Systematic Design of Analog CMOS Circuits Using g_{m} / I_{D}-Based Lookup Tables

Claudia TALARICO

Systematic Design of Analog CMOS Circuits Using g_{m} / I_{D}-based Lookup Tables

Research Projects: TIA

Table 4 Performance comparison of state-of-the-art CMOS TIAs

Spec.	$[3]$	$[4]$	$[9]$	$[14]$	$[2]$	This work
Gain $(\mathrm{dB} \Omega)$	66	66.02	94.96	69.8	72	78.34
$\mathrm{BW}(\mathrm{GHz})$	2.1	22	0.0018	1	2.4	2.21
Cin (pF)	0.5	0.5	2	0.5	0.5	0.5
Input ref. noise $(\mathrm{pA} / \sqrt{ } \mathrm{Hz})$	10	22	0.065	4.5	18.12	11.91
$P_{\text {DISS }}(\mathrm{mW})$	7.2	75	0.436	4.62	20.57	13.5
FOM $(\Omega * \mathrm{GHz} / \mathrm{mW})$	581.95	586.7	231.19	668.9	464.4	1352
Process $(\mu \mathrm{m})$	0.18	0.09	0.18	0.18	0.18	0.18
Supply voltage (V)	1.8	1.2	1.8	3.3	1.8	1.8

Research Projects: Mixer

TABLE I. REPORTED PERFORMANCE OF CMOS GILBERT MIXERS

Ref.	CMOS Tech.	Gain $[d B]$	IIP3 $[d B m]$	NF Av $[d B]$	$\boldsymbol{P}_{\text {DC }}$ $[\boldsymbol{d} \mid \boldsymbol{W}]$	FOM
$[4]$	0.13 um	8	-3	11.2	5.57	0.12
$[9]$	0.18 um	10	4	10	10	0.16
$[10]$	0.13 um	8.95	-2.2	11.4	3.7	0.16
$[11]$	0.13 um	21	-1.8	15.7	18.3	0.06
$[12]$	0.18 um	13.5	-3.25	21.22	7.2	0.06
This Work	0.13 um	11.24	-3.1	11.6	2.1	0.32

The performance metrics indicated refers to the core of the mixer

Research Projects: Distributed LNA for UWB

Fig. 2 Architecture of a conventional four stages distributed amplifier

Fig. 1 Architecture of a UWB system
$F O M_{[G H z} /_{\left.m W \cdot \mathrm{~mm}^{2}\right]}=\frac{\alpha_{[d B] \cdot} \cdot B W_{[G H z]}}{N F_{[d B]} P_{D C[m W]} \text { Area }\left[\mathrm{mm}^{2}\right]}$

$$
\alpha_{[d B]}=10 \cdot \log _{10}\left\{\left|S_{21}\right|^{2} \cdot\left[\left(1-\left|S_{11}\right|^{2}\right) \cdot\left(1-\left|S_{22}\right|^{2}\right)\right]\right\}
$$

table il. Reported Performance of CMOS DAs for UWB systems

Reference	Technology	$\begin{gathered} B W \\ {[G H z]} \end{gathered}$	$\begin{aligned} & \text { Gain } \\ & {[d B]} \end{aligned}$	$\underset{[d B]}{S 11 / S 22}$	$\begin{gathered} N F \\ \text { average } \\ {[d B]} \end{gathered}$	Power [mW]	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$	$\underset{\left[\mathrm{GHz} / \mathrm{mW} \cdot \mathrm{~mm}^{2}\right]}{\mathrm{FOM}}$
[2]	0.13 um CMOS	3-9.4	12	$<-7 /<-8$	3.3	30	0.82	0.28
[8] (HG mode)	0.13 um CMOS	3-10	20.4	<-10/<-10	3.29	37.8	0.88	1.26
$\begin{gathered} {[8]} \\ \text { (LG mode) } \end{gathered}$	0.13 um CMOS	3-10	11	<-10/<-10	4.25	6.86	0.88	1.71
[9]	0.13 um CMOS	3-10	15	$<-12 /<-15$	3.34	26	0.43	2.89
[10]	0.13 um CMOS	2.2-9	9.8	<-10/<-9.2	4.25	30	0.68	0.28
[11]	0.18 um CMOS	3-10	18	<-10/<-9	6	54	2.2	0.15
This Work	0.13 um CMOS	3-10	11	<-16/<-18	2.65	26	0.75	1.61

