S/A
- Operating the transistor in moderate inversion makes sense when we value speed and power efficiency equally
 - Not always the case, it depends on the application

GONZAGA UNIVERSITY

Product of g_m/I_D and f_T for varying L

Systematic Design of Analog CMOS Circuits Using g_m/I_D-based Methodology

- Goal
 - Maintain a <u>systematic</u> design methodology in the absence of a set of useful compact MOS equations

- Strategy
 - Design using look-up tables or charts

Use pre-computed SPICE data in hand calculations

Starting Point:

g_m/I_D-Centric Technology Characterization

- Tabulate the figures of merit considering g_m/I_D as an index, over a reasonable range of g_m/I_D and channel lengths
 - Transit frequency (f_T)
 - Intrinsic gain (g_m/g_{ds})
- Also tabulate relative estimates of capacitances C_{gd}/C_{gg} and C_{dd}/C_{gg}
- Note, that all the FOMs are (to first order) independent of device width
- So, in order to compute device widths, we need one more table that links g_m/I_D and current density I_D/W

GONZAGA UNIVERSITY

g_m/I_D-Centric Technology Characterization

- Obtain tables of device characteristics through a DC sweep of the transistor
 - Measure transistor .op parameters at each point of the sweep
 - g_m , I_D , C_{gg} , g_{ds} , etc.
 - Repeat the sweep for different lengths
 - 180nm, 200nm, 3μm
- Simple version: sweep V_{GS} with V_{DS} held fixed at $V_{DS} = V_{DD}/2$
 - The figures of merit and I_D/W don't vary too much with V_{DS}
- Advanced version: sweep also V_{DS} and V_{BS}
 - Captures the back-gate effect due to V_{BS}
 - Threshold Voltage shift
 - Often using "low/medium/high" V_{DS} charts is good enough

Simulation Data in MATLAB

```
% data stored in /home/ee406/matlab
>> load 180nch.mat
>> nch
nch =
       ID: [4-D double]
       VT: [4-D double]
       GM: [4-D double]
      GMB: [4-D double]
      GDS: [4-D double]
      CGG: [4-D double]
      CGS: [4-D double]
      CGD: [4-D double]
      CGB: [4-D double]
      CDD: [4-D double]
      CSS: [4-D double]
     INFO: 'GU ee406 models, 180nm CMOS, BSIM3'
     VGS: [73x1 double]
      VDS: [73x1 double]
      VSB: [11x1 double]
        L: [32x1 double]
        W: 5.0000e-06
    NFING: 1
>> size(nch.ID)
ans =
    32
          73
                73
                      11
```

Four-dimensional arrays

 $I_D(L, V_{GS}, V_{DS}, V_S)$ $V_t(L, V_{GS}, V_{DS}, V_S)$ $g_m(L, V_{GS}, V_{DS}, V_S)$

- Choose length L such that the circuit has 'enough' gain
- Choose the inversion level according to the proper tradeoff between speed (f_T) and transconductance efficiency (g_m/I_D) for the given circuit
- The inversion level is fully determined by the gate overdrive V_{OV}
 - But, $V_{\rm OV}$ is not a very interesting parameter outside the square law framework; not much can be computed from $V_{\rm OV}$

A Generic Design Optimization Flow

Complicated circuits have *many* degrees of freedom and objectives

- Usually we must make some heuristic choices up front
- Charts and lookup tables help you iterate through possible designs rapidly
- 1) Pick transistor lengths
- 2) Pick g_m/I_D bias points
- 3) Determine gm (from design objective)
- 4) Determine bias currents (from g_m and g_m/I_D)
- 5) Total power consumption = ???
 - Room for improvement?
 - Ready to verify?

Revise the optimization variables

- 6) Determine W (from I_D/W)
- 7) Simulate the circuit: meets specs and estimated performance?
 - If yes, then you're done!
 - If not, revise the design flow: correct mistakes, improve estimates, etc.

GONZAGA U N I V E R S I T Y

TIA for Fiber Optic Receiver

Fig. 7 TIA AC half circuit with feedback loading and relevant capacitances

Loop gain: $T_0 = a_0 f_0$

Closed Loop Trans-impedance gain: $A_0 = \frac{v_{\text{out,diff}}}{i_{\text{input}}} \approx \frac{2a_0}{1+T_0}$ $i_{\text{input}} = i_{\text{in}}/2 \text{ and } v_{\text{out,diff}} = v_{\text{oa}} - v_{\text{ob}}$ Bandwidth (ZVTC): $f_{-3 \text{ dB}} \approx \frac{1+T_0}{2\pi \cdot \sum_{\forall i} \tau_i}$ Input referred current noise PSD: $\frac{\overline{i_{\text{noise}}^2}}{\Delta f} \approx \frac{1}{2} \cdot \left(\frac{4KT}{R_{\text{F}}} + 4KT\gamma_n g_{\text{mB1}} + \frac{4KTR_1}{A_{\text{CG}}^2} + 4KT\gamma_p g_{\text{m1P}} \frac{R_1^2}{A_{\text{CG}}^2}\right)$ claudio talarico 36