Motivation

- The square-law MOS model is
 plagued by several limitations

$$
I_{D}=\frac{1}{2} \mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
$$

- Modern MOSFETs are impaired by mobility degradation effects
- In moderate inversion with gate overdrive voltages below 150 mV , the square law model is grossly inaccurate
- In weak inversion, the current flows by diffusion (like in a BJT) and the square-law model must be replaced with an exponential relationship

Simulations ($\mathrm{nMOS}, 5 \mu \mathrm{~m} / 0.18 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{DS}}=1.8 \mathrm{~V}$)

- The transistor does not abruptly turn off at V_{T}
- The current is not perfectly quadratic with $\mathrm{V}_{\mathrm{OV}}\left(=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)$
- The current does not scale perfectly with $1 / L$
- The threshold voltage V_{T} of the device changes with L

The square law model fails miserably for low V_{GS}

- The square law equation is adequate only for "strongly inverted" devices (that is for moderately-large V_{ov})

Currents on a Log Scale

A more design friendly perspective

Transconductance Efficiency

In weak inversion: $\quad g_{m}=\frac{1}{n} \cdot \frac{I_{D}}{V_{t h}}$
In moderate inversion: ???
In strong inversion: $g_{m}=\frac{2 I_{D}}{V_{O V}}$

Weak Inversion (Subthreshold) Operation

- Physics governed by a "gated diode" model
- The amount of electrons injected into a given point of the body depends on the potential present at that given point

Potential at this point is higher than the potential at any other body/source point

D.L. Pulfrey, Understanding Modern Transistors and Diodes, Cambridge University Press, 2010.

Resulting Diffusion Current

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=\mathrm{qAD}_{\mathrm{n}} \frac{\mathrm{n}_{\mathrm{p}}(0)-\mathrm{n}_{\mathrm{p}}(\mathrm{~L})}{\mathrm{L}} \\
& \mathrm{I}_{\mathrm{D}}=\frac{1}{\mathrm{~L}} \mathrm{qAD} \mathrm{n}_{\mathrm{n} 0} \mathrm{e}^{\frac{\psi_{\mathrm{s}}}{\mathrm{~V}_{\text {th }}}}\left(1-\mathrm{e}^{-\frac{\mathrm{V}_{\mathrm{DS}}}{\mathrm{~V}_{\text {th }}}}\right)
\end{aligned}
$$

- The current grows exponentially with $\psi_{\text {s }}$
- The current becomes independent of V_{DS} for $\mathrm{V}_{\mathrm{DS}}>3 \mathrm{~V}_{\text {th }}(78 \mathrm{mV})$

Capacitive Divider

$$
\frac{d \psi_{s}}{d V_{G S}}=\frac{C_{o x}}{C_{j s}+C_{o x}}=\frac{1}{n}
$$

- n is called "subthreshold factor" or "nonideality factor"
- $n \cong 1.45$ for an NMOS device in our technology
- After including this relationship between ψ_{s} and $V_{G S}$ and after a few additional manipulations, the final expression for the drain current becomes:

$$
I_{D}=\frac{W}{L} I_{D 0} e^{\frac{\mathrm{V}_{G S}-V_{t}}{n V_{t h}}}\left(1-e^{-\frac{\mathrm{V}_{\mathrm{DS}}}{\mathrm{~V}_{\mathrm{th}}}}\right)
$$

where $I_{D O}$ depends on technology ($\mathrm{I}_{\mathrm{DO}} \cong 0.43 \mu \mathrm{~A}$ for an NMOS device in our technology)

In summary ...

- Modern MOSFETs are complicated !
- The behavior of a MOS in saturation can be roughly categorized according to the channel's inversion level: weak, moderate and strong inversion
- The bottom line is that there is no modeling expression that is simple enough for hand analysis and sufficiently accurate to match real world device behavior

Typical Analog circuits design flow based on square law hand calculations and SPICE simulation

- The complexity of the transistor model preclude the derivation of simple closed form analytical expressions
- Design process takes multiple iterations and "hand" tweaking of the transistor sizing before converging toward a working circuit

Technology centric vs. Design centric FOMs

- Most of the he parameters in the square-law model are technology centric

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu C_{o x} \frac{W}{L}\left(V_{O V}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& V_{O V} \therefore V_{G S}-V_{T}
\end{aligned}
$$

- It is hard to link technology parameters to the design requirements (gain, bandwidth, input and output impedances, noise)

By the way what are $\mu \mathrm{C}_{\mathrm{ox}}$, lambda and V_{T} for our technology ?

* 0.18um CMOS models (nominal process)

This is a 110-parameter BSIM3v3 SPICE model: $\mu \mathrm{Cox} \hat{=}$ KP and lambda are nowhere to be found

Transistor Figures of Merit for Design

Square Law

- Transconductance efficiency
- Want large g_{m}, for as little current as possible

$=\frac{2}{\mathrm{~V}_{\mathrm{OV}}}$
- Transit frequency
- Want large g_{m}, without large $C_{g g}$

$\frac{g_{m}}{C_{g g}}$

$\cong \frac{3}{2} \frac{\mu \mathrm{~V}_{\mathrm{OV}}}{\mathrm{L}^{2}}$

- Intrinsic gain
- Want large g_{m}, but no $g_{d s}$

$\frac{g_{m}}{g_{d s}}$

$$
\cong \frac{2}{\lambda \mathrm{~V}_{\mathrm{ov}}}
$$

Design Tradeoffs

Plot of $g_{\mathrm{m}} / I_{\mathrm{D}}$ and f_{T} at different levels of inversion Vov for an nMOS transistor with channel length $L=0.18 \mu \mathrm{~m}$

Transconductance efficiency	
Low $g_{\mathrm{m}} / I_{\mathrm{D}}$	High $g_{\mathrm{m}} / I_{\mathrm{D}}$
Strong inversion	Weak inversion
Poor power efficiency	Good power efficiency
Low output voltage range	High output voltage range
High transient frequency	Low transient frequency
Small transistor	Large transistor

Table 1 Transistor's properties at different levels of transconductance efficiency

High transient frequency
Small transistor

Large transistor

Product of g_{m} / I_{D} and f_{T}

- Interestingly, the product of g_{m} / I_{D} and f_{T} peaks in moderate inversion
- For our $0.18 \mu \mathrm{~m}$ technology it peaks at around $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}} \approx 13 \mathrm{~S} / \mathrm{A}$
- Operating the transistor in moderate inversion makes sense when we value speed and power efficiency equally
- Not always the case, it depends on the application

Product of g_{m} / I_{D} and f_{T} for varying L

Fig. 1 Relationship between $f_{\mathrm{T}} g_{\mathrm{m}} / I_{\mathrm{D}}$ and $g_{\mathrm{m}} / I_{\mathrm{D}}$ for nMOS transistors with channel length L varying from 0.18 to $0.4 \mu \mathrm{~m}$

Systematic Design of Analog CMOS Circuits Using g_{m} / I_{D}-based Methodology

- Goal
- Maintain a systematic design methodology in the absence of a set of useful compact MOS equations
- Strategy
- Design using look-up tables or charts

- Use pre-computed SPICE data in hand calculations

Starting Point: $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$-Centric Technology Characterization

- Tabulate the figures of merit considering g_{m} / I_{D} as an index, over a reasonable range of g_{m} / I_{D} and channel lengths
- Transit frequency $\left(\mathrm{f}_{\mathrm{T}}\right)$
- Intrinsic gain $\left(g_{m} / g_{d s}\right)$
- Also tabulate relative estimates of capacitances

$$
\mathrm{C}_{\mathrm{gd}} / \mathrm{C}_{\mathrm{gg}} \text { and } \mathrm{C}_{\mathrm{dd}} / \mathrm{C}_{\mathrm{gg}}
$$

- Note, that all the FOMs are (to first order) independent of device width
- So, in order to compute device widths, we need one more table that links $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$ and current density $\mathrm{I}_{\mathrm{D}} / \mathrm{W}$

$\mathrm{g}_{\mathrm{m}} / /_{\mathrm{D}}$-Centric Technology Characterization

- Obtain tables of device characteristics through a DC sweep of the transistor
- Measure transistor .op parameters at each point of the sweep
- $\mathrm{g}_{\mathrm{m}}, \mathrm{I}_{\mathrm{D}}, \mathrm{C}_{\mathrm{gg}}, \mathrm{g}_{\mathrm{ds}}$, etc.
- Repeat the sweep for different lengths
- $180 \mathrm{~nm}, 200 \mathrm{~nm},3 \mu \mathrm{~m}$
- Simple version: sweep V_{GS} with V_{DS} held fixed at $V_{D S}=V_{D D} / 2$
- The figures of merit and $\mathrm{I}_{\mathrm{D}} / \mathrm{W}$ don't vary too much with V_{DS}