GONZAGA UNIVERSITY

TIA for Fiber Optic Receiver

Fig. 7 TIA AC half circuit with feedback loading and relevant capacitances

TC at the CG input: $\tau_{in} \approx C_{in} \cdot \left(R_{\rm F} || \frac{1}{g_{m1}^*}\right)$ where $C_{in} = C_{\rm P} + C_{\rm F} + C_{gs1} + C_{sb1} + C_{ddp1}$ and $C_{ddp1} = C_{gdp1} + C_{dbp1}$ TC at the CG output: $\tau_2 \approx R_1 C_2$ where $C_2 = C_{gd1} + C_{db1} + C_{gs2} + C_{gd2}(1 + g_{m2}/g_{m2C}^*)$ TC at the source of M2C: $\tau_{2C} \approx \frac{1}{g_{m2C}^*} C_{2C}$ where $C_{2C} = C_{db2} + C_{gs2C} + C_{sb2C}$ TCs at the first CS output: $\tau_3 \approx R_2 C_3$ and $\tau_{3m} \approx C_{gd3} \cdot \left(R_2 + \frac{1}{g_{m3C}^*} + g_{m3}\frac{R_2}{g_{m3C}^*}\right)$ TC at the source of M3C: $\tau_{3C} \approx \frac{1}{g_{m3C}^*} C_{3C}$ where $C_{3C} = C_{db3} + C_{gs3} + C_{sb3C}$ TC at the CD input: $\tau_{4in} \approx R_2 C_{4in}$ and $\tau_{4m} \approx C_{gs4}\frac{R_3 + R_{Lp}}{g_{m4}R_{Lp} + 1}$ where $C_{4in} = C_{db2C} + C_{gd2C} + C_{gs3}$ TC at the CD output: $\tau_{4out} \approx R_{Lp} \cdot (C_F + C_{sb4})$ claudio talarico

Design Optimization Framework

- 1. Set the loop gain T_0 to an appropriate value ($T_0 \ge 10$) and derive R_F based on the design objectives ($A_0 \ge 73 \, dB\Omega$).
- 2. Set $g_{\rm m}/I_{\rm D}$ for the transistor M_4 (source follower) to allow max output signal swing (that is $V_{\rm IN4} = V_{\rm DD}/2$) and compute the corresponding transient frequency $f_{\rm T}$. Select an appropriate value of bias current based on $C_{\rm gg4}$ such that the time constants associated with the source follower are not dominant. Estimate the parasitic capacitances and compute the resulting gain $A_{\rm CD}$ of the source follower.

Design Optimization Framework

3. Partition the amount of gain needed to meet specification between the common source and the common gate:

$$A_{\rm CS}A_{\rm CG} = \frac{a_0}{A_{\rm CD}} \tag{16}$$

An excessive value of $A_{\rm CS}$ causes a strong miller effect at the intermediate node between the transistors M_2 and $M_{2\rm C}$ and results in a non optimal value of the dominant time constant τ_2 . Similarly, an excessive value of $A_{\rm CG}$ implies an excessive value of R_1 and results in a suboptimal value of the dominant time constant τ_2 . Appropriate values of $A_{\rm CS}$ and $A_{\rm CG}$ are in the following ranges:

$$1 \le A_{\rm CS} \le 50 \text{ and } \frac{a_0}{A_{\rm CD}A_{\rm CSmax}} \le A_{\rm CG} \le \frac{a_0}{A_{CD}}$$
 (17)

- 4. Set $g_{\rm m}/I_{\rm D}$ of transistor M_1 and the value of R_1 as the primary design variables. The values of $g_{\rm m1}/I_{\rm D1}$ and R_1 set the value of $A_{\rm CG}$. The value of $A_{\rm CG}$ set the value of $A_{\rm CG}$ and therefore the value of $g_{\rm m2}/I_{\rm D2}$, R_2 , $g_{\rm m3}/I_{\rm D3}$ and R_3 .
- 5. Sweep g_{m1}/I_{D1} from weak inversion region ($g_m/I_D = 25$ S/A) to strong inversion region ($g_m/I_D = 5$ S/A) and R_1 from A_{CG_min} to A_{CG_max} . Register the performance metrics of every feasible design in the explored space. Design feasibility and the current bias for the CG and CS are determined by the bias constrains.
- 6. Determine g_{m1}/I_{D1} , I_{D1} , R_1 , A_{CG} , g_{m2}/I_{D2} , I_{D2} , R_2 , R_3 , g_{m3}/I_{D3} , I_{D3} , A_{CS} , and A_{CD} for the TIA design that achieves the best bandwidth.
- 7. Finally, determine transistor widths from g_m/I_D , the calculated I_{D_1} and the current density (I_D/W) look-up tables