- Advanced version: sweep also V_{DS} and V_{BS}
- Captures the back-gate effect due to V_{BS}
- Threshold Voltage shift
- Often using "low/medium/high" $V_{D S}$ charts is good enough

Simulation Data in MATLAB

```
```

% data stored in /home/ee406/matlab

```
```

% data stored in /home/ee406/matlab
>> load 180nch.mat
>> load 180nch.mat
>> nch
>> nch
nch =
nch =
ID: [4-D double]
ID: [4-D double]
VT: [4-D double]
VT: [4-D double]
GM: [4-D double]
GM: [4-D double]
GMB: [4-D double]
GMB: [4-D double]
GDS: [4-D double]
GDS: [4-D double]
CGG: [4-D double]
CGG: [4-D double]
CGS: [4-D double]
CGS: [4-D double]
CGD: [4-D double]
CGD: [4-D double]
CGB: [4-D double]
CGB: [4-D double]
CDD: [4-D double]
CDD: [4-D double]
CSS: [4-D double]
CSS: [4-D double]
INFO: 'GU ee406 models, 180nm CMOS, BSIM3'
INFO: 'GU ee406 models, 180nm CMOS, BSIM3'
VGS: [73x1 double]
VGS: [73x1 double]
VDS: [73x1 double]
VDS: [73x1 double]
VSB: [11x1 double]
VSB: [11x1 double]
L: [32x1 double]
L: [32x1 double]
W: 5.0000e-06
W: 5.0000e-06
NFING: 1
NFING: 1
>> size(nch.ID)
>> size(nch.ID)
ans =

```
ans =
```

32	73	73	11

```
    GS: [73x1 double]
```

```
    GS: [73x1 double]
```

Four-dimensional arrays

$$
\begin{gathered}
I_{D}\left(L, V_{G S}, V_{D S}, V_{S}\right) \\
V_{t}\left(L, V_{G S}, V_{D S}, V_{S}\right) \\
g_{m}\left(L, V_{G S}, V_{D S}, V_{S}\right)
\end{gathered}
$$

Transit Frequency ($\mathrm{f}_{\mathrm{T}}=\mathrm{g}_{\mathrm{m}} / \mathrm{C}_{\mathrm{gg}}$)

Transit frequency vs. g_{m} / I_{D}

Intrinsic Gain ($\mathrm{g}_{\mathrm{m}} / \mathrm{g}_{\mathrm{ds}}$)

Current Density $\left(\mathrm{J}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D}} / \mathrm{W}\right)$

V_{DS} Dependence

- V_{DS} dependence is relatively weak
- Typically it is OK to work with data generated for $\mathrm{V}_{\mathrm{DD}} / 2$

Capacitances

Capacitances - Length Dependence

Design in a Nutshell

- Choose length L such that the circuit has 'enough' gain
- Choose the inversion level according to the proper tradeoff between speed (f_{T}) and transconductance efficiency $\left(\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}\right)$ for the given circuit
- The inversion level is fully determined by the gate overdrive V_{OV}
- But, V_{OV} is not a very interesting parameter outside the square law framework; not much can be computed from V_{ov}

Eliminating V_{ov}

- But, ... the inversion level is also fully defined by $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$ so there is no need to know V_{ov}

The SPICE model data confirms that $2 /\left(g_{m} / I_{D}\right)$ is a good estimate for the minimum reasonable V_{DS}

A Generic Design Optimization Flow

Complicated circuits have *many* degrees of freedom and objectives

- Usually we must make some heuristic choices up front
- Charts and lookup tables help you iterate through possible designs rapidly

1) Pick transistor lengths
2) Pick g_{m} / I_{D} bias points
3) Determine gm (from design objective)
4) Determine bias currents (from g_{m} and g_{m} / I_{D})
5) Total power consumption = ???

- Room for improvement?

Revise the optimization variables

- Ready to verify?

6) Determine W (from I_{D} / W)
7) Simulate the circuit: meets specs and estimated performance?

- If yes, then you're done!
- If not, revise the design flow: correct mistakes, improve estimates, etc.

TIA for Fiber Optic Receiver

Fig. 2 Typical optical communication (OC) system

TIA specifications:

- $0.18 \mu \mathrm{~m}$ CMOS technology,
- closed-loop transimpedance gain of $73 \mathrm{~dB} \Omega$
- $\quad 0.5 \mathrm{pF}$ photodiode
- 250Ω-load,
- Total current budget up to 16 mA
- input referred current noise PSD up to $160 \times 10^{-24} \mathrm{~A}^{2} / \mathrm{Hz}$
- Optimize for gain, speed and power consumption

$$
\mathrm{FOM}=\frac{\mathrm{GBW}}{P_{\mathrm{DISS}}}
$$

Performance metric	Analysis	Simulation	1% Relative errorl
Gain $(\mathrm{dB} \Omega)$	73.06	78.34	6.74
$f 3 \mathrm{db}(\mathrm{GHz})$	2.4	2.21	8.6
Input ref. noise $(\mathrm{pA} / \sqrt{ } \mathrm{Hz})$	11.99	11.91	0.67
Power dissipated (mW)	14.40	13.5	6.67
Phase margin (degrees)	47.48	45.19	5.07

TIA for Fiber Optic Receiver

Fig. 4 TIA topology ($\mathrm{CG}=$ common gate, $\mathrm{CS}=$ common source, $\mathrm{SF}=$ source follower)

Fig. 6 TIA’s biasing circuit

TIA for Fiber Optic Receiver

Fig. 7 TIA AC half circuit with feedback loading and relevant capacitances

Loop gain: $T_{0}=a_{0} f_{0}$
Closed Loop Trans-impedance gain: $\quad A_{0}=\frac{v_{\text {out, diff }}}{i_{\text {input }}} \approx \frac{2 a_{0}}{1+T_{0}} \quad i_{\text {input }}=i_{\text {in }} / 2$ and $v_{\text {out,diff }}=v_{\text {oa }}-v_{\mathrm{ob}}$
Bandwidth (ZVTC): $f_{-3 \mathrm{~dB}} \approx \frac{1+T_{0}}{2 \pi \cdot \sum_{\forall i} \tau_{i}}$
Input referred current noise PSD: $\quad \frac{\overline{i_{\text {noise }}^{2}}}{\Delta f} \approx \frac{1}{2} \cdot\left(\frac{4 K T}{R_{\mathrm{F}}}+4 K T \gamma_{n} g_{\mathrm{mB1}}+\frac{4 K T R_{1}}{A_{\mathrm{CG}}^{2}}+4 K T \gamma_{p} g_{\mathrm{mlP}} \frac{R_{1}^{2}}{A_{\mathrm{CG}}^{2}}\right)$

TIA for Fiber Optic Receiver

Fig. 7 TIA AC half circuit with feedback loading and relevant capacitances
TC at the CG input: $\quad \tau_{\mathrm{in}} \approx C_{\mathrm{in}} \cdot\left(R_{\mathrm{F}} \| \frac{1}{g_{\mathrm{m} 1}^{*}}\right) \quad$ where $C_{\mathrm{in}}=C_{\mathrm{P}}+C_{\mathrm{F}}+C_{\mathrm{gs} 1}+C_{\mathrm{sb} 1}+C_{\mathrm{ddp} 1}$ and $C_{\mathrm{ddp} 1}=C_{\mathrm{gdp} 1}+C_{\mathrm{dbp} 1}$
TC at the CG output: $\quad \tau_{2} \approx R_{1} C_{2}$ where $C_{2}=C_{\mathrm{gd} 1}+C_{\mathrm{db} 1}+C_{\mathrm{gs} 2}+C_{\mathrm{gd} 2}\left(1+g_{\mathrm{m} 2} / g_{\mathrm{m} 2 \mathrm{C}}^{*}\right)$
TC at the source of M2C: $\quad \tau_{2 \mathrm{C}} \approx \frac{1}{g_{\mathrm{m} 2 \mathrm{C}}^{*}} C_{2 \mathrm{C}} \quad$ where $C_{2 \mathrm{C}}=C_{\mathrm{db} 2}+C_{\mathrm{gs} 2 \mathrm{C}}+C_{\mathrm{sb} 2 \mathrm{C}}$
TCs at the first CS output: $\tau_{3} \approx R_{2} C_{3}$ and $\tau_{3 \mathrm{~m}} \approx C_{\mathrm{gd} 3} \cdot\left(R_{2}+\frac{1}{g_{\mathrm{m} 3 \mathrm{C}}^{*}}+g_{\mathrm{m} 3} \frac{R_{2}}{g_{\mathrm{m} 3 \mathrm{C}}^{*}}\right)$
TC at the source of M3C: $\quad \tau_{3 \mathrm{C}} \approx \frac{1}{g_{\mathrm{m} 3 \mathrm{C}}^{*}} C_{3 \mathrm{C}} \quad$ where $C_{3 \mathrm{C}}=C_{\mathrm{db} 3}+C_{\mathrm{gs} 3}+C_{\mathrm{sb} 3 \mathrm{C}}$
TC at the CD input: $\quad \tau_{4 \mathrm{in}} \approx R_{2} C_{4 \mathrm{in}}$ and $\tau_{4 \mathrm{~m}} \approx C_{\mathrm{gs} 4} \frac{R_{3}+R_{\mathrm{Lp}}}{g_{\mathrm{m} 4} R_{\mathrm{Lp}}+1}$ where $C_{4 \mathrm{in}}=C_{\mathrm{db} 2 \mathrm{C}}+C_{\mathrm{gd} 2 \mathrm{C}}+C_{\mathrm{gs} 3}$
TC at the CD output: $\quad \tau_{4 o u t} \approx R_{L p} \cdot\left(C_{F}+C_{s b 4}\right)$