This work

Results

Spec.[3][4][9][14][2]Gain (dBΩ)6666.0294.9669.872

 Table 4
 Performance comparison of state-of-the-art CMOS TIAs

Gain (dBΩ)	66	66.02	94.96	69.8	72	78.34
BW (GHz)	2.1	22	0.0018	1	2.4	2.21
Cin (pF)	0.5	0.5	2	0.5	0.5	0.5
Input ref. noise (pA/√Hz)	10	22	0.065	4.5	18.12	11.91
P _{DISS} (mW)	7.2	75	0.436	4.62	20.57	13.5
FOM (Ω*GHz/mW)	581.95	586.7	231.19	668.9	464.4	1352
Process (µm)	0.18	0.09	0.18	0.18	0.18	0.18
Supply voltage (V)	1.8	1.2	1.8	3.3	1.8	1.8

Gilbert Cell Mixer

$$A_{\nu} \cong \left(\frac{2}{\pi}\right) g_m R_L \qquad g_m = \sqrt{\frac{2KP_n WI_D}{L}}$$

$$I_{BIAS} = 2 \times I_{D(TS)}$$
 $I_{D(SS)} = 2 \times I_{D(TS)}$

Specifications:

- A conversion gain greater than 10 dB
- DC-power consumption lower than 3 mW
- A resistive load of 500Ω
- A target third-order intercept (IIP3) > -5 dBm

Topology Main Benefits:

- Simple
- Good port-to-port isolation
- Low even-order harmonic distortion

Topology Drawback:

The cell is composed of a stack of three MOS transistors, so it requires large voltage headroom to keep the transistors biased in saturation, and it results in a large DC-power consumption

TABLE I.	Repor	RTED PER	FORMANCE	OF CMOS	GILBERT	MIXERS
Ref.	CMOS Tech.	Gain [dB]	IIP3 [dBm]	NF Av. [dB]	P _{DC} [m W]	FOM
[4]	0.13 um	8	-3	11.2	5.57	0.12
[9]	0.18 um	10	4	10	10	0.16
[10]	0.13 um	8.95	-2.2	11.4	3.7	0.16
[11]	0.13 um	21	-1.8	15.7	18.3	0.06
[12]	0.18 um	13.5	-3.25	21.22	7.2	0.06
This Work	0.13 um	11.24	-3.1	11.6	2.1	0.32

The performance metrics indicated refers to the core of the mixer

Optimization Framework

- 1. Given the target gain and the load resistance specifications, use (1) to derive the value of g_m ;
- 2. Once the value of g_m has been set, sweep g_m/I_D (that is the inversion level of the transistors) in the range 5÷25, and let the framework computes the corresponding current levels $I_{D(SS)}$ and $I_{D(TS)}$;
- 3. Exploiting the lookup table of the current density (I_D/W) , computes the values of $W_{(SS)}$ and $W_{(TS)}$ for all inversion levels explored. Set the channel length L to the minimum value of 130nm to maximize speed[5];
- 4. Perform systematic DC analysis of the mixer by independently varying the g_m/I_D ratio for the TS and SS. For each bias point computes the DC-power consumption of the mixer.
- 5. For each solution checks that the circuit is correctly biased (that is all transistors operates in saturation) and compares the DC-power consumption with the design specification. Discard any unfeasible solution.
- 6. For each solution left from the previous step, compute the conversion gain of the mixer. Discard any further solution that exhibit a conversion gain lower than the design specifications.
- 7. Repeat the previous step for the noise figure and the third-order intercept of the system.
- 8. Explores the pruned solutions space and extract the optimal bias point, that is the bias point that allows to achieve the best tradeoff among the performance metrics of the mixer.

Framework

Gilbert Cell:

$$FOM = \frac{CG_{[dB]} \cdot IIP3_{[mW]}}{NF_{[dB]}P_{DC[mW]}]}$$

UWB LNA Distributed Amplifier

Theoretical Gain:

$$G=\frac{Ng_mZ_0}{2}$$

Upper Bound:

$$N_{opt} = \frac{\ln(A_D/A_G)}{A_D - A_G}$$

Synchronism of propagation:

 $L_G C_{GG} \approx L_D C_{DD}$

Symmetry of characteristic impedance

$$Z_G = \sqrt{\frac{L_G}{C_G}} = Z_D = \sqrt{\frac{L_D}{C_D}}$$

Bandwidth:

$$BW \cong \min\left(\frac{1}{\pi}\sqrt{\frac{1}{C_{GG}L_G}}, \frac{1}{\pi}\sqrt{\frac{1}{C_{DD}L_D}}\right)$$