3. Partition the amount of gain needed to meet specification between the common source and the common gate:

$$
\begin{equation*}
A_{\mathrm{CS}} A_{\mathrm{CG}}=\frac{a_{0}}{A_{\mathrm{CD}}} \tag{16}
\end{equation*}
$$

An excessive value of A_{CS} causes a strong miller effect at the intermediate node between the transistors M_{2} and $M_{2 C}$ and results in a non optimal value of the dominant time constant τ_{2}. Similarly, an excessive value of A_{CG} implies an excessive value of R_{1} and results in a suboptimal value of the dominant time constant τ_{2}. Appropriate values of A_{CS} and A_{CG} are in the following ranges:

$$
\begin{equation*}
1 \leq A_{\mathrm{CS}} \leq 50 \text { and } \frac{a_{0}}{A_{\mathrm{CD}} A_{\mathrm{CSmax}}} \leq A_{\mathrm{CG}} \leq \frac{a_{0}}{A_{C D}} \tag{17}
\end{equation*}
$$

4. Set $g_{\mathrm{m}} / I_{\mathrm{D}}$ of transistor M_{1} and the value of R_{1} as the primary design variables. The values of $g_{\mathrm{m} 1} / I_{\mathrm{D} 1}$ and R_{1} set the value of A_{CG}. The value of A_{CG} set the value of A_{CS} and therefore the value of $g_{\mathrm{m} 2} / I_{\mathrm{D} 2}, R_{2}, g_{\mathrm{m} 3} / I_{\mathrm{D} 3}$ and R_{3}.
5. Sweep $g_{\mathrm{m} 1} / I_{\mathrm{D} 1}$ from weak inversion region $\left(g_{\mathrm{m}} / I_{\mathrm{D}}=25 \mathrm{~S} / \mathrm{A}\right)$ to strong inversion region ($g_{\mathrm{m}} / I_{\mathrm{D}}=5 \mathrm{~S} / \mathrm{A}$) and R_{1} from $A_{\mathrm{CG} \text { _min }}$ to $A_{\mathrm{CG} \text { _max. }}$. Register the performance metrics of every feasible design in the explored space. Design feasibility and the current bias for the CG and CS are determined by the bias constrains.
6. Determine $g_{\mathrm{m} 1} / I_{\mathrm{D} 1}, I_{\mathrm{D} 1}, R_{1}, A_{\mathrm{CG}}, g_{\mathrm{m} 2} / I_{\mathrm{D} 2}, I_{\mathrm{D} 2}, R_{2}, R_{3}, g_{\mathrm{m} 3} / I_{\mathrm{D} 3}, I_{\mathrm{D} 3}, A_{\mathrm{CS}}$, and A_{CD} for the TIA design that achieves the best bandwidth.
7. Finally, determine transistor widths from $g_{\mathrm{m}} / I_{\mathrm{D}}$, the calculated I_{D}, and the current density ($I_{\mathrm{D}} / \mathrm{W}$) look-up tables

Results

Table 4 Performance comparison of state-of-the-art CMOS TIAs

Spec.	$[3]$	$[4]$	$[9]$	$[14]$	$[2]$	This work
Gain $(\mathrm{dB} \Omega)$	66	66.02	94.96	69.8	72	78.34
BW (GHz)	2.1	22	0.0018	1	2.4	2.21
Cin (pF)	0.5	0.5	2	0.5	0.5	0.5
Input ref. noise $(\mathrm{pA} / \sqrt{ } \mathrm{Hz})$	10	22	0.065	4.5	18.12	11.91
$P_{\text {DISS }}(\mathrm{mW})$	7.2	75	0.436	4.62	20.57	13.5
FOM $(\Omega * \mathrm{GHz} / \mathrm{mW})$	581.95	586.7	231.19	668.9	464.4	1352
Process $(\mu \mathrm{m})$	0.18	0.09	0.18	0.18	0.18	0.18
Supply voltage (V)	1.8	1.2	1.8	3.3	1.8	1.8

TIA Frequency Response

Root Locus w/o compensation

Gilbert Cell Mixer

$A_{v} \cong\left(\frac{2}{\pi}\right) g_{m} R_{L} \quad g_{m}=\sqrt{\frac{2 K P_{n} W I_{D}}{L}}$
$I_{B I A S}=2 \times I_{D(T S)} \quad I_{D(S S)}=2 \times I_{D(T S)}$

Specifications:

- A conversion gain greater than 10 dB
- DC-power consumption lower than 3 mW
- A resistive load of 500Ω
- A target third-order intercept (IIP3) $>-5 \mathrm{dBm}$

Topology Main Benefits:

- Simple
- Good port-to-port isolation
- Low even-order harmonic distortion

Topology Drawback:

The cell is composed of a stack of three MOS transistors, so it requires large voltage headroom to keep the transistors biased in saturation, and it results in a large DC-power consumption

Optimization Framework

Optimization Framework

1. Given the target gain and the load resistance specifications, use (1) to derive the value of g_{m};
2. Once the value of g_{m} has been set, sweep g_{m} / I_{D} (that is the inversion level of the transistors) in the range $5 \div 25$, and let the framework computes the corresponding current levels $\mathrm{I}_{\mathrm{D}(\mathrm{SS})}$ and $\mathrm{I}_{\mathrm{D}(\mathrm{TS})}$;
3. Exploiting the lookup table of the current density $\left(\mathrm{I}_{\mathrm{D}} / \mathrm{W}\right)$, computes the values of $\mathrm{W}_{(\mathrm{SS})}$ and $\mathrm{W}_{(\mathrm{TS})}$ for all inversion levels explored. Set the channel length L to the minimum value of 130 nm to maximize speed[5];
4. Perform systematic DC analysis of the mixer by independently varying the g_{m} / I_{D} ratio for the TS and SS. For each bias point computes the DC-power consumption of the mixer.
5. For each solution checks that the circuit is correctly biased (that is all transistors operates in saturation) and compares the DC-power consumption with the design specification. Discard any unfeasible solution.
6. For each solution left from the previous step, compute the conversion gain of the mixer. Discard any further solution that exhibit a conversion gain lower than the design specifications.
7. Repeat the previous step for the noise figure and the third-order intercept of the system.
8. Explores the pruned solutions space and extract the optimal bias point, that is the bias point that allows to achieve the best tradeoff among the performance metrics of the mixer.

UWB LNA Distributed Amplifier

Theoretical Gain:

$G=\frac{N g_{m} Z_{0}}{2}$
Upper Bound:

$$
N_{o p t}=\frac{\ln \left(A_{D} / A_{G}\right)}{A_{D}-A_{G}}
$$

Synchronism of propagation:
$L_{G} C_{G G} \approx L_{D} C_{D D}$

Symmetry of characteristic impedance

$$
Z_{G}=\sqrt{\frac{L_{G}}{C_{G}}}=Z_{D}=\sqrt{\frac{L_{D}}{C_{D}}}
$$

Bandwidth:

$$
B W \cong \min \left(\frac{1}{\pi} \sqrt{\frac{1}{C_{G G} L_{G}}}, \frac{1}{\pi} \sqrt{\frac{1}{C_{D D} L_{D}}}\right)
$$

